La thèse se place dans le domaine de l'IA explicable (XAI, eXplainable AI). Nous nous concentrons sur les méthodes d'interprétabilité post-hoc qui visent à expliquer à un utilisateur la prédiction effectuée pour une donnée d'intérêt spécifique par un modèle de décision entraîné.
Pour augmenter l'interprétabilité des explications, cette thèse étudie l'intégration de connaissances utilisateur dans ces méthodes, et vise ainsi à améliorer la compréhensibilité de l'explication en générant des explications personnalisées adaptées à chaque utilisateur. Pour cela, nous proposons un formalisme général qui intègre explicitement la connaissance via un nouveau critère dans les objectifs d'interprétabilité. Ce formalisme est ensuite décliné pour différents types de connaissances et différents types d'explications, particulièrement les exemples contre-factuels, conduisant à la proposition de plusieurs algorithmes (KICE, Knowledge Integration in Counterfactual Explanation, rKICE pour sa variante incluant des connaissances exprimées par des règles et KISM, Knowledge Integration in Surrogate Models).
La question de l'agrégation des contraintes de qualité classique et de compatibilité avec les connaissances est également étudiée et nous proposons d'utiliser l'intégrale de Gödel comme opérateur d'agrégation.
Enfin, nous discutons de la difficulté à générer une unique explication adaptée à tous types d'utilisateurs et de la notion de diversité dans les explications.