LAUGEL Thibault

doctorant à Sorbonne Université
Équipe : LFI
https://twitter.com/thibaultlaugel

Direction de recherche : Christophe MARSALA, Marie-Jeanne LESOT
Co-encadrement : DETYNIECKI Marcin

Interprétabilité Locale Post-hoc des modèles de classification «boîtes noires»

Cette thèse porte sur le domaine du XAI (explicabilité de l'IA), et plus particulièrement sur le paradigme de l'interprétabilité locale post-hoc, c'est-à-dire la génération d'explications pour la prédiction pour une donnée par un classifieur entraîné. En particulier, nous étudions un contexte totalement agnostique, c'est-à-dire que l'explication est générée sans utiliser aucune connaissance sur le modèle de classification (traité comme une boîte noire) ni les données utilisées pour l'apprentissage. Dans cette thèse, nous identifions plusieurs problèmes qui peuvent survenir dans ce contexte et qui peuvent être préjudiciables à l'interprétabilité. Nous nous proposons d'étudier chacune de ces questions et proposons des critères et des approches nouvelles pour les détecter et les caractériser. Les trois questions sur lesquelles nous nous concentrons sont : le risque de générer des explications qui sont hors distribution ; le risque de générer des explications qui ne peuvent être associées à aucune instance d'apprentissage ; et le risque de générer des explications qui ne sont pas assez locales. Ces risques sont étudiés à travers deux catégories spécifiques d'approches de l'interprétabilité : les explications contrefactuelles et les modèles de substitution locaux.


Soutenance : 03/07/2020

Membres du jury :

M. Jamal Atif, Dauphine LAMSADE [rapporteur]
M. Marcin Detyniecki, AXA
Mme Fosca Giannotti, Université de Pise KDDLab / ISTI-CNR [rapporteur]
Mme Marie-Jeanne Lesot, Sorbonne Université LIP6
M. Christophe Marsala, Sorbonne Université LIP6
M. Nicolas Maudet, Sorbonne Université LIP6
M. Chris Russell, Alan Turing Institute / University of Surrey

Date de départ : 31/07/2020

Publications 2018-2023