REVAULT D'ALLONNES Adrien
Supervision : Herman AKDAG
Semantic evaluation of symbolic information
Confidence in information should represent how far one can believe in it, how much faith to put in it. Trust is a thriving field of study yet, in general, it tends to measure quality of the process responsible for producing the information rather than inform on whether to believe it or not. In the same way that hearing a fact from a trustworthy source is insufficient to fully believe it, automatic evaluation of trust requires a rich model capable of expliciting why what it qualifies should or should not be believed. This is the problem we have tackled in our work. From a careful study of an existing representation of confidence, we choose to split the problem in two: the encoding of trust, how it is represented, and the rules governing its appraisal, how it is evaluated. We derive the essential dimensions participating in the building of trust from the examination of the prerequisites imposed on the definition of its encoding. We offer a categorisation of these dimensions which clusters the evaluated criteria according to their object and influence and ensures their independence and non-redundancy. We also take great care of ensuring the readability of the measures involved in the assessment by proposing their expression along discrete scales made explicit through the use of linguistic labels. Now that the dimensions have been selected, we can address the problem of their combination, to model the trust-building process. We tackle this problem by proposing a philosophy of dimension integration, we shape the architecture of information scoring. We provide this architecture with a scoring-chain representation which highlights the order in which dimensions are considered and the influence they have on the increase or decrease of the confidence evaluation. We also show how the flexibility of our model can be used to represent different user gullibility postures, an essential adaptativity for the modeling of subjective matters. Once these definitions are set, we propose a theoretical formalisation of the scoring process and of its expression, the score. Using the expressiveness of multi-valued logic, we choose to set our solutions in this formalism. To reintroduce the important distinction between impossibility of measuring and a neutral measure, we extend this formalism by adding a new truth degree. Within this framework of an extended symbolic logic, we define combination operators to represent all of our proposals and formalise credulity modeling. We then consider the implementation of our model for the extraction and scoring of symbolic information. We first examine the transposition of information scoring to the problem of knowledge extraction from text. We describe successively the scoring of information extraction, and that of their fusion, examining for both how the scoring dimensions translate. We then develop a prototype for the put to use of our model. Finally, we apply both model and prototype to a real case of extraction and scoring of a social network from texts.
Defence : 07/11/2011
Jury members :
Herman Akdag, LIP6-UPMC
Salem Benferhat, Centre de Recherche en Informatique de Lens (CRIL) [Rapporteur]
Bernadette Bouchon-Meunier LIP6-UPMC
Philippe Capet, Thalès
Laurence Cholvy, ONERA - Toulouse [Rapporteur]
Michel Goya, Institut de Recherches Stratégiques de l'École Militaire
Marie-Jeanne Lesot, LIP6-UPMC
Olivier Poirel, ONERA - Palaiseau
Three past PhD students (2017 - 2020) at Sorbonne University
- 2020
- LENART Marcin : Qualité des données et de l'information pour systÚmes d'aide à la décision.
- 2017
- CANU Maël : Détection de communautés orientée sommet pour réseaux mobiles opportunistes sociaux.
- LEGASTELOIS Bénédicte : Extension pondérée des logiques modales dans le cadre des croyances graduelles.
2006-2022 Publications
-
2022
- M.‑J. Lesot, A. Revault D'Allonnes : “Les t-normes en logique multivalente : un thĂ©orĂšme de reprĂ©sentation de lâABOP”, Rencontres Francophones sur la Logique Floue et ses Applications (LFA) 2022, Toulouse, France (2022)
- M.‑J. Lesot, A. Revault D'Allonnes : “T-norms in Many-Valued Logics: a Representation Theorem in the ABOP Framework”, IEEE World Congress on Computational Intelligence (WCCI) 2022, Padoue, Italy, (IEEE) (2022)
-
2020
- M.‑J. Lesot, A. Revault D'Allonnes : “Subspace clustering et degrĂ©s de typicitĂ© dâattributs : une Ă©tude prospective”, Rencontres Francophones sur la Logique Floue et ses Applications, SĂšte, France (2020)
- M.‑J. Lesot, A. Revault D'Allonnes : “Subspace Clustering and Feature Typicality Degrees: a Prospective Study”, 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, United Kingdom (2020)
-
2019
- A. Revault D'Allonnes, M.‑J. Lesot : “Study of an Abating Aggregation Operator in Many-Valued Logic”, The 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2019), New Orleans, United States (2019)
- M. Lenart, A. Bielecki, M.‑J. Lesot, T. Petrisor, A. Revault D'Allonnes : “Trust Dynamics: A Case-study on Railway Sensors”, SENSORNETS 2019 - 8th International Conference on Sensor Networks, Prague, Czechia (2019)
- A. Marchal, M.‑A. Miville‑DeschĂȘnes, F. Orieux, N. Gac, Ch. Soussen, M.‑J. Lesot, A. Revault D'Allonnes, Q. SalomĂ© : “ROHSA: Regularized Optimization for Hyper-Spectral Analysis: Application to phase separation of 21 cm data”, Astronomy and Astrophysics - A&A, vol. 626, pp. a101, (EDP Sciences) (2019)
-
2018
- M. Lenart, A. Bielecki, M.‑J. Lesot, T. Petrisor, A. Revault D'Allonnes : “Dynamic Trust Scoring of Railway Sensor Information”, ICAISC 2018 - 17th International Conference on Artificial Intelligence and Soft Computing, vol. 10842, Lecture Notes in Computer Science, Zakopane, Poland, pp. 579-591, (Springer) (2018)
-
2017
- A. Revault D'Allonnes, M.‑J. Lesot : “If I donât know, should I infer? Reasoning around ignorance in a many-valued framework”, Proc. of the 17th World Congress of the International Fuzzy Systems Association, IFSA2017, Otsu, Japan (2017)
- B. Legastelois, M.‑J. Lesot, A. Revault D'Allonnes : “Typology of Axioms for a Weighted Modal Logic”, International Journal of Approximate Reasoning, vol. 90, pp. 341-358, (Elsevier) (2017)
- B. Legastelois, M.‑J. Lesot, A. Revault D'Allonnes : “A Fuzzy Take on Graded Beliefs”, Advances in Fuzzy Logic and Technology 2017, vol. 642, Advances in Intelligent Systems and Computing, Varsovie, Poland, pp. 392-404, (Springer) (2017)
- M.‑J. Lesot, A. Revault D'Allonnes : “Information quality and uncertainty”, chapter in Uncertainty Modeling (2017)
-
2016
- M. Canu, M.‑J. Lesot, A. Revault D'Allonnes : “Overlapping Community Detection by Local Decentralised Vertex-centred Process”, Proceedings of the 2016 16th IEEE International Conference on Data Mining Workshops (ICDMW'16), Barcelone, Spain, pp. 77-84, (IEEE) (2016)
- B. Legastelois, M.‑J. Lesot, A. Revault D'Allonnes : “NĂ©gation de croyances graduelles”, Rencontres Francophones sur la Logique Floue et ses Applications, La Rochelle, France (2016)
- M. Canu, M.‑J. Lesot, A. Revault D'Allonnes : “DĂ©tection de communautĂ©s recouvrantes orientĂ©e sommet”, Actes de la 7e ConfĂ©rence sur les modĂšles et lâanalyse des rĂ©seaux : Approches mathĂ©matiques et informatiques, Cergy, France (2016)
- B. Legastelois, M.‑J. Lesot, A. Revault D'Allonnes : “Belief, semi-belief and unbelief”, Non-classical logics. Theory and applications, ĆĂłdĆș, Poland (2016)
- B. Legastelois, M.‑J. Lesot, A. Revault D'Allonnes : “Negation of graded beliefs”, Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2016, Eindhoven, Netherlands (2016)
- M. Canu, M.‑J. Lesot, A. Revault D'Allonnes : “Vertex-centred Method to Detect Communities in Evolving Networks”, Proceedings of the 5th International Workshop on Complex Networks and their Applications (COMPLEX NETWORKS 2016), vol. 683, Studies in Computational Intelligence, Milan, Italy, pp. 275-286, (Springer International Publishing) (2016)
-
2015
- B. Legastelois, M.‑J. Lesot, A. Revault D'Allonnes : “Aggregation of belief degrees in graded doxastic logic for conjunction and disjunction”, Non-classical logics. Theory and applications, ToruĆ, Poland (2015)
- M. Canu, M. Detyniecki, M.‑J. Lesot, A. Revault D'Allonnes : “Fast community structure local uncovering by independent vertex-centred process”, Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris, France, pp. 823-830, (ACM) (2015)
- A. Revault D'Allonnes, M.‑J. Lesot : “Dynamics of trust building: models of information cross-checking in a multivalued logic framework”, The 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), Istanbul, Turkey (2015)
- B. Legastelois, M.‑J. Lesot, A. Revault D'Allonnes : “Typologie dâaxiomes pour une logique modale pondĂ©rĂ©e”, JournĂ©es d'Intelligence Artificielle Fondamentales, IAF'15, Rennes, France (2015)
- B. Legastelois, M.‑J. Lesot, A. Revault D'Allonnes : “Typology of axioms for a weighted modal logic”, Proc. Workshop on Weighted Logics for Artifical Intelligence, WL4AI, IJCAI 2015, Buenos Aires, Argentina, pp. 40-47 (2015)
-
2014
- A. Revault D'Allonnes, M.‑J. Lesot : “Formalising Information Scoring in a Multivalued Logic Framework”, Information Processing and Management of Uncertainty in Knowledge-Based Systems, vol. 442, Communications in Computer and Information Science, Montpellier, France, pp. 314-324, (Springer) (2014)
-
2012
- M. Damez, M.‑J. Lesot, A. Revault D'Allonnes : “Dynamic Credit-Card Fraud Profiling”, Proceedings of the 9th International Conference on Modeling Decisions for Artificial Intelligence (MDAI), vol. 7647, Lecture Notes in Computer Science, Girona, Catalonia, Spain, pp. 234-245, (Springer) (2012)
- M.‑J. Lesot, A. Revault D'Allonnes : “Credit-Card Fraud Profiling Using a Hybrid Incremental Clustering Methodology”, Proceedings of the 6th International Conference on Scalable Uncertainty Management (SUM), vol. 7520, Lecture Notes in Computer Science, Marburg, Germany, pp. 325-336, (Springer) (2012)
-
2011
- A. Revault d'Allonnes : “Ăvaluation sĂ©mantique dâinformations symboliques : la cotation”, thesis, phd defence 07/11/2011, supervision Akdag, Herman (2011)
-
2010
- A. Revault D'Allonnes, H. Akdag, B. Bouchon‑Meunier : “Incertain et inconnu, deux facettes de la cotation”, IC 2010 21es JournĂ©es francophones d'IngĂ©nierie des Connaissances, NĂźmes, France, pp. 99-103 (2010)
-
2009
- A. Revault D'Allonnes, H. Akdag, B. Bouchon‑Meunier : “For a Data-Driven Interpretation of Rules wrt GMP Conclusions in Abductive Problems”, Journal of Uncertain Systems, vol. 3 (4), pp. 280-297, (World Academic Press) (2009)
- B. Bouchon‑Meunier, S. Galichet, A. Revault D'Allonnes : “France Chapter Report”, IEEE Computational Intelligence Magazine, vol. 4 (2), pp. 18-21, (Institute of Electrical and Electronics Engineers) (2009)
- A. Revault D'Allonnes, J. Besombes : “CritĂšres dâĂ©valuation contextuelle pour le traitement automatique”, 9es JournĂ©es Francophones "Extraction et Gestion des Connaissances", Strasbourg, France, pp. a613-20 (2009)
-
2008
- J. Besombes, A. Revault D'Allonnes : “An Extension of STANAG2022 for Information Scoring”, Fusion 2008 - 11th International Conference on Information Fusion, Cologne, Germany, pp. 1635-1641, (IEEE) (2008)
-
2007
- A. Revault D'Allonnes, H. Akdag, O. Poirel : “Trust-moderated information-likelihood. A multi-valued logics approach”, Computation and Logic in the Real World Third Conference on Computability in Europe, CiE 2007, Siena, Italy, June 18-23, 2007, Proceedings, Sienne, Italy, pp. 1-6 (2007)
- A. Revault D'Allonnes, H. Akdag, B. Bouchon‑Meunier : “Selecting Implications in Fuzzy Abductive Problems”, Foundations of Computational Intelligence, 2007. FOCI 2007. IEEE Symposium on, Honolulu, HI, United States, pp. 597-602, (IEEE) (2007)
-
2006
- A. Revault D'Allonnes, H. Akdag, B. Bouchon‑Meunier : “Vers une classification de problĂšmes abductifs en fonction dâobservations possibles”, Actes des Rencontres Francophones sur la Logique Floue et ses Applications, Toulouse, France, pp. 121-128, (CĂ©paduĂšs) (2006)