This thesis work falls within the area of algorithmic decision theory which is at the junction of decision theory, operations research and artificial intelligence. Our aim is to produce algorithms allowing the fast resolution of decision problems in complex environments (multiple criteria, multi-agents, uncertainty). This work focuses on decision-theoretic elicitation and uses preferences to efficiently determine the best solutions among a set of alternatives explicitly or implicitly defined (combinatorial optimization). For combinatorial optimization problems, we propose and study a new approach consisting in interleaving incremental preference elicitation and preference-based search. The idea is to use the exploration to identify informative preference queries while exploiting answers to better focus the search on the preferred solutions. This approach leads us to propose incremental elicitation procedures for multi-objective state-space search problems, multicriteria shortest path problems, multicriteria minimum spanning tree problems, multi-agents knapsack problems and sequential decision problems under uncertainty. We provide theoretical guarantees on the correctness of the proposed algorithms and we present numerical tests showing their practical efficiency.