- Laboratoire d’informatique Le LIP6 soutient la campagne Octobre Rose de prévention contre le cancer du sein

Séminaire SMA

RSS

Supervised learning for distribution of centralised multiagent patrolling strategies.

Lundi 18 novembre 2019
Mehdi Othmani-Guibourg

For nearly two decades, patrolling has received significant attention from the multiagent community. Multiagent patrolling (MAP) consists in modelling a patrol task to optimise as a multiagent system. The problem of optimising a patrol task is to distribute agents over the area to patrol in space and time the most efficiently, which constitutes a decision-making problem. A range of algorithms based on reactive, cognitive, reinforcement learning, centralised and decentralised strategies, among others, have been developed to make such a task ever more efficient. However, the existing patrolling-specific approaches based on supervised learning were still at preliminary stages, although a few works addressed this issue. Central to supervised learning, which is a set of methods and tools that allow inferring new knowledge, is the idea of learning a function mapping any input to an output from a sample of data composed of input-output pairs; learning, in this case, enables the system to generalise to new data never observed before. Until now, the best online MAP strategy, namely without precalculation, has turned out to be a centralised strategy with a coordinator. However, as for any centralised decision process in general, such a strategy is hardly scalable. The purpose of this work is then to develop and implement a new methodology aimed at turning any high-performance centralised strategy into a distributed strategy. Indeed, distributed strategies are by design resilient, more adaptive to changes in the environment, and scalable. In doing so, the centralised decision process, generally represented in MAP by a coordinator, is distributed into patrolling agents by means of supervised learning methods, so that agents of the resultant distributed strategy tend to capture each a part of the algorithm executed by the centralised decision process. The outcome is a new distributed decision-making algorithm based on machine learning. In this thesis therefore, such a procedure of distribution of centralised strategy is established, then concretely implemented using some artificial neural networks architectures.

Plus d'informations ici …
cedric.herpson (at) nulllip6.fr