GIRARD Benoît

doctorant à Sorbonne Université - OASIS
https://lip6.fr/Benoit.Girard

Direction de recherche : Agnès GUILLOT, Alain BERTHOZ

Co-encadrement : GUILLOT Agnès, BERTHOZ Alain

Intégration de la navigation et de la sélection de l'action dans une architecture de contrôle inspirée des ganglions de la base

La conception d'architectures de contrôle de robots adaptatifs autonomes nécessite de résoudre les problèmes de sélection de l'action et de navigation. La sélection de l'action concerne le choix, à chaque instant, du comportement le plus adapté afin d'assurer la survie. Ce choix dépend du contexte environnemental, de l'état interne du robot et de motivations pouvant être contradictoires. La navigation se rapporte à la locomotion, la cartographie, la localisation et la planification de chemin dans l'environnement. La mise en oeuvre conjointe de ces deux capacités --pour, par exemple, exploiter la planification de chemin pour retrouver des ressources vitales-- n'a été que peu abordée par les nombreux systèmes ingénieurs appliqués à la robotique autonome. Les progrès récents en neurosciences permettent de proposer des modèles des structures neurales impliquées dans l'intégration d'information spatiales pour la sélection de l'action. Chez les vertébrés, ces structures correspondent aux ganglions de la base, un ensemble de noyaux subcorticaux. L'objectif de ce travail a été de s'inspirer de ces connaissances neurobiologiques pour élaborer l'architecture de sélection de l'action d'un robot autonome prenant en compte à la fois des informations sensorimotrices, motivationnelles et spatiales. Dans un premier temps, nous avons adapté un modèle biomimétique de sélection de l'action déjà existant pour tester sa capacité à résoudre une tâche de survie dans une implémentation robotique. Nous avons montré, par des comparaisons avec un système de sélection de type «winner-takes-all», que ses propriétés dynamiques lui permettent de limiter les oscillations comportementales, de maintenir ses variables internes à un niveau plus élevé et de limiter sa consommation d'énergie. Dans un deuxième temps, nous nous sommes inspirés des rôles distincts des circuits dorsaux --sélection de l'action-- et ventraux --intégration de la navigation-- des ganglions de la base pour élaborer une architecture interfaçant ce modèle de sélection de l'action avec deux stratégies de navigation : approche d'objets et planification topologique. Nous l'avons testée sur un robot simulé réalisant une tâche de survie similaire à la précédente. Le robot s'est avéré capable d'utiliser la planification pour rejoindre des ressources distantes, d'utiliser de façon complémentaire l'approche d'objets pour exploiter les ressources inconnues, d'adapter son comportement à la disparition de ressources, à son état interne et aux configuration environnementales, et enfin de survivre dans un environnement complexe réunissant l'ensemble des situations préalablement testées. Nous concluons que les circuits des ganglions de la base modélisés ont permis d'obtenir un système robuste d'interface de la sélection de l'action et de la navigation pour une architecture de contrôle de robot autonome.Cependant, des connaissances supplémentaires en neurobiologie seraient nécessaires pour affiner la plausibilité du modèle proposé. De plus, l'intégration de capacités d'apprentissage par renforcement --qui mettent également en jeu les ganglions de la base-- s'avère indispensable pour améliorer l'adaptativité de notre modèle.

Soutenance : 12/09/2003

Membres du jury :

Pr. BERTHOZ Alain (LPPA, Collège de France) [Co-directeur]
Dr. CHATILA Raja (LAAS, CNRS) [Rapporteur]
Pr. DENIAU Jean-Michel (U114, Université Paris 6)
Pr. GAUSSIER Phillipe (ETIS, Université de Cergy-Pontoise)
Dr. GUILLOT Agnès (LIP6, Université Paris X) [Co-directeur de thèse]
Pr. HORLAIT Eric (LIP6, Université Paris 6)
Dr. PRESCOTT Tony (ABRG, University of Sheffield) [Rapporteur]

Date de départ : 02/11/2003

Publications 2001-2018