OUDRHIRI Ali

doctorant à Sorbonne Université
Équipe : ALSOC
https://fr.linkedin.com/in/ali-oudrhiri-3124b415a

Direction de recherche : Alix MUNIER

Co-encadrement : Roselyne CHOTIN

Performance d'une architecture d'accélérateur de réseau neuronal et son optimisation à l'aide d'une approche basée sur un pipeline

Ces dernières années, les réseaux de neurones ont gagné en popularité en raison de leur polyvalence et de leur efficacité dans la résolution d'une grande variété de tâches complexes. Cependant, à mesure que les réseaux neuronaux continuent de trouver des applications dans une gamme toujours croissante de domaines, leurs importantes exigences en matière de calcul deviennent un défi pressant. Cette demande en calcul est particulièrement problématique lors du déploiement de réseaux neuronaux sur des dispositifs embarqués aux ressources limitées, en particulier dans le contexte du calcul en périphérie pour les tâches d'inférence. De nos jours, les puces accélératrices de réseaux neuronaux émergent comme le choix optimal pour prendre en charge les réseaux neuronaux en périphérie. Ces puces offrent une efficacité remarquable avec leur taille compacte, leur faible consommation d'énergie et leur latence réduite. Dans le cadre du calcul en périphérie, diverses exigences ont émergé, nécessitant des compromis dans divers aspects de performance. Cela a conduit au développement d'architectures d'accélérateurs hautement configurables, leur permettant de s'adapter aux demandes de performance distinctes.
Dans ce contexte, l'accent est mis sur Gemini, un accélérateur configurable de réseaux neuronaux conçu avec une architecture imposée et mis en œuvre à l'aide de techniques de synthèse de haut niveau. Les considérations pour sa conception et sa mise en œuvre ont été motivées par le besoin de configurabilité de la parallélisation et d'optimisation des performances. Une fois cet accélérateur conçu, il est devenu essentiel de démontrer la puissance de sa configurabilité, aidant les utilisateurs à choisir l'architecture la plus adaptée à leurs réseaux neuronaux. Pour atteindre cet objectif, cette thèse a contribué au développement d'une stratégie de prédiction des performances fonctionnant à un niveau élevé d'abstraction, qui prend en compte l'architecture choisie et la configuration du réseau neuronal. Cet outil aide les clients à prendre des décisions concernant l'architecture appropriée pour leurs applications de réseaux neuronaux spécifiques.
Au cours de la recherche, nous avons constaté qu'utiliser un seul accélérateur présentait plusieurs limites et que l'augmentation de la parallélisme avait des limitations en termes de performances. Par conséquent, nous avons adopté une nouvelle stratégie d'optimisation de l'accélération des réseaux neuronaux. Cette fois, nous avons adopté une approche de haut niveau qui ne nécessitait pas d'optimisations fines de l'accélérateur. Nous avons organisé plusieurs instances de Gemini en pipeline et avons attribué les couches à différents accélérateurs pour maximiser les performances. Nous avons proposé des solutions pour deux scénarios : un scénario utilisateur où la structure du pipeline est prédéfinie avec un nombre fixe d'accélérateurs, de configurations d'accélérateurs et de tailles de RAM. Nous avons proposé des solutions pour mapper les couches sur les différents accélérateurs afin d'optimiser les performances d'exécution. Nous avons fait de même pour un scénario concepteur, où la structure du pipeline n'est pas fixe, cette fois il est permis de choisir le nombre et la configuration des accélérateurs pour optimiser l'exécution et également les performances matérielles. Cette stratégie de pipeline s'est révélée efficace pour l'accélérateur Gemini.
Bien que cette thèse soit née d'un besoin industriel spécifique, certaines solutions développées au cours de la recherche peuvent être appliquées ou adaptées à d'autres accélérations de réseaux neuronaux. Notamment, la stratégie de prédiction des performances et l'optimisation de haut niveau du traitement de réseaux neuronaux en combinant plusieurs instances offrent des aperçus précieux pour une application plus large.

Soutenance : 20/12/2023

Membres du jury :

Angeliki KRITIKAKOU, Assoc.Prof, Inria, Univ Rennes, CNRS, IRISA, Rennes [Rapporteur]
Philippe COUSSY, Prof., Lab-STICC, Univ. de Bretagne-Sud, Lorient [Rapporteur]
Roselyne CHOTIN, Assoc.Prof, Sorbonne Univ., CNRS, LIP6, Paris
Maxime PELCAT, Assoc.Prof, IETR, INSA Rennes
Frédéric PETROT, Prof., UGA, CNRS, Grenoble INP, TIMA, Grenoble
Pascal URARD, Directeur innovation, STMicroelectronics, Crolles
Alix MUNIER KORDON, Prof., Sorbonne Univ., CNRS, LIP6, Paris

Date de départ : 20/12/2023

Publications 2023-2024