L'apprentissage des matrices de rang faible est un problème de grande importance dans les statistiques, l'apprentissage automatique, la vision par ordinateur et les systèmes de recommandation. En raison de sa nature NP-difficile, une des approches principale consiste à résoudre sa relaxation convexe la plus étroite: la minimisation de la norme de trace. Parmi les différents algorithmes capables de résoudre cette optimisation, on peut citer la méthode de Frank-Wolfe, particulièrement adaptée aux matrices de grande dimension. En préparation à l'utilisation d'infrastructures distribuées pour accélérer le calcul, cette étude vise à explorer la possibilité d'exécuter l'algorithme de Frank-Wolfe dans un réseau en étoile avec le modèle BSP (Bulk Synchronous Parallel) et à étudier son efficacité théorique et empirique.