GOUEL Matthieu
Supervision : Olivier FOURMAUX
Co-supervision : FRIEDMAN Timur
Internet-Scale Route Tracing Capture and Analysis
The Internet is one of the most remarkable human creations, enabling communication among about two thirds of the global population. This network of networks spans the entire globe and is managed in a highly decentralized way, making it impossible to fully comprehend at IP-level. Nonetheless, for over two decades, researchers have been devising new techniques, developing new tools, and creating new platforms to capture and provide more precise and comprehensive maps of the Internet’s topology. These efforts support network operators in the industry and other researchers in improving core features of the Internet such as its connectivity, performance, security, or neutrality.
This thesis presents new contributions that improve the scalability of Internet topology measurement. It introduces a state-of-the-art measurement platform that enables the use of high-speed probing techniques for IP route tracing at Internet scale, as well as a reinforcement learning approach to maximize the discovery of the Internet topology. Because the analysis of the route tracing data collected requires additional metadata, the evolution of IP address geolocation over a 10-year period in a widely used proprietary database is examined, and lessons are provided to avoid biases in studies using this database. Finally, a large-scale analysis framework is developed to effectively utilize the large number of collected data and augmented metadata from other sources, such as IP address geolocation, to produce insightful studies at the Internet scale.
This work aims to considerably improve the study of the Internet topology by providing tools to collect and analyze large amounts of Internet topology data. This will allow researchers to better understand how the Internet is structured and how it evolves over time, leading to a more comprehensive understanding of this complex system.
Defence : 06/12/2023
Jury members :
Chadi Barakat, Directeur de Recherche INRIA, Université Côte d’Azur [Rapporteur]
Cristel Pelsser, Professeure, Université Catholique de Louvain [Rapporteur]
Jordan Augé, Chercheur, Cisco Systems
Clémence Magnien, Directrice de Recherche, Sorbonne Université, LIP6
Timur Friedman, Maître de conférences, Sorbonne Université, LIP6
Olivier Fourmaux, Professeur, Sorbonne Université, LIP6
2020-2023 Publications
-
2023
- M. Gouel : “Internet-Scale Route Tracing Capture and Analysis”, thesis, phd defence 06/12/2023, supervision Fourmaux, Olivier, co-supervision : Friedman, Timur (2023)
- M. Gouel, O. Darwich, M. Mouchet, K. Vermeulen : “Poster: Towards a Publicly Available Framework to Process Traceroutes with MetaTrace”, ACM Internet Measurement Conference (IMC 2023), Montreal (Canada), Canada (2023)
- O. Darwich, H. Rimlinger, M. Dreyfus, M. Gouel, K. Vermeulen : “Replication: Towards a Publicly Available Internet scale IP Geolocation Dataset”, ACM Internet Measurement Conference (IMC 2023), MontrĂ©al, Canada, (ACM) (2023)
- M. Gouel, M. Mouchet, O. Darwich, K. Vermeulen : “Towards a Publicly Available Framework to Process Traceroutes with MetaTrace”, (2023)
-
2022
- M. Gouel, K. Vermeulen, M. Mouchet, J. Rohrer, O. Fourmaux, T. Friedman : “Zeph & Iris cartographient l’internet”, CORES 2022 – 7e Rencontres Francophones sur la Conception de Protocoles, l’Évaluation de Performance et l’ExpĂ©rimentation des RĂ©seaux de Communication, Saint-RĂ©my-Lès-Chevreuse, France (2022)
- M. Gouel, K. Vermeulen, M. Mouchet, J. Rohrer, O. Fourmaux, T. Friedman : “Zeph & Iris map the internet: A resilient reinforcement learning approach to distributed IP route tracing”, Computer Communication Review, vol. 52 (1), pp. 2-9, (Association for Computing Machinery) (2022)
-
2021
- M. Gouel, K. Vermeulen, O. Fourmaux, T. Friedman, R. Beverly : “Longitudinal Study of an IP Geolocation Database”, (2021)
- M. Gouel, K. Vermeulen, O. Fourmaux, T. Friedman, R. Beverly : “IP Geolocation Database Stability and Implications for Network Research”, Network Traffic Measurement and Analysis Conference, Online, United States (2021)
-
2020
- K. Vermeulen, B. Ljuma, V. ADDANKI, M. Gouel, O. Fourmaux, T. Friedman, R. REJAIE : “Alias Resolution Based on ICMP Rate Limiting”, PAM 2020 - 21st International Conference on Passive and Active Network Measurement, vol. 12048, Lecture Notes in Computer Science, Eugene, United States, pp. 231-248, (Springer) (2020)