Cloud computing uses infrastructure with a lot of computing and storage resources. There are three types of cloud: Public cloud, Private cloud, and Hybrid cloud. In order to provide a hybrid cloud solution, we used as a base the TRILL protocol which optimizes the use of the data center infrastructure. However, TRILL cannot interconnect data centers as doing so will merge the data centers networks and each data center will lose its independence. Our first contribution is to change this behavior and we develop MLTP which allows to interconnect TRILL or MLTP network without merging them. Another functionality missing from TRILL is network isolation. To fill this lack, in our second proposal we add to MLTP a solution called VNT and we then have a new protocol called MLTP+VNT. In this protocol, each user traffic is isolated from one another. Therefore, MLTP+VNT allows to have a hybrid cloud environment. Nevertheless, it has two shortcomings. The first one is its “single” point of failure. As a matter of fact, MLTP+VNT uses a new type of nodes called Border RBridges which contains inter-data centers routing information. If a Border RBridge fails, then the information it contained is lost. In order to prevent this loss, we implement a method to synchronize the Border RBridges in our third contribution. The second shortcoming is the obligation to use MLTP+VNT in each network to form the hybrid cloud. To lift this limitation, we design and develop, in our fourth contribution, a bridge between a MLTP+VNT network and an OpenFlow network. This way, our solution allows to create a hybrid cloud environment with the MLTP+VNT solution in the public cloud and OpenFlow in the public cloud.