GUARDIA SEBAOUN Elie
Supervision : Patrick GALLINARI
Co-supervision : GUIGUE Vincent
Personnalized access to information : taking the user's dynamic into account
The main goal of this thesis resides in using rich and efficient profiling to improve the adequation between the retrieved information and the user's expectations. We focus on exploiting as much feedback as we can (being clicks, ratings or written reviews) as well as context. In the meantime, the tremendous growth of ubiquitous computing forces us to rethink the role of information access platforms. Therefore, we took interest not solely in performances but also in accompanying users through their access to the information.
Throughout this thesis, we focused on users dynamics modeling. Not only it improves the system performances but it also brings some kind of explicativity to the recommendation. Thus, we propose to accompany the user through his experience accessing information instead of constraining him to a given set of items the systems finds fitting.
Defence : 11/27/2017
Jury members :
Mme. Anne Boyer, Professeur, LORIA – Nancy [Rapporteur]
M. Emmanuel Viennet, Professeur, L2TI – Villetaneuse [Rapporteur]
M. Bernd Amann, Professeur, LIP6
M. Nicolas Usunier, Senior Researcher, Facebook - Paris
M. Vincent Guigue, Professeur, LIP6
M. Patrick Gallinari, Professeur, LIP6
2013-2017 Publications
-
2017
- E. Guardia Sebaoun : “Personnalized access to information : taking the user’s dynamic into account”, thesis, phd defence 11/27/2017, supervision Gallinari, Patrick, co-supervision : Guigue, Vincent (2017)
-
2016
- E. Guardia‑Sebaoun, V. Guigue, P. Gallinari : “Apprentissage de trajectoires temporelles pour la recommandation dans les communautĂ©s d’utilisateurs”, CAp, Marseille, France (2016)
-
2015
- E. Guardia‑Sebaoun, V. Guigue, P. Gallinari : “Latent Trajectory Modeling: a Light and Efficient Way to Introduce Time in Recommender Systems”, RecSys, Vienne, Austria (2015)
-
2014
- M. Poussevin, E. Guardia‑Sebaoun, V. Guigue, P. Gallinari : “Recommandation par combinaison de filtrage collaboratif et d’analyse de sentiments”, CORIA 2014 - COnfĂ©rence en Recherche d’Information et Applications, Nancy, France, pp. 27-42 (2014)
- E. GuĂ rdia Sebaoun, V. Guigue, P. Gallinari : “Recommandation Dynamique dans les Graphes GĂ©ographiques”, MARAMI 2014 : 5ième confĂ©rence sur les modèles et l'analyse des rĂ©seaux : Approches mathĂ©matiques et informatiques, Paris, France (2014)
-
2013
- E. Guardia‑Sebaoun, A. Rafrafi, V. Guigue, P. Gallinari : “Cross-Media Sentiment Classification and Application to Box-Office Forecasting”, Proceedings of the 10th Conference on Open Research Areas in Information Retrieval (OAIR '13), Lisbon, Portugal, pp. 201-208 (2013)