LIP6 2000/018:
Rapport de Recherche LIP6 /
LIP6
research reports
9 pages - Mai/May 2000 -
Document en anglais.
Get it : 159 Ko /Kb
Contact : par mail / e-mail
Thème/Team: Apprentissage et Acquisition de Connaissances
Titre français : Comprendre et résoudre les problèmes multi-instances et multi-parties avec des arbres et des listes de décision. Application a la prédiction de mutagénécité
Titre anglais : Solving multiple-instance and multiple-part learning problems with decision trees and decision rules. Application to the mutagenesis problem
Abstract : In recent work, Dietterich et al. (1997) have presented the problem of supervised multiple-instance learning and how to solve it by building axis-parallel rectangles. This problem is encountered in contexts where an object may have different possible alternative configurations, each of which is described by a vector. This paper introduces the multiple-part problem, which is more general than the multiple-instance problem, and shows how it can be solved using the multiple-instance algorithms. These two so-called "multiple" problems could play a key role both in the development of efficient algorithms for learning the relations between the activity of a structured object and its structural properties and in inductive logic programming. This paper analyzes and tries to clarify multiple-problem solving. It goes on to propose multiple-instance extensions of classical learning algorithms to solve multiple-problems by learning multiple-decision trees (ID3-M, C4.5-M) and multiple-decision rules (AQ-M, CN2-M,Ripper-M). In particular, it suggests a new multiple-instance entropy function and a multiple-instance coverage function. Finally, it successfully applies the multiple-part framework on the well-known mutagenesis prediction problem.
Key-words : Apprentissage supervisé, apprentissage multi-instances, arbre de décision, liste de décision, mutagénèse, problème multi-parties, entropie, biais de langage, programmation logique inductive
Publications internes LIP6 2000 / LIP6 research reports 2000