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Deep convolutional networks are currently one of the most successful models in image processing
and  computer  vision.  Their  principle  consists  in  learning  convolutional  filters,  together  with
attention and fully connected layers, that maximize classification performances. These models are
mainly suitable for data sitting on top of regular domains (such as images) [1], but their adaptation
to irregular data (namely graphs) requires extending convolutions to arbitrary domains [2, 3]; these
extensions are known as graph convolutional networks (GCNs).
Two categories  of  GCNs  exist  in  the  literature:  spectral  and  spatial.  Spectral  methods  [4]–[9]
proceed by projecting both input graph signals and convolutional filters using the Fourier transform,
and achieve convolution in the Fourier domain, prior to back-project the resulting convolved signal
in the input domain. These projections rely on the eigen-decomposition of graph Laplacians whose
complexity scales polynomially with the size of the input graphs [16],  and this  makes  spectral
GCNs clearly intractable. Spatial methods [10]–[15] instead rely on message passing, via attention
matrices,  before applying convolution.  While spatial  GCNs have been relatively more effective
compared to spectral ones, their success is highly reliant on the accuracy of the attention matrices
that capture context and node-to-node relationships [17]. With multi-head attention, GCNs are more
accurate  but  computationally  more  demanding,  so  lightweight  variants  of  these  models  should
instead be considered.

Several methods have been proposed in the literature in order to design lightweight yet effective
deep convolutional networks [18]–[21]. Some of them build efficient networks from scratch while
others pretrain heavy networks prior to reduce their time and memory footprint using distillation
[22]–[24]  and  pruning  [25],  [26].  Pruning  methods,  either  unstructured  or  structured,  allow
removing  connections  whose  impact  on  the  classification  performance  is  the  least  perceptible.
Unstructured pruning [27], [28] consists in cutting connections individually using different criteria,
including weight magnitude, prior to fine-tuning. In contrast, structured pruning [29], [30] aims at
removing groups of connections, channels or entire sub-networks. Whereas structured pruning may
reach high speed-up on dedicated hardware resources, its downside resides in the rigidity of the
class of learnable lightweight networks. On another side, unstructured pruning is more flexible, but
may  result  into  topologically  inconsistent  sub-networks  (i.e.,  either  partially  or  completely
disconnected), and this may lead to limited generalization especially at very high pruning rates.

The goal of this thesis subject, is to devise novel approaches for very lightweight GCN design that
gathers the advantage of both structured and unstructured pruning, and discards their inconvenient;
i.e., the proposed methods should impose constraints on the structure of the learned sub-networks
(namely their  topological  consistency)  while  also ensuring their  flexibility  at  some extent.  The
proposed solutions may consider network connections using different criteria (highest magnitudes,
connectivity  and  predefined  topologies,  etc.)  while  guaranteeing  their  accessibility  (i.e.,  their
reachability from neural network inputs) and their co-accessibility (i.e., their actual contribution in
the evaluation of neural network outputs) [31]. Hence, only topologically consistent sub-networks
should  be  considered  when  selecting  network  connections.  Applications  include  image
classification and human action recognition in large video collections. We consider both raw videos
and already extracted skeleton data described with graphs, where nodes correspond to human joints,
and edges to their spatial and temporal relationships.

Keywords.   Deep machine learning, convolutional neural networks  and transformers, lightweight
graph  convolutional  networks,  visual  scene  recognition,  image  classification,  video  action
recognition.



Thesis  Director:  Hichem  SAHBI,  CNRS  Researcher,  HDR,  LIP6  Lab,  Sorbonne  University
Contact: hichem.sahbi@lip6.fr

PhD Student Background.  We are seeking a highly motivated PhD candidate, with a preferred
background in applied mathematics or computer science with more emphasis on statistics, machine
learning and/or image processing,  computer vision, and familiar  with existing machine learning
tools and programming platforms.

Related bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in
NIPS, vol. 60, pages 1097–1105, 2012.
[2] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun. Spectral networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203  (2013)
[3] M. Henaff, J. Bruna, Y. LeCun. Deep convolutional networks on graph structured data. arXiv preprint arXiv:1506.05163
(2015)
[4]  TN.  Kipf,  M.  Welling.  Semi-supervised  classification  with  graph  convolutional  networks.  In  ICLR,  2017
[5] R. Levie, F. Monti, X. Bresson, M.M. Bronstein. Cayleynets: Graph convolutional neural networks with complex rational
spectral filters. IEEE Transactions on Signal Processing 67(1), 97–109 (2018)
[6]  R.  Li,  S.  Wang,  F.  Zhu,  J.  Huang.  Adaptive  graph  convolutional  neural  networks.  In  AAAI,  2018.
[7] M. Defferrard, X. Bresson, P. Vandergheynst. Convolutional Neural Networks on graphs with Fast Localized Spectral
Filtering. In NIPS, 2016
[8] A. Mazari and H. Sahbi. ”MLGCN: Multi-Laplacian graph convolutional networks for human action recognition.” The
British Machine Vision Conference (BMVC). 2019.
[9] H. Sahbi. ”Learning laplacians in chebyshev graph convolutional networks.” Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021.
[10] M. Gori, G. Monfardini, F. Scarselli. A new model for learning in graph domains. In IEEE IJCNN, vol. 2, pp. 729–734,
2005.
[11] H. Sahbi. ”Kernel-based Graph Convolutional Networks.” 2020 25th International Conference on Pattern Recognition
(ICPR). IEEE, 2021.
[12]  A.  Micheli.  Neural  network  for  graphs:  A contextual  constructive  approach.  IEEE  TNN  20(3),  498-511  (2009)
[13]  Z.  Wu,  S.  Pan,  F.  Chen,  G.  Long,  C.  Zhang,  P.S.  Yu.  A  comprehensive  survey  on  graph  neural  networks.
ArXiv:1901.00596 (2019).
[14] H. Sahbi, ”Lightweight Connectivity In Graph Convolutional Networks For Skeleton-Based Recognition.” 2021 IEEE
International Conference on Image Processing (ICIP). IEEE, 2021.
[15] W. Hamilton, Z. Ying, J. Leskovec. Inductive representation learning on large graphs. In NIPS. pp. 1024–1034 (2017)
[16] Chung, Fan RK, and Fan Chung Graham. Spectral graph theory. No. 92. American Mathematical Soc., 1997.
[17] Knyazev, Boris, Graham W. Taylor, and Mohamed Amer. ”Understanding attention and generalization in graph neural
networks.” Advances in neural information processing systems 32 (2019).
[18] Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q. Weinberger, “Condensenet: An efficient densenet using
learned group convolutions,” in CVPR, 2018.
[19]  M.  Sandler,  A.  G.  Howard,  M.  Zhu,  A.  Zhmoginov,  and  L.-C.  Chen,  “Mobilenetv2:  Inverted  residuals  and  linear
bottlenecks,” in CVPR, 2018.
[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets:
Efficient convolutional neural networks for mobile vision applications,” CoRR, vol. Abs/1704.04861, 2017.
[21] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in ICML. 2019, vol.
97, PMLR.
[22] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” CoRR, vol. Abs/1503.02531,
2015.
[23] A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fitnets: Hints for thin deep nets,” in
ICLR, 2015.
[24] S.-I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and H. Ghasemzadeh, “Improved knowledge distillation
via teacher assistant,” in AAAI, 2020.
[25] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in NIPS, 1989
[26] B. Hassibi and D. G. Stork, “Second order derivatives for network pruning: Optimal brain surgeon,” in NIPS, 1992.
[27] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for efficient neural network,” in NIPS,
2015.
[28]  S.  Han,  H.  Mao,  and  W.  J.  Dally,  “Deep  compression:  Compressing  deep  neural  network  with  pruning,  trained
quantization and huffman coding,” in ICLR, 2016.

mailto:hichem.sahbi@lip6.fr


[29] H. Li,  A. Kadav,  I.  Durdanovic, H. Samet, and H. P. Graf,  “Pruning filters for efficient convnets,” in ICLR, 2017.
[30] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolutional networks through network
slimming,” in ICCV. 2017, IEEE Computer Society.
[31] H. Sahbi. Lightweight graph convolutional networks with topologically consistent magnitude pruning. In arxiv, march
2022


