
The Combinatorics of
Binary Decision Diagrams

Antoine Genitrini∗Antoine.Genitrini@lip6.fr .

March 14, 2022

Our project consists of an algorithmic and quantitative study of classical data structures from
computer science under the prism of combinatorics. In the last decade many improvements
have been achieved in order to characterize the associated directed acyclic graphs (or dags)
combinatorially, paving the way for the analysis of objects induced by compaction procedures. In
particular, we will focus on decision diagrams, representing Boolean functions.

A line of studies is based on a constructive way to handle the dags. The term constructive here
means that no use of the inclusion-exclusion principle is necessary. The first paper by De Felice
and Nicaud [FN13] aims at deriving an efficient algorithm to sample objects in the special class
of deterministic acyclic automata. Another paper by Genitrini et al. [GPV21] presents another
constructive enumeration and an effective uniform sampling for dags.

Using all these notions together, we are now ready to analyze properties of large random dags
used at different places in computer science. Our expertise lies in analysis of algorithms using
analytic and enumerative combinatorics in order to structurally describe combinatorial objects, to
find new specifications and to exhibit universal properties of data structures.
In this Phd project we aim at studying dags structures obtained through the compaction of

trees using common substructures sharing. We plan to extend the general methodology to classical
families of dags, that can still be seen as compacted structures. Our main focus is on studying
typical structure of dags obtained by compaction from a combinatorial point of view. Thus we are
interested in enumeration, random sampling and probabilistic analysis with the help of tools from
combinatorics and probability theory.

1 Objectives and research hypothesis
We aim at deriving new quantitative results and algorithmic tools in the context of fundamental
syntactic data structures in computer science. The focus is on structures that are deeply related to
a compaction process. So we are dealing with structures at the frontier between trees and dags.
To describe our studies we highlight first the data structures and then the methodology.

Our focus lies on the classical data structures of binary decision diagrams.

General approach. Our approach relies on analytic combinatorics. Thus the classical round trip
between combinatorial models, asymptotic analysis and applications guides our research.
Let us recall Philippe Flajolet’s mantra: “If you can specify it, you can analyze it”. The now

classical global approach, underlying Flajolet’s idea is the following:
(1) Combinatorial problem

→ (2) Specification of some fundamental combinatorial objects
→ (3) Embedding in the complex plane
→ (4) Analysis of the associated complex functions

∗Sorbonne Université, UMR 7606, LIP6, F-75005, Paris, France.

Page 1 of 4

Antoine.Genitrini@lip6.fr


→ (5) Asymptotic behavior of the original objects
→ (6) Resolution of the initial problem.
Whatever the kind of structures under consideration (labeled or not during step (2)), the

embedding is possible either in the ordinary generating functions algebra or in the exponential one
for the steps (3) and (4).

Static point of view. A first approach was designed by Flajolet and Odlyzko, in particular for
the case of binary trees, but it does not directly apply to our dag structures.

Dynamic point of view. The second idea, that allows us to exhibit such kind of iterated specifica-
tion relies on an approach, often used in the study of dynamic networks, but that is still uncommon
in analytic combinatorics, because the models of structures that encode our problems are fixed and
do not evolve. However they can be seen as the result of a dynamical model up to a given time.
Thus the dual actions of cuts and grafts (see [BG15]) or the mutations can directly interact in an
evolution process leading to a final structure (of a given size for example).

2 Binary decision diagrams
The representation of a Boolean function as a binary decision tree has been used for decades. Its
main benefit, compared to other representations like a truth table or a Boolean circuit, comes from
the underlying divide-and-conquer paradigm. Thirty years ago a new data structure emerged, based
on the compaction a of binary decision tree [Bry86]. Its takeoff has been so spectacular that many
variants of compacted structures have been developed, named by many different acronyms like
robdds [Bry92], okfbdds [DST+94], qobdds [Weg94], zbdds [Min93], etc. While most of these
data structures are central in the context of verification [Weg00], they also appear, for example, in
the context of cryptography [KJGB06]. Some specific classes are also relevant to strategies for the
resolution of combinatorial problems, see e.g. [Knu11, vol. 4], like the classical satisfiability count
problem.

More precisely a Boolean function can be represented as a rooted, directed, acyclic graph, which
consists of decision nodes and terminal nodes. There are two types of terminal nodes > and ⊥
corresponding to truth values of the Boolean domain. Each decision node ν is labeled by a Boolean
variable xν and has two child nodes (called low child and high child). The edge from node ν to a
low (or high) child represents an assignment of xν to False (or True) and is represented as a
dotted (or solid) line .

x2

x1

x3

x2 x2

x1

x4

x3

> ⊥

x1

⊥

x2

x3

x4

x2

x3

x2

x4

x2

>

Figure 1: Two Ordered Reduced Binary Deci-
sion Diagrams associated to the same
Boolean function

A full binary decision tree is an instance of such
a representation where no subtree is shared. A typ-
ical operation consists in evaluating a function for a
given assignment of the variables. An efficient way
regarding time complexity consists in using a full
decision binary tree, however this solution is not
space efficient. In the left-hand side of Figure 2 we
illustrate a decision tree of a Boolean function f on
4 variables. For the assignment (x4, x3, x2, x1) =
(True,False,False,True), we follow the path
starting at the root x4, going to the right using the
solid edge (meaning that x4 = True) then leaving
the node x3 through the dotted edge (meaning
x3 = False) and so on. Thus, for the latter as-
signment the function reaches the leaf ⊥, mapped to the value False. Furthermore, the leaf >
is mapped to True. The sequence of labels of the leaves of the decision tree corresponds to the
truth table of the function f .
In contrast to full binary decision trees we may minimize the number of decision nodes by

factoring and sharing common substructures according to some rules. Given the binary decision

Page 2 of 4



tree of a k-variable Boolean function, its reduced ordered binary decision diagram (or robdd) is
obtained in linear time with respect to the size of the decision tree. Here, representing occurrences
of repeated subtrees only once, pointers will point to representations of shared subtrees, so that the
original tree becomes a dag. The compaction algorithm solves the classical common subexpression
recognition problem, relying on a postorder traversal of the decision tree.

For instance the decision tree of Figure 2 yields the robdd presented on the left-hand side of
Figure 1. Note that for a given Boolean function, using two distinct variable orderings can lead to
two reduced ordered binary decision diagrams of different sizes (see Figure 1 for such a situation).
Nonetheless, an ordering of the variables being fixed, each Boolean function is represented by
exactly one single robdd obtained through the compaction of its decision tree for this order.

In his book [Knu11] Knuth proves and recalls combinatorial results, like properties for the profile
of a robdd, or the way to combine two structures to represent a more complex function. However,
one notes an unseemly fact: there are no results about the distribution of the Boolean functions
according to their robdd size. In fact in contrast to (e.g.) binary trees where there is a recursive
characterization that allows to well specify the trees, we have no local-constraint here for robdds
and thus a similar recurrence is unexpected. Very recently, two papers have been published in this
direction [NV19] and [CG20].

x1

⊥⊥

x1

⊥>

x2

x1

x2

x1

x2

x3 x3

x2

>⊥> ⊥

x1 x1x1

x4

⊥ >>> ⊥>

x1

> ⊥

x2 x2

x3 x3

x2

x1 x1

x4

⊥>

Figure 2: A decision tree and its compaction

While the latter two papers rely essentially on an algorithmic approach of the problem, the first
question we are interested in is the definition of a generating function approach of the bdds, the
second one is related on a biased generator for bdds. Note we aim at obtaining results for various
families of decision diagrams. The last one is related to some typical properties of bdds.

Questions:

• In fact, as it has been revealed in [CG20], the complete profile of the dag representation
(i.e. the sequence of the number of nodes at each level of the dag) is necessary to obtain a
specification for the recursive construction of the robdd. The generating function approach
should rely on multivariate generating functions in k variables, each one attached to a level
of the robdd, i.e. to a variable xi of the Boolean function. Once a specification for the bdds
is set, could we obtain some structural information about a typical bdd?

• The approach presented in [CG20] to construct randomly uniform robdds of a given size
relies on an exhaustive partition of the Boolean functions in k variables according to a
complex equivalence relation. This induces a hard and long precomputation step to obtain
then an efficient sampler. Another point of view here would be to propose an algorithmic
approach to sample bdds with a given profile, uniformly at random. The fact that the profile
is fixed at the beginning drastically reduces the complexity of the combinatorics relying on
the shapes of the bdds, and then the only remaining combinatorial explosion is due to the
possible pointers inside the structure. Thus such an approach could be a possible answer for
the effective bdds sampling.

• Natural and classical questions concern the typical measures induced by the uniform distri-
bution on bdds (depth and width of the dag structure for example, but one could also be
interested in cryptographic properties of the Boolean functions obtained in this way).

Page 3 of 4



References
[BG15] O. Bodini and A. Genitrini. Cuts in increasing trees. In 2015 Proceedings of the Twelfth

Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pages 66–77, 2015.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers, 35(8):677–691, 1986.

[Bry92] R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.
ACM Comput. Surv., 24(3):293–318, 1992.

[CG20] J. Clément and A. Genitrini. Binary decision diagrams: From tree compaction to
sampling. In 14th Latin American Symposium, Proceedings, volume 12118 of LNCS,
pages 571–583. Springer, 2020.

[DST+94] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski. Efficient
Representation and Manipulation of Switching Functions Based on Ordered Kronecker
Functional Decision Diagrams. In DAC, pages 415–419, 1994.

[FN13] S. De Felice and C. Nicaud. Random generation of deterministic acyclic automata using
the recursive method. In 8th International Computer Science Symposium in Russia,
CSR, volume 7913 of LNCS, pages 88–99. Springer, 2013.

[GPV21] A. Genitrini, M. Pépin, and A. Viola. Unlabelled ordered dags and labelled dags:
constructive enumeration and uniform random sampling. In To appear in the proceedings
of LAGOS’21, 2021.

[KJGB06] L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure Function Evaluation with Ordered
Binary Decision Diagrams. In CCS’06, pages 410–420. ACM, 2006.

[Knu11] D. E. Knuth. The Art of Computer Programming, Volume 4A, Combinatorial Algorithms.
Addison-Wesley Professional, 2011.

[Min93] S.-I. Minato. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems.
30th ACM/IEEE Design Automation Conference, pages 272–277, 1993.

[NV19] J. Newton and D. Verna. A theoretical and numerical analysis of the worst-case size of
reduced ordered binary decision diagrams. ACM TCL, 20(1):6:1–6:36, 2019.

[VB04] J. Vuillemin and Fr. Béal. On the BDD of a Random Boolean Function. In ASIAN’04,
pages 483–493, 2004.

[Weg94] I. Wegener. The size of reduced OBDDs and optimal read-once branching programs for
almost all Boolean functions. In GTCCS’94, pages 252–263, 1994.

[Weg00] I. Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

Page 4 of 4


	Objectives and research hypothesis
	Binary decision diagrams

