
Verified compilation: towards zero-defect software

Sandrine Blazy


Colloquium d’informatique de Sorbonne Université, Paris, 2024-11-26



Formal verification of software: tool-assisted techniques

de
du

ct
iv

e 
ve

rifi
ca

tio
n

2

AUTOMATIC INTERACTIVE

m
od

el
 c

he
ck

in
g

st
at

ic
 a

na
ly

si
s



Deductive verification 

3

SPECIFICATIONSOFTWARE CORRECT

LOGIC

in

PROOF

in the sense of

MATHEMATICAL 
RIGOUR

conducted with



From early intuitions …

A. M. Turing.  
Checking a large routine.1949.

4



… to deductive-verification and automated tools 

5

SPECIFICATIONSOFTWARE CORRECT

LANGUAGE

SEMANTICS

PROOF LOGIC

INVARIANTS

INTERPRETER

SOFTWARE 
TOOL

MATHEMATICAL 
RIGOUR

AUTOMATED INTERACTIVE

PROOF 
CERTIFICATE

written in

defined by

e.g.

in the sense ofVERIFIED 
SOFTWARE

inincluding

produces
conducted with

either or

enforces

Floyd 1967, Hoare 1969



Another historical example

Boyer-Moore’s majority. 1980


Given N votes, determine the majority if any

6

majority = A

delta = 3

A A A C C B B C C C B C C



Another historical example

Boyer-Moore’s majority. 1980


Given N votes, determine the majority if any

7

majority = A

delta = 3

A A A C C B B C C C B C C

A A A C C B B C C C B C C

majority = A

delta = 1



Part 1: summary

8

SPECIFICATIONSOFTWARE CORRECT

IMP and C 
LANGUAGE 

SEMANTICS INVARIANTS

INTERPRETER

COQ PROOF 
ASSISTANT

written in

defined by

e.g.

in the sense ofVERIFIED 
COMPILER

including

conducted with enforces

INTERACTIVE 
PROOF



Part 2  
Early intuitions

SPECIFICATIONSOFTWARE CORRECT

IMP and C 
LANGUAGE 

SEMANTICS INVARIANTS

INTERPRETER

COQ PROOF 
ASSISTANT

written in

defined by

e.g.

in the sense ofVERIFIED 
COMPILER

including

conducted with
enforces

INTERACTIVE 
PROOF



Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end 
specification: 


This specification becomes mathematically precise as soon as we have formal 
semantics for the source language and the machine language. 


Then, a formal verification of a compiler can be considered.

10

The generated code must behave as prescribed 
by the semantics of the source program. 



An old idea …

Mathematical Aspects of Computer Science, 1967

11

Machine Intelligence (7), 1972



Now taught as an exercise to Masters students 
(Mechanized semantics: when machines reason about their languages, X.Leroy)  
(Software foundations, B.Pierce et al.)

12

type exp = Nb int | Id string | Plus exp exp

type state = string → int

type instr = Push int | Load string  | IPlus

let rec exec(s:state)(stack: int list)(pgm: instr list): int list =
  match (pgm, stack) with
  | ([], _) → stack
  | (Push n :: pgm', _) → exec s (n :: stack) pgm'
  | (Load x :: pgm', _) → exec s (s x :: stack) pgm'
  | (IPlus :: pgm', n:: m :: stack') → exec s ((m+n) :: stack') pgm'
  | (_ :: pgm', _) → exec s stack pgm'

let rec eval (s:state)(a:exp): int =  
match a with
  | Nb n → n       
  | Id x → s x
  | Plus (a1,a2) → (eval s a1)+(eval s a2)

3
6 9

IPlus

n
Push n

4
Load x

s(x)=4

let rec compile (a:exp): instr list =  match a with
  | Nb n →  [ Push n ]
  | Id x →  [ Load x ]
  | Plus (a1,a2) → (compile a1)@ (compile a2)@ [IPlus]

com
pilation

semantics 
(eval, exec)

compiler 
(compile)



Proving a property with the Coq software 
ACM SIGPLAN Programming Languages Software award 2013 
ACM Software System award 2013                                        coq.inria.fr

13

Theorem toy-compiler-correct: 
  forall s a, 
  exec s [] (compile a) = [eval s a].

semantics 
(eval, exec)

compiler 
(compile)

https://coq.inria.fr/


Proving a property with the Coq software 
ACM SIGPLAN Programming Languages Software award 2013 
ACM Software System award 2013                                        coq.inria.fr

14

Theorem toy-compiler-correct: 
  forall s a, 
  exec s [] (compile a) = [eval s a].
Proof.
  intros; 
  … (* not shown here *)
Qed.

semantics 
(eval, exec)

compiler 
(compile)

extraction

compiler.ml

Extraction compile.

proof  
guided by Coq

https://coq.inria.fr/


Part 3 
How to turn CompCert  
from a prototype in a lab  
into a real-world compiler?



A selection of formally verified compilers

CompCert C compiler (Coq) [Leroy, POPL’06]


CakeML ML bootsrapped compiler (HOL)  
               [Kumar, Myreen, Norrish, Owens, POPL’14]


CertiCoq Gallina compiler (Coq) [Appel et al., CoqPL’17]


Jasmin language and compiler for cryptographic implementations (Coq)  
             [Almeida et.al, CCS’17]

16



The CompCert formally verified compiler 
(X.Leroy, S.Blazy et al.)                                                            https://compcert.org

A moderately optimizing C compiler


Targets several architectures (PowerPC, ARM, RISC-V and x86)


Used in commercial settings (for emergency power generators and flight 
control navigation algorithms) and for software certification - AbsInt company


Improved performances of the generated code while providing proven 
traceability information


ACM Software System award 2021 
ACM SIGPLAN Programming Languages Software award 2022

17



CompCert compiler: 10 languages, 18 passes

C#minor

CminorCminorSel

type elimination


stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

CFG construction

expr. decomp.

Optimizations: constant prop., CSE, tail calls, 
(LCM), (software pipelining) 

18

no side-effect

determinization


CompCertC

LTL

branch tunneling

non @able scalar local var 
are pulled out of memory

Linear Mach
linearisation

of the CFG

layout of

stack frames

ASM code

generation

ASM

RTL

Clight



CompCert compiler: 10 languages, 18 passes

C#minor

CminorCminorSelRTL

Linear

ASM

19

ClightCompCertC

LTL

S t S′ 

S t * S′ S t + S′ S t ∞

Behaviors

termination divergence

Small-step semantics

Mach

I/O event


• call to an external function (e.g. printf)


• memory accesses to global volatile variables (hardware devices)

abnormal termination  
(a.k.a. going wrong)

execL P b

Semantics 



Proving semantics preservation:  
the simulation approach

Preserved behaviors = termination and divergence 

20

Theorem compiler-correct: 
  ∀ S C b, 
  compiler S = OK C →  
  execSource S b →  
  execTarget C b.

« The generated code must 
behave as prescribed by the 

semantics of the source 
program. »

semantics  
(execSource, execTarget)

compiler 
 

Proof technique: simulation diagram

target 
state

source 
state

S1
≈ C1

C2≈S2

+
t1t1



Proving semantics preservation:  
the simulation approach

21

with 0 ≤ m(S’) < m(S)

or

S ≈ C

S’

≈

≈ Cn-1Sn-1

Cn≈Sn

+

S1
≈ C1

C2≈S2

+

Ingredients

• induction on the execution relation


• invariant  between source and target states


•measure m from source states to a well-founded set

≈

target 
state

source 
state

If the source program diverges, it must perform infinitely many non-stuttering 
steps, so the compiled code executes infinitely many steps.



Semantic reasoning for compiler correctness: 
summary

22

correctness 
theorem 

behaviors

termination divergence

semanticsabout
is

observe traces

belong to

emit

reasoning simulation 
diagrams

using

continuations

rel
y o

n

is proved by

fac
ilita

te

anti-stuttering 
measure

strengthened
w

ith



CompCert verified compiler: main ingredients

Source and target languages


Intermediate language 

Optimizations 

Data-flow analysis 

Register allocation 

Other passes

23

Observable behaviors


Traces of ext. I/O events 

Small-step style 

Continuations 

Memory model

Proof assistant


Semantic preservation 
theorem


Simulation diagram


Anti-stuttering measure 

A posteriori validation

Compilation Formal semantics Deductive verification



Part 4 
Beyond CompCert: 
• secure compilation 
• just-in-time compilation 



Turning CompCert into a secure compiler  
CT-CompCert     [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL’20]

Cryptographic constant-time (CCT) programming discipline


25

unsigned nok-function (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned ok-function (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }

Theorem compiler-preserves-CCT: 
  ∀ S C, 
  compiler S = OK C →  
  isCCT S → 
  isCCT C.

Theorem compiler-correct: 
  ∀ S C b, 
  compiler S = OK C →  
  execCompCertC S b →  
  execASM C b.

How to turn CompCert into a formally-verified secure compiler?

observe 
program leakages (boolean guards 

and memory accesses)

2 executions of S from 2 
indistinguishable states (only share 

public values)



Just-in-time (JIT) compilation vs. static compilation

A JIT interleaves execution 
and optimization.

26

source 
program

target 
program

static

compilation

interpretation

dynamic 
optimizer

source 
program

compiling 
one function

new 
program

dynamic 
optimizer

interpretation of the

compiled function

compiling 
another function

until execution

finishes

Dynamic speculation generates specialized functions

Deoptimization requires the JIT to synthesize 
interpreter stackframes in the middle of a function



Verifying just-in-time (JIT) compilation: FM JIT 
[Barrière, Blazy, Flückiger, Pichardie, Vitek, POPL’21]  [Barrière, Blazy, Pichardie, POPL’23]

27

interpreter native 
execution

monitor

profilerprofiler

compiler

generates 
code at various degrees 

of optimization

dynamic speculation requires 
deoptimization

reuses CompCert’s 
backend

gathers 
information about likely 

program invariants

v=7x: int32

assume instruction

assume (x=7) ⚓25

anchor instruction

25: anchor F.l1 [x, y←6]

Non-deterministic semantics: either deoptimize 
to the source program or continue to the next 
instruction in the optimized program

exec P b

execJIT P b

separate 
the insertion of 

deoptimization points from the 
subsequent speculation 

checks

[Aurèle Barrière’s PhD 12/2022]



Nested simulations for JIT verification

28

C4≈JIT
S4

JIT 
program 

P

source 
program


P

S1
≈JIT C1

C2≈JIT
S2

Invariant ≈JIT: at any point i 
during JIT execution


• Ci correspond to Si


• Pi is equivalent to P

C3

≈JIT

S3

JIT 
program 

Popt

JIT 
program 

P1

dynamic 
optim.

dynamic 
optim.

C2

C3 Popt

P

P

P1

P1

Popt

≈JIT

≈JIT

semantic 
states

semantic 
states

≈

≈

Nested simulation: this 
equivalence is expressed with 
another (internal) simulation ≈ 
between compiled programs

Theorem JITcompiler-correct: 
  ∀ P Popt b, 
  JITcompiler P = Popt →  
  exec P b →  
  execJIT Popt b.



Conclusion



CompCert, an open infrastructure for research 

30

CompCertC

ASM

front-end

CompCert

back-end

RTL

VST separation logic

(Princeton)

Gillian-C

(ICL)

Verifast

(KUL)

front-ends

CompCertO

(Yale)

Velus

(Inria)

L2C

(Tsinghua)

CertiCoq

(Inria, Princeton)

ProbCompCert

(Boston college)

back-ends

Vericert

(ICL) Chamois


(UGA)

CompCert 
GSA

CT-CompCert

Verasco abstract 
interpreter

Opens the way to the trust of other development tools

Mechanized semantics are the shared basis for verified compilers, 
sound program logics, and sound static analyzers

FM JIT

Capla

(Inria)



Thank you!                                                 Questions?

31


