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This talk

1 An Introduction to Parameterized Algorithms and
Parameterized Complexity

Parameterized problems
FPT, XP, para-NP-complete
Kernels
The W-hierarchy

2 New developments: the classes XNLP and XALP
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Easy problems with small parameters

Consider facility location problem: place as few as possible
fire stations in a city such that each house is < 15 minutes
drive from fire station.
Problem is NP-hard, but . . .
Easy if we have just money for three fire stations: try all
possible locations : O(n3).
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Theory of Parameterized Complexity

Many hard problems become polynomial time solvable
when a parameter is small/fixed.
Early 1990s: Downey and Fellows build theory of
parameterized complexity.
Parameterized problem: subset of Σ∗ ×N, with Σ a finite
alphabet.

We call the second argument the parameter: usually
denoted by k .

Compare with ‘classic’ problem: subset of Σ∗.
Research questions: how much time does it cost to solve
specific parameterized problems, as function of both the
input size (n) and the parameter (k )?
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Parameters

Parameters come in different flavours:
Target value: is there a set of size at most/at least/exactly
k?
Part of input: given k machines and n jobs, can we
schedule . . . ?
Structural parameter of input:

Graph parameters, like treewidth, pathwidth (and many
others).
In this talk, we mention treewidth and pathwidth without
definition (not really needed to understand arguments
today).
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Para-NP-completeness

Graph Colouring

Given: Undirected graph G = (V ,E), integer k
Question: Is there a proper colouring of G with k colours, i.e, a
function f : V → {1,2, . . . , k }, such that for all {v ,w} ∈ E:
f(v) , f(w)?
Parameter: k

Graph Colouring is NP-complete, even when the number of
colours k = 3. We say:

Graph Colouring is para-NP-complete.

Now, let’s look at problems that are polynomial for fixed
parameter values. . .



Introduction FPT and XP The W-hierarchy Bandwidth XNLP XALP Conclusion

Different parameterized complexities

FPT (Fixed Parameter Tractable)

There is an algorithm that uses f(k )nO(1) time.

XP (Slice-wise polynomial time)

There is an algorithm that uses nf(k) time.
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Example problems

FPT:
Vertex Cover: O(2k (n + m)) time algorithm.
Many problems with treewidth as parameter, e.g.,
Hamiltonian Circuit: 2O(tw)n time.
Integer Linear Programming with p variables can be solved
in O(p2.5p+o(p)L) time (with L the number of bits to denote
the ILP) (Lenstra, 1983).

XP:
Dominating Set: O(nk ) time (try all possibilities).
Bandwidth (def later): O(nk+1) time (Gurari, Sudborough,
1984).
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Different complexities

: Fixed parameter tractable (FPT) Has an algorithm with
O(f(k )nO(1)) time.

: Slice-wise polynomial time (XP) Has an algorithm with
O(nf(k)) time.

: Para-NP-complete Problem is NP-complete for fixed value
of k .
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FPT vs XP

Complexity of XP is much higher than FPT:
f(k )nO(1) vs nf(k).
Relation with kernelisation(next).
Downey-Fellows (1990s): Theory to show that problems
are unlikely to be in FPT.

Central in theory is the W-hierarchy (later); parameterized
reductions.

Proved with diagonalisation: FPT ⊂ XP.
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Kernelisation I

Before doing a ‘slow’ algorithm, first preprocess the input:
build an equivalent, but smaller input.
Kernelisation: with proof that the resulting equivalent input
is small: size bounded by function of parameter.

(I, k) kernel solve yes

no

Q(I, k) = Q(I ′, k′)

(I ′, k′)
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Kernelisation II

Kernelisation algorithm
A kernel (or kernelisation algorithm) A for a problem Q maps
inputs (I, k ) of Q to inputs (I′, k ′) such that:

1 A uses polynomial time;
2 k ′ ≤ g(k ) and |I′| ≤ g(k ) for some function g (the new input

has size bounded by a function of the parameter);
3 Q(I, k )⇔ Q(I′, k ′) (the answer to the problem does not

change).
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Some kernelisation theory

Lemma
A decidable problem is in FPT, if and only if it has a kernel.

Proof.
Only⇐ today: build the kernel and then run the decision
algorithm. □

Problems with small (polynomial size) kernel, e.g.:
Vertex Cover: kernel with ≤ 2k vertices (Nemhauser,
Trotter, 1975, through Linear Programming).
Maximum Satisfiability: formula in CNF, satisfy at least k
clauses: O(k ) kernel.
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Problems without Polynomial Kernels

Theorem (BDFH+FS/D)
If a parameterized problem is compositional and with parameter
in unary NP-hard, then it has no kernel of polynomial size,
unless coNP ⊆ NP/poly.

Figure: Composition for Long Path
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Distinguishing FPT and XP

How can we tell that a problem is not in FPT?
Using complexity classes and reductions.
Compare to the situation P versus NP — polynomial
versus exponential time.
Downey and Fellows (1990s) introduced:

Parameterized reductions.
Complexity classes: W[1], W[2], . . . , W[SAT], W[P].
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Parameterized reduction

Complete problems are defined in terms of a type of reductions.
A parameterized reduction is a function Φ that maps inputs
of parameterized problem A to parameterized problem B:

A(I, k )⇐⇒ B(Φ(I, k ));(YES⇐⇒ YES)
If Φ(I, k ) = (I′, k ′), then k ′ ≤ g(k ) for a computable g (New
parameter is also bounded);
Φ(I, k ) can be computed in f(k )nc time.

Some classes have more restrictions on reductions.

Theorem (Downey,Fellows)
If A has a parameterized reduction to B, and B is in FPT, then
A is in FPT.

So, if B is not in FPT, then A is not in FPT. . .
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The W-hierarchy

Classes W [1], W [2], W [3], . . . , W [SAT ], W [P] are defined
in terms of circuits (definition skipped here); most have
equivalent definition with version of Satisfiability (next).
FPT ⊆W [1] ⊆W [2] ⊆W [3] · · · ⊆W [SAT ] ⊆W [P].
If W [1] = FPT , then the Exponential Time Hypothesis is
false — so, we expect that problems that are W [1]-hard are
not Fixed Parameter Tractable.
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W[1]

A problem belongs to W [1], if and only if it has a
parameterized reduction to Weighted 3-Satisfiability.

Weighted 3-Satisfiability
Given: Boolean formula F in Conjunctive Normal Form with
three literals per clause, integer k .
Parameter: k .
Question: Can we satisfy F by setting exactly k variables to
true and all others to false?

Also holds also if we replace 3 by any other fixed integer
≥ 2.
Independent Set and Clique are W [1]-complete; many other
known W [1]-hard and W [1]-complete problems.
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W[2]

W [2] has similar characterisation, but clauses can be
arbitrary large.

A problem belongs to W [2], if and only if it has a
parameterized reduction to Weighted Satisfiability.

Weighted CNF-Satisfiability
Given: Boolean formula F in Conjunctive Normal Form, integer
k
Parameter: k
Question: Can we satisfy F by setting exactly k variables to
true and all others to false?

Dominating Set is W [2]-complete.
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W [t ] for t > 2

W [t ] is ‘roughly’ problems of same complexity as deciding
if a Boolean formula with t alternations between AND and
OR can be satisfied by setting k variables to true.

Weighted t-Normalised Satisfiability

Given: Boolean formula F , integer k , with F of the following
form (with t alternations)

∨∧∨∧
· · · (¬)Xi

Parameter: k
Question: Can we satisfy F by setting exactly k variables to
true and all others to false?
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W [SAT ]

W [SAT ]: any Boolean formula.
W [SAT ]↔Weighted Satisfiability.

Weighted Satisfiability
Given: Boolean formula F , integer k
Parameter: k
Question: Can we satisfy F by setting exactly k variables to
true and all others to false?
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W [P]

The last class in the W-hierarchy is W [P]↔Weighted Circuit
Satisfiability.

Weighted Satisfiability
Given: Boolean circuit C with n input gates and one output
gate, integer k
Parameter: k
Question: Can we let C output true by setting exactly k inputs
to true and all others to false?
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The W-hierarchy: discussion

Hardness for W [1] implies that it is unlikely that problem is
FPT .
Hardness for classes higher in W-hierarchy implies the
same (‘more unlikely’).
Proving W-hardness: similar to NP-completeness proofs
but:

parameter must stay bounded;
exponential (or more) time in parameter is allowed.

In W-hierarchy: problems of the form: choose (at least, at
most, exactly) k elements from n such that ‘something
holds’.
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My XNLP-story starts with Bandwidth

Well studied problem, application for Gaussian elimination.
‘Reorganise a matrix such that all non-zero’s are in a
narrow band around the main diagonal’.

Bandwidth
Given: Undirected graph G = (V ,E), integer k
Parameter: k
Question: Is there a bijection f : V → {1,2, . . . , |V |}, such that
for each edge {v ,w} ∈ E: |(f(v) − f(w)| ≤ k?

1 2 3 4 5 6 7

Figure: A layout with bandwidth 2
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Some early results on Bandwidth

1983, Monien: Bandwidth is NP-complete, for caterpillars
with hair length three.
1984, Gurari, Sudborough: Bandwidth is in XP: O(nk+1)
time .
1994: Claim by B, Fellows, Hallett that Bandwidth is
W [t ]-hard for all t for trees.
1994: Conjecture by Hallett: Bandwidth is not in W [P]. Main
idea:

Problems in W [P] have a certificate with O(k log n) bits.
Bandwidth seems to need Ω(n) bits for certificate.
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More recent results on Bandwidth (parameterized)

(Dregi, Lokshtanov, 2014): W [1]-hard for trees, ETH-based
lower bound.
(B, 2020): Bandwidth is W [t ]-hard for all t for caterpillars .
”(B, Groenland, Nederlof, Swennenhuis, 2021) Bandwidth
(for caterpillars) is XNLP-complete.

Figure: A caterpillar is a tree with all vertices of degree more than two
on one path
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From an XP Algorithm to a Non-deterministic
Algorithm

(Gurari, Sudborough, 1984): dynamic programming
algorithm. n tables, each of size O(nk ); each table entry
has a sequence of k vertices.
Turn this into a non-deterministic algorithm:

Instead of building entire tables, each time
non-deterministically guess one element from each table.

yes
no

yes
no
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A non-deterministic algorithm for Bandwidth

yes
no

yes
no

Algorithm has k vertices and one counter in [1,n] in memory:

Lemma
Bandwidth can be solved by a non-deterministic Turing Machine
in O(kn) time with O(k log n) bits additional memory.

This brings us to a class defined by (Elberfeld et al., 2015).
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Birth of XNLP

(Elberfeld, Stockhusen, Tantau, 2015) define parameterized
classes with bounded memory and time, including

N[f poly , log]: problems solvable on
Non-deterministic Turing Machine;
f(k )nO(1) time;
f(k ) log n space.

(EST, 2015): problems complete for N[f poly , log]:
Non-deterministic Turing machine acceptance with O(k )
cells read-write-tape (with polynomial size alphabet) and
running time bounded by polynomial in n
Timed Non-deterministic Accepting Linear Cellular Automaton
Longest Common Subsequence (with variants)

(B, Groenland, Nederlof, Swennenhuis, 2021): renamed
N[f poly , log] to XNLP.
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Classes with logarithmic space

Classic
L: deterministic, O(log n) space
NL: non-deterministic, O(log n) space
L and NL imply polynomial time

Parameterized
XL: deterministic, O(f(k ) log n) space
XNL: non-deterministic, O(f(k ) log n) space
XNLP: non-deterministic, O(f(k ) log n) space and
O(f(k )poly(n)) time
. . . ⊆ XP
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Relation of XNLP with W-hierarchy

Lemma
For each t ≥ 1, W [t ] ⊆ XNLP.

XNLP-hardness implies W [1]-hardness, W [2]-hardness,
W [3]-hardness, . . .
Relation with W [P] and W [SAT ] not known; maybe
unrelated.
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A conjecture

Conjecture ((Michał Pilipczuk and Wrochna, 2018), building
upon (Allender et al., 2014))

Longest Common Subsequence has no algorithm that uses nf(k)

time and g(k )nO(1) space (‘XP time and FPT space’).

Equivalent to:

The Slice-wise Polynomial Space Conjecture
If Q is an XNLP-hard problem, then there is no algorithm that
solves Q in nf(k) time, and f(k )nO(1) space.

If SPSC holds: XP algorithms for XNLP-hard problems use
‘much’ space. Indeed, all known algorithms for these use
dynamic programming with tables of size nf(k).
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Many new XNLP-complete problems

Many new XNLP-complete problems have been found (2021 –
now), with results building upon each other, including:

‘Chained versions’: Chained Independent Set; Chained
Weighted Satisfiability(BGNS, 2021) — useful for starting
reductions
Many problems with pathwidth as parameter (several
papers)
Problems with other linear width parameters, e.g. linear
cliquewidth
Reconfiguration problems (BGNS, 2021)
Scheduling problems (BGNS 2021); (Mallem 2024)
Problems from graph drawing (Blazej et al., 2024)
Linear graph structure problems, e.g., Bandwidth
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Binary CSP

Binary CSP
Given: Graph G = (V ,E), for each vertex v a set of colours
C(v), and for each edge (v ,w), a set of pairs of allowed colours
C(v ,w) ⊆ C(v) × C(v)
Question: Can we assign each vertex v a colour f(v) ∈ C(v),
such that for each edge (v ,w), we have (f(v), f(w) ∈ C(v ,w)?

,

,
,
,

,
,

,
,
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Possible ‘starting’ XNLP-hard problem

Theorem
Binary CSP is XNLP-complete on k × n grid graphs, with k as
parameter.

The hardness proof can be ‘generic’ (in the style of Cook’s
proof of the NP-completeness of Satisfiability, using the Turing
machine characterisation of the class.

Figure: A 4 × n grid graph
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Proof sketch: Membership

Binary CSP for k by n grid graphs is in XNLP:
For i = 1 to n:

Guess the colours for the vertices in column i.
Have the colours of vertices in columns i − 1 (if existing)
and i in memory.
Check that all adjacent vertices in columns i − 1 and i have
allowed colour pairs. If not: reject.

Accept.
We have 2k vertex colours and the value of i in memory:
O(k log n) bits.



Introduction FPT and XP The W-hierarchy Bandwidth XNLP XALP Conclusion

Proof sketch: Hardness I: the Turing Machine

Finite alphabet Σ;
Finite set of states S, with subsets SA of accepting states
and SR of rejecting states;
Read-Write Tape of length f(k ) log n + head;
Input tape of length n + head;
Collection of transitions: read state, symbol at head on
input tape, symbol at head at RW tape — write symbol at
head on RW tape, move heads 0 or 1 step left or right, go
to new state (non-deterministic).
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Proof: Hardness II: Model in the grid

The read-write tape of 4 logn size

Time 1
Time 2 Time nO(1)

The Input tape

, s, ,( )

Figure: Partition the RW-tape in f(k ) pieces of size log n each. The
colour of the vertex on row i, column t gives the content of the ith
piece of RW-tape and state and location of both heads at time t .

First column colours give initial configuration; last column
colours must have accepting states. BinCSP can model the
proper functioning of TM.
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Dynamic Programming on Path Decompositions

Graphs of small pathwidth have a path decomposition of
small width.
Dynamic programming: compute from left to right a table
for each bag.
Deduce the answer from the last bag.

yes
no
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XNLP-membership Proofs on Path Decompositions

yes
no

yes
no

Figure: Turn the DP into XNLP-membership by guessing the element
from the next table instead of building it
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Example Transformation: List Colouring

List Colouring

Given: Graph G = (V ,E), set of colours C, for each vertex
v ∈ V , a list of colours L(v) ⊆ C
Question: Is there a colouring c : V → C, such that for all
v ∈ V : c(v) ∈ L(v), and for all edges {v ,w} ∈ E: c(v) , c(w).

Theorem
List Colouring with pathwidth as parameter is XNLP-complete.

Membership with discussed technique (DP by (Jansen,
Scheffler, 1997).
Hardness by reduction from Binary CSP for k × n grids.
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Transformation

1 Take input of Binary CSP for k × n grids.
2 Change to equivalent instance with each vertex different

colour set.
3 For each forbidden pair, add a new vertex with list the

forbidden pair.

v w v w

,
,
,

(
(
(

)
)
)
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Transformation Keeps Parameter Small

Figure: A k × n grid graph (pathwidth k ) is transformed to a graph
with pathwidth ≤ k + 1

XNLP-hardness proofs for other problems: chains of
reductions, each keeping parameter bounded.
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Consequences of XNLP-hardness

The Slice-wise Polynomial Space Conjecture
If Q is an XNLP-hard problem, then there is no algorithm that
solves Q in O(nf(k)) time, and f(k )nO(1) space.

If SPSC holds, no XP-algorithm for the problem can use
FPT space!
Indeed, the known XP algorithms for XNLP-complete
problems use dynamic programming with XP-size tables.
XNLP-hardness implies W [t ]-hardness for all t ∈ N, but
with usually much simpler proofs.
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From path- to tree-structured graphs

Several problems on graphs with a linear structure are
complete for XNLP.
When parameterising by treewidth instead of pathwidth, or
clique-width instead of linear clique-width, we have
XNLP-hardness.
For what class are these problems complete??
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XALP

Based on (Allender et al. 2014) and (Michał Pilipczuk and
Wrochna, 2017) .
(B, Groenland, Jacob, Pilipczuk, Pilipczuk, 2022) define a
class and call it XALP (parameterized variant of class
called NLPaux or SAC(O(log n),nc)).
Where XNLP characterises path-structured dynamic
programming, XALP characterises tree-structured dynamic
programming.
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Definitions of XALP

BGJPP give a number of equivalent definitions of XALP, using
Alternating Turing Machines and circuits. An intuitive definition,
and easy to work with for membership proofs is:

XALP
Let XALP be the class of parameterized problems accepted by
a Non-deterministic Turing Machine that

uses f(k )nO(1) time, for some function f ;
has two types of memory:

It has a stack to which it can push symbols, or pop the top
symbol;
It has a read-write tape of size f(k ) log n.

I.e., XNLP plus a stack!
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XALP-complete problems I

About all problems, known to be XNLP-complete with
pathwidth as parameter are XALP-complete with treewidth
as parameter
Problems XNLP-complete for linear cliquewidth are usually
XALP-complete for cliquewidth, . . .
(B, Szilagyi, 2024): problems on planar graphs with
outerplanarity as parameter
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DP on tree decompositions

yes
no

A dynamic programming algorithm for tree decompositions:
computes for each bag a table, in post-order (bottom-up);
deduces the answer from the bag of the root.
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DP on tree decompositions and XALP-membership

yes
no yes

no

Turn DP into XALP-membership:
Traverse tree in post-order (bottom-up).

If bag i has α ∈ [0,2] children: pop α elements from stack.
These give ‘guessed’ table entries of children.
From these, guess table entry for i and push it on stack.
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XALP-complete problems II: Structural problems

Tree PartitionWidth (introduced as Strong Treewidth by
Seese in 1985).
Domino Treewidth: Is there a tree decomposition of width k
(parameter), such that each vertex is in at most two bags.
Triangulating Coloured Graphs (de Vlas, 2023): Given a
graph with a k -colouring of the vertices, is it a subgraph of
a properly coloured graph? (Problem with application from
phylogeny.)
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Other classes

(Flum, Grohe, 2004): M-hierarchy — small inputs.
(Abrahamson et al., 1995), (Flum, Grohe, 2001):
AW-hierarchy and A-hierarchy: alternations between ∀ and
∃.
(Adachi, Iwata, Kasai, 1979, 1984): XP-complete problems
(e.g., Pebble Game).
(B, Groenland, Pilipczuk, 2023): XSLP, captures treedepth.
(B, Donselaar, Kwisthout, 2022), (Mannens et al., 2024):
variants of XNLP and XALP for counting solutions or
computing probabilities.
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Conclusions

Rich theory of parameterized complexity; also rich
structure of subclasses of XP.
XNLP ‘captures’ large table sequential dynamic
programming.
XALP ‘captures’ large table tree-structured dynamic
programming.
XNLP-hardness implies (assuming the SPSC)
XP-algorithms with ‘much space’.
Many problems are known/shown to be hard for W [1] or
W [2] — interesting to improve this to hardness for larger
classes, and aim at completeness.
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Additional material

The next slides give additional material:
More XNLP-hardness proofs: Capacitated Dominating Set
and Scheduling with Precedence Constraints
Slides with overviews
Discussion on Reconfiguration
More subclasses of XP
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Example Transformation: Target Indegree Orientation
to Capacitated Dominating Set

Maximum Target Indegree Orientation (MTIO)

Given: Graph G, weight in unary for each edge w(e) ∈ N,
target in unary for each vertex t(v) ∈ N.
Question: Can we orient each edge such that each vertex v
has total weight of outgoing edges at most t(v)?

Theorem (B, Cornelissen, van Wegen, 2022)
MTIO is XNLP-complete with pathwidth as parameter.
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Capacitated Dominating Set

Capacitated Dominating Set

Given: Graph G, capacity c(v) for each v, integer L
Question: is there a set W of size at most L , and a mapping f
of vertices in V \W to neighbours in W such that each vertex in
W has at most c(v) neighbours mapped to it.

We show that CDS with pathwidth is XNLP-hard: transform
each edge as follows:

t(v) t(w) t(w) + 1t(v) + 1
5

6 6

Pathwidth increases by at most 4.
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Equivalence: Max Target Indegree Orientation —
Capacitated Dominating Set

t(w) + 1t(v) + 1 6 6

t(w) + 1t(v) + 1 6 6

5

5
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The Non-deterministic Non-decreasing Counter
Checking Machine

Simple machine model:
k integer counters, start at 0, never larger than n
Steps:

At each moment, non-deterministically increase a counter
Given is a sequence of checks of form (c1, α, c2, β): if
counter c1 has value α and counter c2 has value β then halt
and reject
If all checks successively did not reject, then accept

Accepting NNCCM

Given: Integer k , n, series of checks on k counters.
Parameter: k
Question: does the NNCCM have an accepting run?
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The NNCCM theorem

Theorem (BGNS, 2021)
Accepting NNCCM is XNLP-complete.

Useful as starting point for reductions (used e.g., for Bandwidth
and (next:) Scheduling with Precedence Constraints
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Scheduling with Precedence Constraints

P |prec,pj = 1|Cmax

Given: n tasks, each using unit time, M machines, partial order
on tasks (precedence constraints), deadline D.
Question: Can we schedule the tasks (1 task per machine per
time step, fulfilling precedences, all before deadline)?

Well studied problem
Long standing open problem if problem with three
machines is NP-complete or in P (since 1970s)
(B, Fellows, 1995): problem with parameter M is
W [2]-hard. The proof also shows that we can take the
width of partial order as the second parameter.
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XNLP-completeness of Scheduling with Precedence
Constraints

Theorem
P |prec,pj = 1|Cmax with M and width of partial order as
parameters is XNLP-complete.

Membership: take the existing dynamic programming
algorithm. Instead of building tables, guess elements.
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Sketch of proof 1

From Accepting NNCCM.
Suppose that we have k counters in [0,n], r checks.
Set some ‘large enough well-chosen numbers’ L , M, D. D is
the deadline for all jobs; D = O(k ) is number of machines.
We take one floor gadget: a chain of D jobs (one at each time
step), plus at times n + 1, 2n + 2, . . . , L additional jobs in
parallel.

Figure: The floor gadget has length D and forces many jobs at certain
time steps (blob)
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Sketch of proof 2

For each counter, we have a chain of D − r jobs, with at well
chosen points, L additional jobs in parallel (blob).

Figure: Quite similar to floor gadgets, but chain has length D − n, and
‘blobs’ at other locations

Intuition
There is space for two blobs at a time step, but not for three.
So, when the floor has a blob, at most one counter chain can
have a blob.
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Sketch of proof 3: Time and counters

Each counter chain can ‘skip’ a time step at most n times
(length D − n, deadline D). The value of a counter is the
number of skips so far.

c = c+ 1 c = c+ 3

Figure: If we skip α time steps, we increase the counter by α

We choose positions of counter chain blobs such that
NNCCM Accepts⇔ we never have two chain blobs at the same
point as a floor blob.

□
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A hierarchy of some classes

FPT

W[1]

W[2]

W[3]

W[SAT]

W[P]

XNLP

XALP

X[P]

Figure: Relations of some of the classes. In many cases, relations
are unknown, and it is not known whether inclusions are proper.
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An overview of classes

FPT f(k )nc time
W [1] Weighted 3-Sat;
W [2] Weighted CNF-Sat;

W-hierarchy ‘choose k elements from n’
XNLP Non-deterministic f(k )nc time, f(k ) log n memory

— linear structured Dynamic Programming
XALP XNLP + stack — tree structured dynamic

programming
M-hierarchy small input descriptions
A- and AW-hierarchies alternations between ∀ and ∃ (e.g.,

short games)
XP nf(k) time; XP-complete game with few pieces

para-NP-complete NP complete for constant parameter
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Reconfiguration

Given: an initial independent set S, a target independent
set T , with |S | = |T |
Question: can we change S to T , in a sequences of
moves:

Each move replaces one vertex from the set by another
(token jumping)
Intermediate sets are still independent

Variant: token sliding: move a vertex to an adjacent vertex
As parameter we take the size of S (= |T |)
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Independent Set Reconfiguration

Independent Set Reconfiguration
Given: graph G, two independent sets S and T
Question: Is there a sequence of moves that changes S to T?
Each move removes a vertex from the set and adds another
vertex to the set, while keeping the set to be independent.
Parameter: |S | = |T |

(Kamiński et al., 2012): PSPACE-complete
(Ito et al., 2014): With |S | = |T | as parameter: W [1]-hard
We also look at variants where we specify maximum
number of moves
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Overview Independent Set Reconfiguration

Nb of moves Complexity Proof idea
parameter W [1]-complete From Independent Set
in unary XNLP-complete From Chained Satisfiability
in binary XNL-complete Simulate TM
unlimited XL-complete Simulate Symmetric TM

Results from (Mouawad et al., 2017), (B, Groenland, Nederlof,
Swennenhuis, 2021), (BGS, 2022)
Results hold for token jumping and for token sliding
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Overview Dominating Set Reconfiguration

Nb of moves Complexity Proof idea
parameter W [2]-complete From Dominating Set
in unary XNLP-complete From Chained Satisfiability
in binary XNL-complete Simulate TM
unlimited XL-complete Simulate Symmetric TM

Results hold for token jumping and for token sliding
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The M-hierarchy: small inputs

Flum and Grohe introduced the M-hierarchy (2004)
Capture problems with small input size: instances can be
expressed with k log n bits (definition in terms of circuits,
omitted)
Intersects with W-hierarchy:

FPT ⊆ M[1] ⊆W [1] ⊆ M[2] ⊆ · · ·
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An M[1]-complete problem

With help of the sparsification lemma, the following problem are
shown to be M[1]-complete (Downey et al. (2003))

Mini Independent Set
Given: Graph G = (V ,E) with description length O(k log n)
bits, integer r
Parameter: k
Question: Does G have an independent set of size at least r?
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Alternation: the A- and AW-hierarchies

(Abrahamson et al. 1995): AW-hierarchy
(Flum and Grohe, 2001): A-hierarchy
Both capture alternation between ∀ and ∃ (definitions not
given)
A-hierarchy ‘refines’ AW-hierarchy
AW-hierarchy collapses:

FPT ⊆ AW [1] = AW [2] = · · · = AW [t ] = · · ·
⊆ AW [SAT ] ⊆ AW [P]
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An A [2]-complete problem

p-Clique-Dominating Set
Given: Graph G = (V ,E), integers k , ℓ
Parameter: k , ℓ
Question: Does there exist a set S ⊆ V of k vertices, such that
for all cliques Q in G with ℓ vertices, Q has a vertex in S or a
vertex with a neighbour in S?

Flum, Grohe: p-Clique-Dominating Set is A [2]-complete.
Notice the alternation: ∃∀
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Complete for the AW-hierarchy: Short games

An example of an AW [∗]-complete problem:

Geography

2-Player game. Given is a graph G = (V ,E), a start vertex s.
Player 1 starts at s. Players alternatingly choose a neighbour of
the last chosen vertex, but cannot choose a vertex that has
been chosen. (A simple path is built.) You lose when you are
unable to move.

Theorem (Abrahamson et al.)
Deciding if there is a winning strategy for Player 1 that never
uses more than k moves (k parameter) is complete for
AW [1] = AW [2] = · · · .
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XP-complete problems — games with few pieces

Results from (Adachi, Iwata, Kasai, 1979, 1984) give
problems that is complete for XP, e.g. Pebble Game; see
(Downey, Fellows, 1997)
P=AL: Alternating Turing Machines with O(log n) space = P

Pebble Game
Given: Graph G = (V ,E), set of rules R ⊆ V × V × V , start set
S ⊆ V , winning vertex t ∈ V .
Parameter: k = |S |
Question: Does player 1 have a winning strategy in the
following game. Alternatingly, the players move a pebble,
following a rule, with (x , y , z) ∈ R means we can move a pebble
from x to z if there are pebbles on x and y but not on z. You win
by moving a pebble to t or if your opponent cannot move.
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XSLP

(B, Groenland, Pilipczuk, 2023): what if we parameterise by
treedepth

Introduce class XSLP
Complicated definition
Several problems complete for XSLP
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Counting and XNLP / XALP

(B, Donselaar, Kwisthout, 2022): variant of XNLP related to
PP (probabilistic) — hardness for Inference on probabilistic
networks (also called Bayesian Networks)
(Mannens et al., 2024): #XNLP, #XALP: counting variants
of XNLP and XALP
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