
Sorbonne Université – SESI M2
——–

MU5IN160 – Parallel Programming

Hands-on Session 6 – Multi-threading for Motion Application

Short introduction In this session, we will work on the Motion streaming application. In the last
session, we focused on converting the Motion application through an explicit dataflow representation
with the AFF3CT DSEL. Today, we will benefit from the code transformations we made before to
parallelize the application over the CPU multi-core architecture.

Very important, about the submission of your work At the end of this session you will have to
upload the following files on Moodle: 1) a zip of the src folder and 2) a zip of the include folder. After
that you will have 2 weeks (until November, 5) to complete your work and update your first submission.
You have to work in group of two people but each of you will have to upload the files on Moodle. Finally,
please write your name plus the name of your pair at the top of all these files.

1 Appetizer
First you need to update the repository of the Motion project:

git pull origin master && git submodule update --init --recursive

Then, you have to re-generate the Makefike and to re-compile a sub-part of the application:

cd build && cmake .. && make -j4

2 Motion Parallelization
In this section, we will focus on reducing the execution time by using different types of parallelism. We
will mainly rely on the multi-core architecture (≈ multi-thread programming) of the CPU. To measure
the execution time, we will not consider the video decoding time, the visualization time and the logs
time.

Motion comes with the --vid-in-buff Motion parameter to hide the video decoding time: the frames
are decoded and put into a buffer during the video initialization. This behavior is representative of a real
embedded application, where there would be no video decoding. Instead, a camera would send frames
at a fixed rate. Be careful, buffering frames can take a lot of memory (and time). Thus, we will limit
this buffer to 100 frames.

Here is the command line to use for the measurements:

./bin/motion2 --vid-in-buff --vid-in-path ./traffic/1080p_day_street_top_view_snow.mp4 \
--vid-in-stop 100 --flt-s-min 2000 --knn-d 50 --trk-obj-min 5

As a consequence, we will not take into account the whole execution time of the Motion application
but only the sequence or the pipeline execution time. And, we will focus on increasing its throughput
(= number of frames per second or FPS).

Of course for debugging and validation purpose, you will need to use the logs (--log-path) and the
visualization (--vid-out-play --vid-out-id) parameters.

Work to do Run the motion2 and motion2-aff3ct executables and note their throughput in FPS.

grayscale image
(t− 1)

motion detection
Σ∆ (per pixel)

mathematical morphology
opening-closing

connected components
labeling (CCL)

connected components
analysis (CCA)

surface
filtering

grayscale image
(t)

motion detection
Σ∆ (per pixel)

mathematical morphology
opening-closing

connected components
labeling (CCL)

connected components
analysis (CCA)

surface
filtering

k-nearest neighboor
matching (k-NN)

temporal
tracking

Stage 1 Stage 2 Stage 3

grayscale pixels
p ∈ [0; 255]

blob of binary pixels
p ∈ {0, 1}, 0 → stationary, 1 → moving

image of labels
l ∈ [1; 232 − 1]

CCs = list of regions,
surface S & centroid (xG, yG)

sub-list of CCs
with S ∈ [Smin, Smax]

list of (t− 1, t)
associations

final list of
moving objects

Figure 1: Motion detection and tracking processing graph. In gray and italic: the output of each
processing. The graph is split into a 3-stage pipeline.

2.1 Pipeline Strategy
AFF3CT comes with a round-robin producer/consumer implementation to support the pipeline paral-
lelism (and more specifically the synchronizations between the pipeline stages). This type of parallelism
is well adapted to the streaming applications like Motion. It improves the throughput of the system.

We will instantiate the 3-stage pipeline given in Fig. 1. Other stages decomposition is possible but it
will not lead to significant improvements (and it will not help for the next sections).

To instantiate a pipeline, we need to delimit its stages (= sub-parts of the graph). In AFF3CT, a stage
is defined by 3 vectors of tasks (in the exact following order):

1. A list of the first tasks in the stage,
2. A list of the last tasks in the stage (these tasks are included in the stage),
3. A list of exceptions that represents the tasks that should not be included in the current stage (can

be empty).
In other words, for each stage, AFF3CT will build the sub-graph from the first and last tasks and it will
exclude the exception tasks. When building the sub-graph, if some of the tasks are bound to tasks that
are in a previous stage, then AFF3CT will not automatically add these tasks to the current stage. In
this case, you need to explicitly add these tasks into the list of first tasks.

Additionally, in order to facilitate the debugging process, the pipeline constructor requires the vectors of
first and last tasks of the corresponding sequence. This way AFF3CT can compare if the stages match
the initial sequence. If it does not match, AFF3CT will automatically return an error and will output
two debug graphs (in fact, it will store these two files on the file system):

• dbg_ref_sequence.dot: the graph corresponding to the sequence (= without parallelization),
• dbg_cur_pipeline.dot: the graph corresponding to the pipeline (= with the stages).

Then, you can visually compare the two graphs and find the mismatch. Common mistakes are:
• A task is missing in the pipeline graph: this is often the case because this task needs to be explicitly

declared in the list of first tasks,
• A same task is present in two (or more) different stages: this is generally because the task has been

automatically added to a previous stage. In this case, using the exclusion list of tasks can solve
the problem.

t1 t2 t3 t4 t5

M1 M2 M3 M4 M5

Stage 1 Stage 2

(a) Compute chain.

t1 t2 t3 t4 t5
write
(t6)

M1 M2 M3 M4 M5 Logger
Stage 1 Stage 2

(b) Compute chain + a log task.

Figure 2: Example of a chain decomposed into two pipeline stages.

Page 2

1 // 1) creation of the module objects
2 M1 m1(); M2 m2(); M3 m3(); M4 m4(); M5 m5(); Logger log();
3

4 // 2) binding of the tasks
5 m2["t2::in"] = m1["t1::out"];
6 m3["t3::in"] = m2["t2::out"];
7 m4["t4::in1"] = m3["t1::out"];
8 m4["t4::in2"] = m3["t3::out"];
9 m5["t5::in"] = m4["t4::out"];

10 m6["t6::in"] = m5["t5::out"];
11 // conditionnal binding of the log task
12 if (is_log)
13 log["write::in"] = m2["t2::out"];
14

15 // definition of the pipeline stages in the 'pip_stages' variable
16 std::vector<std::tuple<std::vector<runtime::Task*>,
17 std::vector<runtime::Task*>,
18 std::vector<runtime::Task*>>> pip_stages =
19 { // pipeline stage 1
20 std::make_tuple<std::vector<runtime::Task*>,
21 std::vector<runtime::Task*>,
22 std::vector<runtime::Task*>>(
23 { &m1("t1"), }, // first tasks of stage 1
24 { &m2("t2"), }, // last tasks of stage 1
25 { /* no exclusion in this stage */ } // tasks excluded from stage 1
26),
27 // pipeline stage 2
28 std::make_tuple<std::vector<runtime::Task*>,
29 std::vector<runtime::Task*>,
30 std::vector<runtime::Task*>>(
31 { &m3("t3"), &m4("t4"), }, // first tasks of stage 2
32 { /* last tasks will be automatically found */ }, // last tasks of stage 2
33 { /* no exclusion in this stage */ }), // tasks excluded from stage 2
34

35 /* if you'd had more stages, you could have continued their declaration here */
36 };
37

38 // if there is the log task
39 if (is_log) {
40 // in stage 1 ('pip_stages[0]'): add the log task at the end of the exclusion list ('get<2>')
41 std::get<2>(pip_stages[0]).push_back(&log("write"));
42 // in stage 2 ('pip_stages[1]'): add the log task at the end of the first tasks list ('get<0>')
43 std::get<0>(pip_stages[1]).push_back(&log("write"));
44 }
45

46 // the first tasks of the sequence, used to check the pipeline stages
47 std::vector<runtime::Task*> seq_first_tasks = { &m1("t1") };
48

49 // declaration (= construction) of a pipeline object 'pip'
50 runtime::Pipeline pip(seq_first_tasks, pip_stages,
51 { 1, 1 }, // number of threads per stage -> one thread per stage
52 { 1, }, // buffer size between stages -> size 1 between stage 1 and 2
53 { false, }, // active waiting between stage 1 and stage 2 -> no
54 { false, false }, // enable pinnig -> no
55 { {0}, {1} }); // pinning to threads -> ignored because pinning is disabled
56

57 // pipeline execution, note that two different functions can be used for the stop condition
58 pip.exec({ [] (const std::vector<const int*>& statuses) { return false; }, // stage 1 stop
59 [] (const std::vector<const int*>& statuses) { return false; }, }); // stage 2 stop

Source code 1: Source code corresponding to the 2-stage pipeline described in Fig. 2. Depending on the
is_log value (true or false), the code will build either the Fig. 2a pipeline or the Fig. 2b pipeline.

Page 3

Fig. 2 introduces a simple example with a 2-stage pipeline. The compute chain (= tasks that do not
include logs and visualization) is given in Fig. 2a. Fig.2b shows a graph where we added a log task for
debugging purpose. The main goal of this graphs is to help you to bootstrap in your work.
The corresponding source code is given in Code 1. It is interesting to note that for the first time we
introduce a conditional binding depending on the is_log boolean value (lines 11-13). Also, the
list of the stages is declared in a dedicated pip_stages variable (line 18) before to call the pipeline
constructor (line 50). It makes possible to define the “compute” graph, and its decomposition in stages,
only once. After that, depending on the is_log value, the pip_stages variable can be modified to add
the log task (lines 39-44). Note that the t4 is added to the first tasks list of stage 2. This is because t4
depends on t1 which is declared in the stage 1. Finally, the stop condition of a pipeline can be set as
one stop condition per stage (see lines 57-59). Generally, we will only customize the stop condition of
the last stage.

Work to do #1 Implement the 3-stage pipeline given in Fig. 1 in the motion2_aff3ct.cpp file (it
is strongly recommended to save your previous working implementation with the sequence in an other
file...). Moreover, your code should be able to enable/disable the logs and the visualization. Fig. 2 and
Code 1 are here to help you and you must take inspiration from it. Validate that your new pipeline
version is working (see Note #2 in the previous session). Measure and report the achieved FPS in the
motion2_aff3ct.cpp file.

Note #1 If you implemented a sequence with a Switcher (to skip the first execution of Σ∆), there is
a known problem: a select or a commute task cannot be directly at the interface of a synchronization
between two pipeline stages. To make this work, you need to add a Relayer (relay task) after the
select task. If you did not implemented a sequence with a Switcher then you can ignore this note.

The code for displaying pipeline task statistics differs slightly from the code for a sequence. Indeed, you
first need to iterate over each stage before to print the statistics.

1 const bool ordered = true, display_throughput = false;
2 auto stages = pip.get_stages();
3 for (size_t s = 0; s < stages.size(); s++) {
4 const int n_threads = stages[s]->get_n_threads();
5 std::cout << "#" << std::endl << "# Pipeline stage " << (s + 1) << " ("
6 << n_threads << " thread(s)): " << std::endl;
7 tools::Stats::show(stages[s]->get_tasks_per_types(), ordered, display_throughput);
8 }

Source code 2: Display the statistics of the tasks for a pipeline.

Work to do #2 Modify the code that displays the task statistics in motion2_aff3ct.cpp (see Code 2).

When using the --stats option, you should have an output similar to the Code 3. As you can see,
the pipeline automatically added new push_x and pull_x tasks for you. These tasks are taking care of
the communications and synchronizations between the pipeline stages. In other words, they represent
a producer/consumer implementation. For instance, the push_1 task of the Adp_1_to_n_0 module
sends/produces output data from stage 1 to stage 2. And, in stage 2, the pull_n task of the Adp_1_to_n_0
module receives/consumes the input data from stage 1. Sometimes push_x and pull_x tasks take a lot
of time in the stage. It means that they are waiting.

Work to do #3 From the output statistics on the Jetson TX2, which stage limits the overall through-
put of the pipeline? Note your answer in the motion2_aff3ct.cpp file.

Page 4

1 # Pipeline stage 1 (1 thread(s)):
2 # ---------------------------------||------------------------------||--------------------------------
3 # Statistics for the || Basic statistics || Measured latency
4 # given task || on the task ||
5 # ---------------------------------||------------------------------||--------------------------------
6 # -------------|-------------------||----------|----------|--------||----------|----------|----------
7 # MODULE | TASK || CALLS | TIME | PERC || AVERAGE | MINIMUM | MAXIMUM
8 # | || | (s) | (%) || (us) | (us) | (us)
9 # -------------|-------------------||----------|----------|--------||----------|----------|----------

10 # Adp_1_to_n_0 | push_1 || 100 | 1.66 | 50.39 || 16592.90 | 0.75 | 18569.21
11 # Sigma_delta0 | compute || 101 | 0.81 | 24.72 || 8060.59 | 7980.08 | 8568.33
12 # Sigma_delta1 | compute || 100 | 0.79 | 24.08 || 7928.90 | 7866.54 | 8604.50
13 # Video | generate || 101 | 0.01 | 0.38 || 123.89 | 0.00 | 252.00
14 # Delayer | produce || 101 | 0.01 | 0.31 || 99.50 | 54.88 | 131.29
15 # Delayer | memorize || 100 | 0.00 | 0.13 || 43.54 | 36.96 | 101.83
16 # -------------|-------------------||----------|----------|--------||----------|----------|----------
17 # TOTAL | * || 100 | 3.29 | 100.00 || 32932.16 | 16019.56 | 36316.68
18 #
19 # Pipeline stage 2 (1 thread(s)):
20 # ---------------------------------||------------------------------||--------------------------------
21 # Statistics for the || Basic statistics || Measured latency
22 # given task || on the task ||
23 # ---------------------------------||------------------------------||--------------------------------
24 # -------------|-------------------||----------|----------|--------||----------|----------|----------
25 # MODULE | TASK || CALLS | TIME | PERC || AVERAGE | MINIMUM | MAXIMUM
26 # | || | (s) | (%) || (us) | (us) | (us)
27 # -------------|-------------------||----------|----------|--------||----------|----------|----------
28 # Morpho1 | compute || 100 | 1.32 | 39.34 || 13180.10 | 13110.33 | 13680.50
29 # Morpho0 | compute || 100 | 1.31 | 39.21 || 13134.11 | 13111.88 | 13961.21
30 # CCL0 | apply || 100 | 0.22 | 6.52 || 2183.68 | 2074.96 | 3518.04
31 # CCL1 | apply || 100 | 0.22 | 6.47 || 2168.97 | 2053.67 | 2415.08
32 # CCA1 | extract || 100 | 0.13 | 3.96 || 1325.75 | 1103.25 | 1960.42
33 # CCA0 | extract || 100 | 0.13 | 3.92 || 1314.09 | 724.04 | 1920.88
34 # Adp_1_to_n_0 | pull_n || 100 | 0.02 | 0.52 || 172.73 | 0.04 | 17246.83
35 # Ftr_filter1 | filter || 100 | 0.00 | 0.02 || 7.02 | 4.38 | 27.46
36 # Ftr_filter0 | filter || 100 | 0.00 | 0.02 || 6.48 | 4.38 | 16.71
37 # KNN | match || 100 | 0.00 | 0.02 || 6.25 | 1.54 | 62.88
38 # Adp_1_to_n_1 | push_1 || 100 | 0.00 | 0.00 || 0.63 | 0.21 | 6.58
39 # -------------|-------------------||----------|----------|--------||----------|----------|----------
40 # TOTAL | * || 100 | 3.35 | 100.00 || 33499.82 | 32188.67 | 54816.59
41 #
42 # Pipeline stage 3 (1 thread(s)):
43 # ---------------------------------||------------------------------||--------------------------------
44 # Statistics for the || Basic statistics || Measured latency
45 # given task || on the task ||
46 # ---------------------------------||------------------------------||--------------------------------
47 # -------------|-------------------||----------|----------|--------||----------|----------|----------
48 # MODULE | TASK || CALLS | TIME | PERC || AVERAGE | MINIMUM | MAXIMUM
49 # | || | (s) | (%) || (us) | (us) | (us)
50 # -------------|-------------------||----------|----------|--------||----------|----------|----------
51 # Adp_1_to_n_1 | pull_n || 100 | 3.35 | 99.98 || 33472.32 | 32689.25 | 52477.75
52 # Tracking | perform || 100 | 0.00 | 0.02 || 6.25 | 2.08 | 44.42
53 # -------------|-------------------||----------|----------|--------||----------|----------|----------
54 # TOTAL | * || 100 | 3.35 | 100.00 || 33478.57 | 32691.34 | 52522.17

Source code 3: Task statistics output for the pipeline described in Fig. 1. The automatically added
Adaptor tasks (push_x and pull_x) are highlighted. The code ran on the Apple Silicon M1 Pro CPU.
For each stage, the tasks are ordered by their execution time.

Page 5

2.2 Tasks Replication
In Fig. 1, the Σ∆ and the tracking tasks cannot be replicated because they have a data dependency over
time. As a consequence, the tasks of the stages 1 et 2 cannot be replicated. These dependencies are not
explicit in Fig. 1 because they come from inner data:

• In sigma_delta_compute function: the sd_data->M and sd_data->V buffers,
• In tracking_perform function: tracking_data->history and tracking_data->tracks buffers.

However, in theory, stage 2 tasks can all be replicated. For instance, in the Code 1 you can perform the
replication of stage 2 by replacing the second “1” line 51. If you replace { 1, 1 } with { 1, 4 }, the
pipeline will replicate stage 2 four times and it will run a total of 5 threads (1 for stage 1 and 4 for stage
2).

Work to do #1 Modify the pipeline in the motion2_aff3ct.cpp file to run the second stage over
two threads (2 times replication). What is happening? Is it normal?

You should not be able to replicate stage 2 because some of the tasks are stateful. To overcome this
problem you need to implement the clone method (and maybe the deep_copy method) on the involved
modules.

1 Morpho* Morpho::clone() const {
2 auto m = new Morpho(*this);
3 m->deep_copy(*this); // we override this method just after
4 return m;
5 }
6 // in the deep_copy method, 'this' is the newly allocated object while 'm' is the former object
7 void Morpho::deep_copy(const Morpho& m) {
8 // call the 'deep_copy' method of the Module class
9 Module::deep_copy(m);

10 // allocate new morpho inner data
11 this->morpho_data = morpho_alloc_data(m.morpho_data->i0, m.morpho_data->i1,
12 m.morpho_data->j0, m.morpho_data->j1);
13 // initialize the previously allocated data
14 morpho_init_data(this->morpho_data);
15 }

Source code 4: clone and deep_copy methods of the Morpho module.

Code 4 gives you the implementation of the clone and deep_copy method for the Morpho module.

Work to do #2 Implement the missing clone and deep_copy methods for stage 2 tasks. Then, run
the pipeline with 2 replications in stage 2. Is it faster? Increase the number of threads in stage 2, what
do you observe? Note the new FPS in your motion2_aff3ct.cpp file.

2.3 Tasks Graph Simplification
Fig. 3 presents an optimized version of the tasks graph shown in Fig. 1. One may have noticed that in
Fig. 1 some computations are performed twice! Indeed, the computations on the t − 1 frame could be
memorized from a stream to the next one. In Fig. 3, the list of CCs at t, after the surface filtering, are
memorized with a Delayer. This way, in the next stream at t+ 1, they can be reused (produce task of
the Delayer) to perform the k-NN algorithm.

The produce and memorize tasks are stateful and by definition they have a data dependency over time.
Thus, they cannot be replicated. Fig. 3 gives you the new stages decomposition.

Page 6

image
(t)

motion detection
Σ∆ (per pixel)

mathematical morphology
opening-closing

connected components
labeling (CCL)

connected components
analysis (CCA)

surface
filtering

produce
(Delayer)

memorize
(Delayer)

k-nearest neighboor
matching (k-NN)

temporal
tracking

Stage 1 Stage 2 Stage 3

grayscale pixels
p ∈ [0; 255]

blob of binary pixels
p ∈ {0, 1}, 0 → stationary, 1 → moving

image of labels
l ∈ [1; 232 − 1]

CCs = list of regions,
surface S & centroid (xG, yG)

sub-list of CCs
with S ∈ [Smin, Smax]

list of (t− 1, t)
associations

final list of
moving objects

Figure 3: Motion simplified graph. In gray and italic: the output of each processing. The graph is split
into a 3-stage pipeline.

Work to do #1 Implement this simplified tasks graph version in a new motion_aff3ct.cpp file. This
will produce the motion-aff3ct executable. Verify that this new version is working by comparing its
logs output with the motion2 executable logs. Then, report the achieved FPS in the motion_aff3ct.cpp
file. It is better? How much and why?

Work to do #2 The k-NN task could have been replicated and a 5-stage pipeline could have been im-
plemented. Why this does not sound like a good idea? Comment your answer in the motion_aff3ct.cpp
file.

2.4 Data Parallelism with OpenMP
Now, the limiting stage should be the stage 1 because of the Σ∆ task. This task cannot be replicated
because of its data dependency over time. However, for one given frame, each pixel is computed inde-
pendently of the others! This means that the loop over the pixels can be split in multiple sub-domains
and each sub-domain can be affected to a thread.

Work to do #1 Write a multi-threaded version the code of the Σ∆ algorithm (sigma_delta_compute
function). For this you will use the OpenMP library.

Now you will have 3 different types of parallelism in Motion: the pipeline, the replication and the data
parallelism inside the Σ∆ task (with OpenMP). Remember that you can control the number of OpenMP
threads with the OMP_NUM_THREADS environment variable.

Work to do #2 Find a configuration of threads that gives the best throughput. You can change
the number of OpenMP threads and the number of replications in stage 2 of the pipeline. Report this
configuration and the achieved throughput in the motion_aff3ct.cpp file.

2.5 Task Vectorization
An other way to speedup the Σ∆ task is to vectorize it with the SIMD instructions. As each pixel
computation is independent, the Σ∆ task is a very good candidate for vectorization.

Work to do #1 Write a vectorized version the Σ∆ algorithm (inside the sigma_delta_compute
function). For this you will use the MIPP wrapper (do not forget to add the #include <mipp.h>
header).

Now you can combine the 3 previous types of parallelism with a new one: the vectorization of Σ∆.

Work to do #2 Find a configuration of threads that gives the best throughput (with the Σ∆ vectorized
task). Report this configuration and the achieved throughput in the motion_aff3ct.cpp file.

Page 7

2.6 [Bonus] Data Parallelism versus Pipeline+Replication
The most compute intensive tasks of the Motion application are the Σ∆ and the morphology. We
saw before that Σ∆ can easily be speedup over its data parallelism. In fact, this is the same for the
morphology algorithms!

Work to do #1 First you will create a new motion.c file where you will implement the simplified
graph given in Fig. 3. It will produced a new motion executable without AFF3CT (no pipeline, no
replication). You can start from a copy-paste of the motion2.c file.

Work to do #2 Parallelize the morphology tasks with OpenMP. Compare the throughput of the
motion executable (only data parallelism) with the throughput of the motion-aff3ct executable (data,
pipeline and replication parallelisms). Which one gives the highest throughput? Why? Report the
achieved results in the corresponding source files.

Final note We could also have vectorized the morphology task, it is combination of stencils like the
blur kernel we worked on in previous sessions... But we will keep this for an other time ;-).

Page 8

