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MU5IN160 – Parallel Programming

Hands-on Session 2 – SIMD Programming

Short introduction In this tutorial, we’ll focus on writing efficient single-core code. To achieve
this, we’re going to use the SIMD instructions found in modern CPUs. In addition, we’ll apply some
source code source code transformations as in Session 1. Optimization will focus on a compute-intensive
algorithm. This allow us to address computational optimization without the limitations from memory
throughput. Keep in mind that SIMD instructions can be used in many other application domains.

Very important, about the submission of your work At the end of this session you will have to
upload your work (spin.cpp file, and only this file!) on Moodle. After that you will have 2 weeks (until
October, 8) to complete your work and update your first submission. You have to work in group of two
people but each of you will have to upload the file on Moodle. Finally, please write your name plus the
name of your pair at the top of the spin.cpp file.

1 Appetizer
First, you need to update your EasyPAP version for this session: git pull origin master

1.1 spin Kernel
In this session, we’ll be using EasyPAP and, more specifically, we’ll be work on the spin kernel. This
kernel has the effect of rotating the image as it is iterated. Each pixel, depending on its position in the
image and an angle angle, is assigned a color between yellow and blue. The angle is is common to all
pixels and is incremented by one degree for each iteration. Figure 1 illustrates the kernel spin.

(a) Original image. (b) 25 degrees rotation (25 iterations).

Figure 1: Illustration of the spin kernel on images.

Code 1 presents the current implementation of the spin algorithm. As you can see, the spin_compute_seq
function is called first (this is the entry point for the EasyPAP kernel). Then, the compute_color and
rotate functions are called.
You can now launch the kernel in EasyPAP:

./bin/easypap -k spin -i 100 -v seq



1 // Computation of one pixel
2 static unsigned compute_color(int i, int j) {
3 float atan2f_in1 = (float)DIM / 2.f - (float)i;
4 float atan2f_in2 = (float)j - (float)DIM / 2.f;
5 float angle = atan2f(atan2f_in1, atan2f_in2) + M_PI + base_angle;
6 float ratio = fabsf((fmodf(angle, M_PI / 4.f) - (M_PI / 8.f)) / (M_PI / 8.f));
7 int r = color_a_r * ratio + color_b_r * (1.f - ratio);
8 int g = color_a_g * ratio + color_b_g * (1.f - ratio);
9 int b = color_a_b * ratio + color_b_b * (1.f - ratio);

10 int a = color_a_a * ratio + color_b_a * (1.f - ratio);
11 return rgba(r, g, b, a);
12 }
13

14 static void rotate(void) {
15 base_angle = fmodf(base_angle + (1.f / 180.f) * M_PI, M_PI);
16 }
17

18 unsigned spin_compute_seq(unsigned nb_iter) {
19 for (unsigned it = 1; it <= nb_iter; it++) {
20 for (unsigned i = 0; i < DIM; i++)
21 for (unsigned j = 0; j < DIM; j++)
22 cur_img(i, j) = compute_color(i, j);
23

24 rotate(); // Increase the base angle (+ 1 degree)
25 }
26

27 return 0;
28 }

Source code 1: spin kernel in EasyPAP.
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The previous command launches 100 iterations of the kernel spin. In addition, we’ve specified the
version with the option -v (= --version param). This automatically calls spin_compute_seq line 18
in Code 1.
In this tutorial, we’ll write several variants of the function spin_compute_seq. You’ll be asked to copy
and paste the same function and replace the end of the name (here seq) with the new name. You can
then compare the execution times of the different versions using the -v parameter of EasyPAP.
The processing carried out by the kernel spin involves notions of trigonometry. You can see this in the
calls to the function atan2f (defined in the header file math.h).
As in the previous session, the different components of a pixel are red, green, blue and the alpha channel
(= opacity). Each of these components is stored on 8-bit. All these components are grouped together in
a single 32-bit integer. The rgba function produces a pixel in the final image to be displayed (line 11 of
Code 1).

Work to do Launch the kernel spin on your machine, understand the code.

1.2 Execution Time according to Optimization Options
The EasyPAP code compilation is defined in the Makefile file at the root. Compilation options are
defined on line 28:

CFLAGS := -O3 -march=native

As you can see, the -O3 option is present.

Work to do #1 Compile the code with the different optimization levels available (-O0, -O1, -O2 and
-O3) then compare and record the different execution times for 100 iterations. To see the execution time,
use the --no-display option option in EasyPAP.

Work to do #2 As the kernel calls on various mathematical functions (atan2f, fmodf and fabsf),
it’s interesting to see the impact of the -ffast-math optimization. As a reminder, this optimization
sacrifices the precision of floating-point calculations in favor of performance. Recompile your code by
combining the different levels of optimization with the -ffast-math option. What do you observe?

For the rest of this session, use the optimization level “three” with the fast math option
enabled (-O3 -ffast-math = all optimizations).

2 Optimize the Code to Reduce Execution Time

2.1 Approximation of Mathematical Functions (approx)

Work to do Starting from the initial version of the code (version seq), write a new version approx
in which you replace the calls to the mathematical functions with the approximations given in Code 2.
Test your code with EasyPAP. What do you notice? How do you explain it?

2.2 Preparing for Code Vectorization (simd_v0)
Now you can start vectorizing the code. To do this, you’ll use the MIPP SIMD library. You don’t
need to install it, it’s already done for you. However, you can (and should!) refer to the documentation
available in the readme : https://github.com/aff3ct/MIPP#list-of-mipp-functions. The latter
details all SIMD operations available through the library.

To help you get started, the code for the function spin_compute_simd_v0 is given to you. Take your
time to understand it. It’s VERY IMPORTANT to see that the loop on line 9 of the Code 3 is
different from the initial code. Indeed, the pitch of the mouth is mipp::N<float>(), the number of
elements in a vector register, instead of 1 initially.
You’ll notice that the prototype of the compute_color_simd_v0 function (line 1 of Code 3) is different
from the scalar implementations. This is normal, as from now on we’ll be working with vector registers:
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1 // arctangent, result between -pi/2 et pi/2 radians
2 static float atanf_approx(float x) {
3 return x * M_PI / 4.f + 0.273f * x * (1.f - fabsf(x));
4 }
5 // arctangent, result between -pi et pi radians
6 static float atan2f_approx(float y, float x) {
7 float ay = fabsf(y);
8 float ax = fabsf(x);
9 int invert = ay > ax;

10 float z = invert ? ax / ay : ay / ax; // [0,1]
11 float th = atanf_approx(z); // [0,pi/4]
12 if (invert) th = M_PI_2 - th; // [0,pi/2]
13 if (x < 0) th = M_PI - th; // [0,pi]
14 if (y < 0) th = -th;
15 return th;
16 }
17 // remainder of floating-point division
18 static float fmodf_approx(float x, float y) {
19 return x - trunc(x / y) * y;
20 }

Source code 2: atanf, atan2f and fmodf function approximations.

1 mipp::Reg<int> compute_color_simd_v0(mipp::Reg<int> r_i, mipp::Reg<int> r_j) {
2 // TODO !
3 }
4

5 unsigned spin_compute_simd_v0(unsigned nb_iter) {
6 int tab_j[mipp::N<int>()];
7 for (unsigned it = 1; it <= nb_iter; it++) {
8 for (unsigned i = 0; i < DIM; i++)
9 for (unsigned j = 0; j < DIM; j += mipp::N<float>()) {

10 for (unsigned jj = 0; jj < mipp::N<float>(); jj++) tab_j[jj] = j + jj;
11 int* img_out_ptr = (int*)&cur_img(i, j);
12 mipp::Reg<int> r_result =
13 compute_color_simd_v0(mipp::Reg<int>(i), mipp::Reg<int>(tab_j));
14 r_result.store(img_out_ptr);
15 }
16 rotate();
17 }
18 return 0;
19 }

Source code 3: Implémentation de la fonction spin_compute_simd_v0.
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mipp::Reg<int> instead of int and mipp::Reg<float> instead of float. At present, MIPP doesn’t
support unsigned integers, so you’ll have to ABSOLUTELY AVOID using mipp::Reg<unsigned>.

Work to do #1 Implement the compute_color_simd_v0 function. To do this, in this first implemen-
tation, write a loop that iterates over the elements of the input vector registers (r_i and r_j). Each
element of a vector register can be individually accessed using the [] operator (as for an array). The com-
putation inside the loop will be sequential for the moment (the same as in the compute_color_approx
function implemented earlier). You’ll save the n pixels in an array of integers of size mipp::N<int>(),
then return a register that you’ll initialize by loading the previous array (see line 13 of Code 3 for loading
an array).

Work to do #2 Visually check that the code still works when you run it. Compare the execution
time with previous versions. What do you notice? How do you explain it?

2.3 “Et zé bartiii” for the Vectorization (simd_v1)
Work to do #1 Write a SIMD version of the remainder of the division in the function fmodf_approx_simd.

Work to do #2 Starting from the version compute_color_simd_v0 you wrote earlier, implement a
new version compute_color_simd_v1 that calls fmodf_approx_simd.

Work to do #3 Visually check that the code still works when you run it. Compare the execution
time with previous versions. What do you notice? How do you explain it?

Tips #1 The loop that iterates over the register elements must be split in two. elements into two,
with only one call to the function fmodf_approx_simd.

Tips #2 Some useful SIMD MIPP functions:

• mipp::trunc,
• mipp::abs,
• mipp::sub (or operateur -),
• mipp::mul (or operateur *),
• mipp::div (or operateur /).

2.4 “One more step” in Vectorizing (simd_v2)
Work to do #1 Write a SIMD version of the rgba function function in the rgba_simd function. As
a reminder, the implementation of the function can be found in the file include/img_data.h.

Work to do #2 Starting from the compute_color_simd_v1 you wrote earlier, implement a new
version compute_color_simd_v2 that calls on rgba_simd.

Work to do #3 Visually check that the code still works when you run it. Compare the execution
time with previous versions. What do you notice? How do you explain it?

Tips #1 The second for-loop in the function compute_color_simd_v1 has to disappear in favor of
SIMD-only instructions in the new version compute_color_simd_v2.

Tips #2 Some useful SIMD MIPP functions:

• mipp::lshift (or operateur <<),
• mipp::orb (or operateur |),
• mipp::add (or operateur +),
• mipp::cvt<float, int> (to convert a floating vector register to an integer vector register).
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2.5 “À pieds joints” into the Vectorization (simd_v3)
Work to do #1 Write SIMD versions of the atanf_approx and atan2f_approx functions in the
atanf_approx_simd and atan2f_approx_simd functions.

Work to do #2 Starting from the version compute_color_simd_v2 you wrote earlier, implement a
new version compute_color_simd_v3 that calls atan2f_approx_simd. With this version, you should no
longer have a loop in the compute_color_simd_v3 function.

Work to do #3 Visually check that the code still works when you run it. Compare the execution
time with previous versions. What do you notice? How do you explain it?

Tips Some useful SIMD MIPP functions:

• mipp::Msk<mipp::N<float>()> (declaration of a “mask vector register”),
• mipp::blend (implementation of a ternary condition, or select in SIMD),
• mipp::cvt<int, float> (to convert an integer vector register into a floating-point vector register).

2.6 “À fond les ballons” into the Vectorisation (simd_v4)
Work to do #1 Starting from the previous version, write a new version compute_color_simd_v4 in
which you completely inline the function call atan2f_approx_simd. In other words, there must be no
more calls to atanf_approx_simd and atan2f_approx_simd in the compute_color_simd_v4 function.

Work to do #2 Some registers containing constants can be eliminated, delete duplicates.

Work to do #3 Visually check that the code still works when you run it. Compare the execution
time with previous versions. What do you notice? How do you explain it?

2.7 “Ça pique les yeux” the Vectorization (simd_v5)
Work to do #1 Starting from the previous version, write a new version of spin_compute_simd_v5,
in which you completely inline the compute_color_simd function call.

Work to do #2 Take the constants out of the loops, and check whether some computations are not
made too many times. For instance, some computations don’t depend on j... You’ll also need to find
multiplication and addition sequences and replace them with FMA-type operations (Fused Multiply and
Add). This type of operations is now widely used in SIMD instruction sets, and theoretically double the
efficiency.

Work to do #3 Visually check that the code still works when you run it. Compare the execution
time with previous versions. What do you notice? How do you explain it?

Tips Some useful SIMD MIPP functions:

• mipp::fmadd(a,b,c) (FMA: a× b+ c),
• mipp::fnmadd(a,b,c) (FMA: −(a× b) + c).

2.8 “Cerise (de Groupama) sur le gâteau”, unrolling (simd_v6)
In this ultimate version, we’re going to unroll the loop on the j. But before we get too carried away, it’s
important to put things in order, otherwise you won’t make it... Go back to version 5, and copy/paste for
version 6. Postfix all your variables that depend on j with _j0. For example, if you have a vector register
mipp::Reg<float> r_atan2f_in2 you need to rename it to mipp::Reg<float> r_atan2f_in2_j0.

Work to do #1 Starting from the previous version, write a new version spin_compute_simd_v6u2
in which you will perform a 2-order unrolling on j.
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Work to do #2 Starting from the previous version, write a new version spin_compute_simd_v6u4
in which you will perform a 4-order unrolling on j.

Work to do #3 Visually check that the code still works when you run it. Compare the execution
time with previous versions. What do you notice? How do you explain it?
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