
ROBUST AND ACCURATE STOPPING CRITERIA FOR ADAPTIVE
RANDOMIZED SAMPLING IN MATRIX-FREE HSS

CONSTRUCTION

CHRISTOPHER GORMAN∗, GUSTAVO CHÁVEZ† , PIETER GHYSELS† , THÉO MARY‡ ,

FRANÇOIS-HENRY ROUET§ , AND XIAOYE SHERRY LI†5

Abstract. We present new algorithms for randomized construction of hierarchically semi-
separable matrices, addressing several practical issues. The HSS construction algorithms use a par-
tially matrix-free, adaptive randomized projection scheme to determine the maximum off-diagonal
block rank. We develop both relative and absolute stopping criteria to determine the minimum
dimension of the random projection matrix that is sufficient for desired accuracy. Two strategies10
are discussed to adaptively enlarge the random sample matrix: repeated doubling of the number
of random vectors, and iteratively incrementing the number of random vectors by a fixed number.
The relative and absolute stopping criteria are based on probabilistic bounds for the Frobenius norm
of the random projection of the Hankel blocks of the input matrix. We discuss parallel implemen-
tation and computation and communication cost of both variants. Parallel numerical results for a15
range of applications, including boundary element method matrices and quantum chemistry Toeplitz
matrices, show the effectiveness, scalability and numerical robustness of the proposed algorithms.

Key word. Hierarchically Semi-Separable, randomized sampling, randomized projection, adap-
tive stopping criteria

1. Introduction. Randomization schemes have proven to be a powerful tool20

for computing a low-rank approximation of a dense matrix or, as we call it in this
work, compressing it. The main advantage of randomization is that these methods
usually require fewer computations and communication than their traditional deter-
ministic counterparts, resulting in large savings in terms of memory and floating point
operations.25

For classes of dense matrices that have off-diagonal blocks that can be approxi-
mated as low-rank submatrices, randomized methods are particularly advantageous.
These matrices are referred to as structured, and there are many types of matrix
formats that can take advantage of this structure; these include, to name a few, Hier-
archically Semi-Separable (HSS) matrices [3], H and H2 matrices [11, 10]. This work30

focuses on HSS representations and, more specifically, efficient HSS compression. HSS
compression is the central component of the HSS framework; once a matrix is com-
pressed into its HSS form, one can take advantage of fast algorithms for multiplication,
factorization, etc.

One way to speed up HSS compression involves using randomization [16, 12].35

Randomization involves generating samples of size at least the maximum rank of the
HSS representation. Since the exact rank of low-rank matrices is usually not known
in practice, adaptive algorithms are needed in order to generate sufficient, yet not
too many, random samples until the range is well approximated and the matrix is
compressed to a desired tolerance. This ensures robustness and high performance of40

the overall algorithm.
This paper builds on our previous work [18], which gives an explicit adaptive

algorithm. One of the highlights of this work is the development of a new stop-
ping criterion for adaptation that considers both relative and absolute error. We

∗University of California, Santa Barbara, Santa Barbara, CA, USA. gorman@math.ucsb.edu
†Lawrence Berkeley National Laboratory, Berkeley, CA, USA. {gichavez,pghysels,xsli}@lbl.gov
‡University of Manchester, Manchester, UK. theo.mary@manchester.ac.uk
§Livermore Software Technology Corporation, Livermore, CA, USA. fhrouet@lstc.com

1

This manuscript is for review purposes only.

A2,1

A1,2

A3,4

A4,3

A6,5

A5,6

D7

D8

D9

D10

D11

D12

D13

D14

I7

I8

I9

I10

I11

I12

I13

I14

I3

I4

I5

I6

I1

I2

I0

Fig. 1. Illustration of an HSS matrix us-
ing 4 levels. Diagonal blocks are partitioned re-
cursively. Gray blocks denote the U , B, V and
D matrices.

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

Fig. 2. Tree for Figure 1, using level-by-
level top-down numbering. All nodes except the
root store Uµ and Vµ. Leaves store Dµ, non-
leaves Bν1,ν2 , Bν2,ν1

demonstrate the effectiveness of this novel approach, and others, in a set of numerical45

experiments that showcase the scalability and robustness of the new algorithms on a
variety of matrices from different applications.

The paper is organized as follows. In Section 2, we discuss the HSS randomized
construction algorithm, while in Section 3 we present two adaptive sampling strategies,
the new stopping criterion for terminating adaptation, and the related probability50

theory. The parallel algorithms are presented and analyzed in Section 4, followed by
numerical experiments in Section 5.

2. Hierarchically Semi-Separable Matrices and Randomized Construc-
tion. In this section we briefly introduce the HSS representation and the randomized
construction algorithm that we use. The following notation is used: ∗ denotes com-55

plex transposition, #Iφ is the number of elements in index set Iφ = {i1, i2, · · · , in},
Rφ = R(Iφ, :) is the matrix consisting of only the rows Iφ of matrix R using all
columns.

Consider a square matrix A ∈ CN×N , an index set IA = {1, . . . , N}, and a binary
tree T , ordered level by level, starting with zero at the root node. Each node φ of60

the tree is associated with a contiguous subset Iφ ⊂ IA. For two siblings ν1 and
ν2, children of φ, it holds that Iν1 ∪ Iν2 = Iφ and Iν1 ∩ Iν2 = ∅. It follows that
∪φ∈leaves(T)Iφ = Iroot(T) = IA. The same tree T is used for the rows and the columns
of A and only diagonal blocks are partitioned. An example of the resulting matrix
partitioning is given in Figure 1 and the corresponding tree is shown in Figure 2.65

The diagonal blocks of A, denoted Dφ, are stored as dense matrices in the leaves
φ of the tree T : Dφ = A(Iφ, Iφ). The off-diagonal blocks Aν1,ν2 = A(Iν1 , Iν2) are
factored (approximately) as

(2.1) Aν1,ν2 ≈ Ubig
ν1 Bν1,ν2

(
V big
ν2

)∗
,

where Ubig
ν1 is #Iν1 × rrν1 and V big

ν2 is #Iν2 × rcν2
1. The HSS-rank r is defined as the70

maximum of rrφ and rcφ over all off-diagonal blocks, where typically r � N . Bν1,ν2
and Bν2,ν1 are stored at the parent node. For a node φ with children ν1 and ν2, Ubig

φ

1Superscripts r and c are used to denote that Ubig/V big are column/row bases for the row/column
Hankel blocks of A.

2

This manuscript is for review purposes only.

and V big
φ are represented hierarchically as

(2.2) Ubig
φ =

[
Ubig
ν1 0
0 Ubig

ν2

]
Uφ and V big

φ =

[
V big
ν1 0
0 V big

ν2

]
Vφ .

Note that for a leaf node Ubig
φ = Uφ and V big

φ = Vφ. Hence, every node φ, except the75

root, keeps matrices Uφ and Vφ. The top two levels of the example shown in Figure 1
can be written out explicitly as

(2.3) A =

D3 U3B3,4V

∗
4

[
U3 0
0 U4

]
U1B1,2V

∗
2

[
V ∗5 0
0 V ∗6

]
U4B4,3V

∗
3 D4[

U5 0
0 U6

]
U2B2,1V

∗
1

[
V ∗3 0
0 V ∗4

]
D5 U5B5,6V

∗
6

U6B6,5V
∗
5 D6

 .
An HSS matrix requires O(rN) storage and can perform matrix-vector multiplication
in O(rN) operations, compared to O(N2) for classical dense matrix-vector multipli-80

cation. We refer the reader to the standard HSS references [3, 28] for more details.
HSS matrix construction (or compression) based on randomized sampling tech-

niques has attracted a lot of attention in recent years. Compared to standard HSS
construction techniques [27, 22] that assume that an explicit matrix is given in input,
randomized techniques allow the design of matrix-free construction algorithms. A fully85

matrix-free construction algorithm relies solely on the availability of a matrix-vector
product function. A partially matrix-free algorithm also relies on a matrix-vector
product function but additionally requires access to individual entries of the matrix.
For certain applications, for example Toeplitz systems, where fast (e.g., linear time)
matrix-vector products exist, a randomized algorithm typically has linear or log-linear90

complexity instead of quadratic complexity for standard construction algorithms.
There are two main algorithms for randomized HSS construction. The algorithm

by Lin et al. [13] is fully matrix-free. It follows a top-down traversal of the HSS
tree. It has been succesfully used to design linear solvers and eigensolvers for different
applications [25, 14]. The randomized HSS construction algorithm by Martinsson is95

partially matrix-free. It requires less random projections (by a factor of O(logN)) but
requires access to O(rN) matrix elements; it follows a bottom-up traversal of the HSS
tree. This algorithm has been used to build different dense and sparse solvers [29, 26]
and is the basis for our work. Our distributed-memory randomized HSS construction
implemented in STRUMPACK [18] is based on this algorithm, and the rest of this100

section recalls the main ideas.
Let R be an N × d random matrix, where d = r + p with p a small oversampling

parameter. The matrix Ubig
φ is a basis for the column space of A(Iφ, IA \ Iφ), which

is called a Hankel block. Likewise, V big
φ is a basis for the row space of A(IA \ Iφ, Iφ)∗.

To compute the random projection of these Hankel blocks, we compute Sr = AR105

and Sc = A∗R, such that Sr(Iφ, :) gives the random projection of A(Iφ, :). Let

Dφ for non-leaf nodes be defined (recursively) as Dφ =

[
Dν1 Aν1,ν2
Aν2,ν1 Dν2

]
, and with

nodes φ on level ` of the HSS tree, we define the block diagonal matrix D(`) =
diag

(
Dφi

, . . . , Dφj

)
. At each level of the HSS tree we can compute the samples of

the Hankel blocks as Sr,(`) =
(
A−D(`)

)
R = Sr −D(`)R and Sc,(`) = Sc −D(`)∗R.110

Working from the leaves up to the root this can be performed efficiently since the
off-diagonal blocks of Dφ are already compressed. Consider a leaf node φ, and let
Srφ = Sr(Iφ, :)−DφR(Iφ, :). To compute Uφ from this, an interpolative decomposition

3

This manuscript is for review purposes only.

(ID) is used, which approximates Srφ as a linear combination of a set Jrφ of its rows:
Srφ = UφS

r
φ(Jrφ, :) + O(ε), where #Jrφ is the ε-rank of Srφ. This decomposition can115

be computed using a rank-revealing QR factorization, or QR with column pivoting
(QRCP), applied to (Srφ)∗ as follows:
(2.4)

(Srφ)∗ ≈ Q
[
R1 R2

]
ΠT = (QR1)

[
I R−1

1 R2

]
ΠT = (Srφ(Jrφ, :))

∗ [I R−1
1 R2

]
ΠT ,

with Π a permutation matrix, Q orthogonal and R1 upper triangular. We stop
and truncate the RRQR factorization when |Rk,k| ≤ εabs or |Rk,k| / |R1,1| ≤ εrel.120

From (2.4), Uφ can be defined as Uφ = Π

[
I(

R−1
1 R2

)∗] = Πr
φ

[
I
Erφ

]
; likewise, Vφ =

Πc
φ

[
I
Ecφ

]
. From these definitions of Uφ and Vφ, it follows thatBν1,ν2 = Aν1,ν2(Jrν1 , J

c
ν2).

For a non-leaf node φ with (leaf) children ν1 and ν2 we need to guarantee the
nested basis property, Eq. (2.2). We have

S
r,(`)
φ = (A(Iφ, :)−Dφ)R = A(Iφ, :)R−

[
Dν1 Aν1,ν2
Aν2,ν1 Dν2

] [
R(Iν1 , :)
R(Iν2 , :)

]
(2.5)125

=

[
Srν1
Srν2

]
−
[

Aν1,ν2
Aν2,ν1

] [
R(Iν1 , :)
R(Iν2 , :)

]
(2.6)

≈
[
Uν1

Uν2

] [
Srν1(Jrν1 , :)−Bν1,ν2V

∗
ν2R(Iν2 , :)

Srν2(Jrν2 , :)−Bν2,ν1V
∗
ν1R(Iν1 , :)

]
.(2.7)

We let

φ.Rr ← V ∗φR(Iφ, :)(2.8)130

φ.Sr ←
[
Srν1(Jrν1 , :)−Bν1,ν2ν2.R
Srν2(Jrν2 , :)−Bν2,ν1ν1.R

]
,(2.9)

so we can apply ID((φ.Sr)∗) in order to compute Uφ, since the Uν1 and Uν2 bases
have been factored out in Eq. (2.7). This can be applied recursively.

3. Adaptive Randomized Sampling. In most practical problems, we do not135

know the maximum HSS rank a priori; hence, the number of samples need be chosen
adaptively.

3.1. Previous algorithms. In [18], we developed the first adaptive sampling
scheme, which is illustrated in Algorithm 1, with some helper functions listed in
Table 1. The adaptation works as follows. Each HSS node has a state which140

can be UNTOUCHED, COMPRESSED, or PARTIALLY COMPRESSED. Each node starts in the
UNTOUCHED state. The compression proceeds bottom-up from the leaf nodes, with d0

initial number of random vectors. At each (non-root) node φ, coefficients Uφ and Vφ
are computed using ID, which might fail if it is detected that d0 random vectors are
not sufficient to accurately capture the range of the corresponding Hankel block with145

a prescribed relative or absolute tolerance, εrel or εabs, respectively. (How this can
be detected will be discussed in detail in the following sub-sections.) If this happens,
node φ is marked as PARTIALLY COMPRESSED and the compression algorithm returns
to the outer loop. Note that in a parallel run, processing of other HSS nodes in
independent subtrees can still continue. The number of random vectors is increased150

by ∆d and the recursive HSS compression is called again. At this point, there will
be at least one node in the HSS tree which is in the PARTIALLY COMPRESSED state.

4

This manuscript is for review purposes only.

All the descendants of this node are in the COMPRESSED state (or compression of that
PARTIALLY COMPRESSED node could not have been started), and all ancestors are in
the UNTOUCHED state. The compression algorithm will again start at the leaf nodes.155

For the already COMPRESSED nodes, the U and V coefficients do not need to be recom-
puted, but these nodes still need to be visited in order to add ∆d extra columns to
φ.Rr/φ.Rc and φ.Sr/φ.Sc. For a graphical representation of the adaptive compression
procedure see Figure 3.

Algorithm 1: Adaptive HSS compression of A ∈ CN×N using cluster tree
T with relative and absolute tolerances εrel and εabs respectively.

1 function H = HSSCompressAdaptive(A, T)
2 d← d0; ∆d← 0; R← randn(N, d); Sr ← AR; Sc ← A∗R
3 foreach τ ∈ T do τ.state← UNTOUCHED

4 while root(T).state 6= COMPRESSED and d < dmax do
5 CompressNodeAdaptive(A, R, Sr, Sc, root(T), d, ∆d)
6 ∆d← d or constant // double or fixed increment

7 R̄← randn(N , ∆d); R←
[
R R̄

]
8 Sr ←

[
Sr AR̄

]
; Sc ←

[
Sr A∗R̄

]
9 d← d+ ∆d

10 end
11 return T

12 function CompressNodeAdaptive(A, R, Sr, Sc, τ , d, ∆d)
13 if isleaf(τ) then
14 if τ.state = UNTOUCHED then τ.D ← A(τ.I, τ.I)
15 else
16 ν1, ν2 ← children(τ)
17 CompressNodeAdaptive(A, R, Sr, Sc, ν1, d, ∆d)
18 CompressNodeAdaptive(A, R, Sr, Sc, ν2, d, ∆d)
19 if ν1.state 6= COMPRESSED or ν2.state 6= COMPRESSED then return
20 if τ.state = UNTOUCHED then
21 τ.B12 ← A(ν1.I

r, ν2.I
c); τ.B21 ← A(ν2.I

r, ν1.I
c)

22 end
23 if isroot(τ) then τ.state← COMPRESSED; return
24 if τ.state = UNTOUCHED then
25 ComputeLocalSamples(R, Sr, Sc, τ , 1 : d+ ∆d)
26 else ComputeLocalSamples(R, Sr, Sc, τ , d+ 1 : d+ ∆d)
27 if τ.state 6= COMPRESSED then
28 try
29 {(τ.U)∗, τ.Jr} ← ID((τ.Sr)∗, εrel/level(τ), εabs/level(τ))
30 {(τ.V)∗, τ.Jc} ← ID((τ.Sc)∗, εrel/level(τ), εabs/level(τ))

// tolerances scaled by level

31 τ.state← COMPRESSED

32 ReduceLocalSamples(R, τ , 1 : d+ ∆d)

33 catch // RRQR/ID failed to reach tolerance εrel or εabs
34 τ.state← PARTIALLY COMPRESSED

35 return

36 else ReduceLocalSamples(R, τ , d, d+ 1 : d+ ∆d)

5

This manuscript is for review purposes only.

randn(m,n) an m× n matrix with iid N (0, 1) elements
rows(A)/cols(A) number of rows/columns in matrix A

isleaf(φ) true if φ is a leaf node, false otherwise
isroot(φ) true if φ is a root node, false otherwise

children(φ) a list with the children of node φ, always zero or two
levels(T) number of levels in tree T
level(φ) level of node φ, starting from 0 at the root

{U, J} ← ID(S, εrel, εabs) interpolative decomposition with relative and
absolute tolerances, returning coefficient matrix
and index set

ComputeLocalSamples See Eq. (2.9) (updating only columns ι)
(R,Sr, Sc, φ, ι)

ReduceLocalSamples See Eq. (2.8) (updating only columns ι)
(R,φ, ι)

Table 1
List of helper functions.

Fig. 3. Illustration of the tree traversal during adaptive HSS compression. Each node in the
tree can be in either UNTOUCHED (U), PARTIALLY COMPRESSED (PC) or COMPRESSED (C) state. For the
meaning of the Q and S matrices, see Section 3.2.

Theorem 4.2 in [21] shows that for a matrix A and its HSS approximation H, with160

a total of L levels, and with each off-diagonal block compressed with relative tolerance
εrel, it holds that ‖A−H‖F ≤ C(N,L)εrel‖A‖F . Inspired by this result, in the HSS
compression Algorithm 1, the user-desired absolute and relative tolerances εabs and
εrel are scaled with the current HSS level for the rank-revealing QR factorization.
Hence, it is expected that the final HSS compression satisfies ‖A − H‖F ≤ εabs or165

‖A−H‖F /‖A‖F ≤ εrel; we have no proof, but see Section 5 for evidence supporting
this statement.

For the above adaptive sampling to work reliably, we need to address two main
questions:

(1) How to compute ∆d to increase the sample size?170

(2) When to terminate the adaptation?
In fact, the stopping criteria in question (2) depend on how ∆d is computed in

question (1). In the following, we will present two different strategies for computing
∆d, one is the commonly used Doubling method, another is the Incrementing
method which incurs less communication and hence is preferrable on large parallel175

machines.

3.1.1. Doubling Strategy with Oversampling. Algorithm 2 computes an
(orthogonal) approximate basis for the range of an m×n matrix A, with an oversam-

6

This manuscript is for review purposes only.

Algorithm 2: Adaptive computation of Q, an approximate basis for the
range of the Hankel block A, using the Doubling strategy with an over-
sampling parameter p.

1 function Q = RS-Doubling(A, d0, p, εrel, εabs)
2 k ← 1; m← rows(A); r ←∞
3 R1 ← randn(m, d0 + p)
4 S1 ← AR1

5 while (r > 2k−1d0) do
6 {Q, r} ← RRQR HMT(Sk, εrel, εabs)

7 ∆d← 2k−1d0 + p // double sample size

8 Rk+1 ← randn(m, ∆d)
9 Sk+1 ← [Sk ARk+1]

10 k ← k + 1

11 end
12 return Q

pling parameter p, up to a given relative or absolute tolerance εrel or εabs. Initially,
a random projection of the input matrix A with a tall and skinny random matrix R,180

with d0 + p columns, is computed as S = AR. Let Q be an orthonormal basis for S.
From [12, Theorem 1.1], we have

(3.1) E‖(I −QQ∗)A‖2 ≤
[
1 + 4

√
d0 + p

p− 1
·
√

min{m,n}
]
σd0+1 .

where σd0+1 is the (d0 + 1)-th singular value of A. The factor in brackets in Eq. (3.1),
the deviation from the optimal error σd0+1, decreases with increasing oversampling185

p. In order to guarantee a relative or absolute error bound on ‖A − QQ∗A‖, we
apply a modified RRQR factorization (a column pivoted QR) to S, which includes
this factor. The modified RRQR (RRQR HMT in Algorithm 2, named after the authors
of [12]) returns a rank r = k as soon as
(3.2)

Rk,k ≤
εabs

1 + 4
√
d0+p

d0+p−k−1 ·
√

min{m,n}
or

Rk,k
R1,1

≤ εrel

1 + 4
√
d0+p

d0+p−k−1 ·
√

min{m,n}
.190

Here R refers to the upper triangular QR factor, not to be confused with the random
matrix R. This modification is to take into account that at step k of the RRQR HMT

algorithm, the amount of oversampling is d0 + p − k − 1. If the rank r returned
by the modified RRQR is r < d0, i.e., at least p oversampling vectors are used,
then the orthonormal basis Q returned by RRQR is accepted. However, if RRQR195

does not achieve the required tolerance, or if it achieves the required tolerance but
d0 ≤ r ≤ d0 +p, then the resulting Q basis is rejected. The number of random vectors
(excluding the p oversampling columns) is doubled and the random projection with
these new vectors is added to S. A rank-revealing QR factorization is applied to
the entire new random projection matrix S. Since in this scenario RRQR is always200

redone from scratch, the number of adaptation steps should be minimized in order to
minimize the work in RRQR. Doubling the number of random vectors in each step
ensures one only needs O(log(r)) adaptation steps2, but in the worst-case scenario,

2Logarithm is in base 2 throughout the paper.

7

This manuscript is for review purposes only.

i.e., when r = d0 − 1, the amount of oversampling is r + p− 2.
This is the approach previously used in [18, 7, 6], although in those references, the205

scaling factor from Eq. (3.1) was not included. Including this scaling factor slightly
increases the rank, but yields a more accurate compression. When used in the larger
HSS compression algorithm (Algorithm 1), the matrix sizes m and n from Eq. (3.2)
are the sizes of the original Hankel block.

Remark. Algorithms 2 (and 3 later) corresponds to the successive (rank-reveal-210

ing) QR factorizations at the PARTIALLY COMPRESSED node, and is part of the bigger
Algorithm 1. The successive random sampling steps are actually performed in Algo-
rithms 1, but are included here for convenience. Here, Algorithms 2 (and 3 later) is
presented as only returning the orthonormal basis of the range of A, but when used
in the overall HSS compression (Algorithm 1), the upper triangular factor from the215

final rank-revealing QR factorization is also required.
There are several drawbacks with the Doubling method: 1) It often leads to

unnecessary amount of oversampling, and hence the cost associated with it; 2) The
rank-revealing factorization has to be performed from scratch in each step, which
leads to additional computational cost and communication. In particular, the com-220

munication involved in column pivoting in the repeated RRQR factorizations can be
a serious bottleneck in a distributed memory code.

This leads to the new design of the Incrementing approach described below,
including the new theory of a stochastic matrix norm estimation which is the basis of
both absolute and relative stopping criteria.225

3.2. Blocked Incrementing Strategy. To mitigate the problems with the
Doubling strategy, we developed a new strategy that builds Q incrementally; hence,
we call this Incrementing strategy. Before presenting our ultimate algorithm, we
first review the earlier work along this line.

In [12], Algorithm 4.2 (“Adaptive Randomized Range Finder”) is presented for230

the adaptive computation of an orthonormal basis Q for the range of a matrix A, up
to an absolute tolerance εabs. This algorithm computes an approximate orthonormal
basis for the range of A one vector at a time, and then determines how well this
basis approximates the range. Adding one vector at a time to the basis amounts
to performing a sequence of multiple matrix-vector products (BLAS-2), which are235

memory-bound and less efficient on modern hardware. In [14], Algorithm 2 (“Parallel
Adaptive Randomized Orthogonalization”) uses a similar approach, but implements
a blocked version, relying on BLAS-3 operations which can achieve much higher per-
formance. This algorithm also relies only on an absolute tolerance.

In contrast to the previous algorithms, our method implements a blocked version.240

Moreover, we use both an absolute and a relative stopping criterion. The stopping
criterion is based on a stochastic error bound we develop in Section 3.4 and a block
Gram-Schmidt orthogonalization [19, 17].

Let Q be the current orthonormal approximate basis for the range of an m × n
matrix A. Given a random Gaussian matrix R ∈ Rn×d, compute first the random245

samples S = AR followed by the projection Ŝ = (I −QQ∗)S. This last operation is
one step of block Gram-Schmidt. In practice, to ensure orthogonality under roundoff
errors, we apply this step twice as Ŝ = (I −QQ∗)2

S [19]. Thus, Ŝ contains infor-

mation about the range of A that is not included in Q. A small ||Ŝ||F means that
either Q was already a good basis for the range of A, or S was in the range of Q,250

which is unlikely. If ||Ŝ||F is not small enough, Ŝ is used to expand Q. Since Ŝ is

already orthogonal to Q, we only need to do internal orthogonalization of Ŝ using a

8

This manuscript is for review purposes only.

QR factorization, [Q,R] = QR(Ŝ), and then augment Q← [Q Q].

3.3. Need for New Stopping Criteria for Incrementing Adaptation. The
main issue is to determine whether the sample matrices Sr and Sc capture well the255

column space of the corresponding Hankel blocks. As we shall see later, this decision
relies on a good estimate of the matrix norm and hence the error estimation of the
residual matrix (see Eq. (3.26)), which in turn is critical in devising the stopping
criteria of adaptation. The goal is to ensure sufficient samples are used to guarantee
the desired accuracy while not to perform too much oversampling, as this degrades260

performance. We first review a well-known result from the literature, and explain how
it falls short when used as a stopping criterion. Then in Section 3.4 we propose our
new approach.

Recall the following result from [12]:

Lemma 3.1 (Lemma 4.1 in [12]). Let B be a real m × n matrix. Fix a positive265

integer p and a real number α > 1. Draw an independent family
{
ωi : i = 1, . . . , p

}
of standard Gaussian vectors. Then

(3.3) ||B||2 ≤ α
√

2

π
max
i=1,...,p

∣∣∣∣Bωi∣∣∣∣
2

except with probability α−p.

The value of α represents a trade-off – larger α makes the bound less strict and more270

probable to achieve. For α = 10 and p = 10, the bound in (3.3) holds with very
high probability 1− 10−10. In [14], relation (3.3) is used as a stopping criterion in an
adaptive HSS construction algorithm, with B = (I −QQ∗)F , as

(3.4) ||(I −QQ∗)F ||2 ≤ α
√

2

π
max
i=1,...,p

∣∣∣∣(I −QQ∗)Fωi∣∣∣∣
2
≤ ε

where F is a Hankel block of the input matrix A, Q is a matrix with orthonormal275

columns which approximates the range of F , and ε is the tolerance. The column
dimension of Q is increased until the second inequality in (3.4) is satisfied, which
guarantees that ‖(I −QQ∗)F‖2 ≤ ε.

There are several drawbacks with this criterion.
1) If different F blocks vary greatly in size, different blocks will be compressed to280

different relative tolerances, even though they are compressed to the same absolute
tolerance. The error bound in Lemma 3.1 is not conducive to relative error bounds
because it only gives an upper bound on the error and not necessarily an accurate
approximation of it; see Section 3.6 for examples showing this. Thus, it is not possible
to use this bound to compute a relative stopping criterion. In Section 3.4, we derive285

an accurate relative bound based on a stochastic estimation of the matrix norm.
2) The error estimate in (3.4) assumes that we have access to the entire Hankel block
F and the associated random samples. However, in the matrix-free HSS construction
as described in Section 2, only the local random samples φ.Sr and φ.Sc are available.
In (2.5)-(2.7), the random sample matrix Srφ of the Hankel block corresponding to HSS290

node φ, i.e., A(Iφ, IA \ Iφ), is expressed in terms of the coefficients Uν1 and Uν2 of its
children; see Eq. (2.7). The random sample Srφ of the Hankel block is constructed by
subtracting the random sample DφR(Iφ, :) of the diagonal block, see (2.5), using the
already compressed Dφ (Dφ is exact only at the leaves). Hence, this introduces an
approximation error.295

9

This manuscript is for review purposes only.

3) Another issue arises due to the HSS nested basis property; see Eq. (2.2). In order to
maintain the HSS nested basis property, the Hankel block is not compressed directly,
but only its coefficient in the [Uν1 0 ; 0 Uν2] basis is compressed. This coefficient
is defined in (2.9) as φ.Sr. The difficulty arises from the use of the interpolative
decomposition to compress the off-diagonal blocks, see (2.4), since it leads to non-300

orthonormal Uφ. Hence, the bound from Lemma 3.1 should really be applied to

(3.5)

∣∣∣∣∣∣∣∣[Uν1 0
0 Uν2

] (
I −QφQ∗φ

)
φ.Sr

∣∣∣∣∣∣∣∣
2

,

to derive a correct stopping criterion for adaptive HSS compression. As long as the
Uφ are orthonormal, there is no problem, since ||·||2 is unitarily invariant.

In practice, a (strong) rank-revealing QR factorization [8] will cause the U ma-305

trices to be well-conditioned, and its elements to be bounded [12], so the absolute
tolerance should not be affected much. It seems plausible for the non-orthonormal
factors to essentially cancel out when using the relative stopping criterion, making it
a more reliable estimate. The hierarchical nature of the U and V matrices makes it
possible to efficiently compute the products in Eq. (3.5) should this be desired.310

3.4. Mathematical Theory for the New Error Bound. Ideally, we would
like to bound our errors with respect to A: ‖(I−QQ∗)A‖F /‖A‖F and ‖(I−QQ∗)A‖F ,
where A is a Hankel block of the original input matrix. However, since A might not
be readily available (or expensive to compute), we instead use the random samples
S. We now establish a stochastic F -norm relationship between ‖A‖F and ‖S‖F and315

show that this estimate is accurate to high probability.
Let A ∈ Rm×n and x ∈ Rn with xi ∼ N (0, 1). Furthermore, let

(3.6) A = UΣV ∗ =
[
U1 U2

] [Σr 0
0 0

] [
V ∗1
V ∗2

]
be the singular value decomposition (SVD) of A, and ξ = V ∗x. Since x is a Gaussian
random vector, so is ξ. By the rotational invariance of ||·||2, it follows that320

(3.7) ||Ax||22 = ||Σξ||22 = σ2
1ξ

2
1 + · · ·+ σ2

rξ
2
r ,

with σ1 ≥ · · · ≥ σr > 0 the positive singular values. Hence,

(3.8) E
(
||Ax||22

)
= σ2

1 + · · ·+ σ2
r = ||A||2F .

From what we just showed, if R ∈ Rn×d with Rjk ∼ N (0, 1), it is clear

(3.9) ||AR||2F = ||AR1||22 + · · ·+ ||ARd||22325

with Ri a Gaussian random vector, so that

(3.10)
1√
d

√
E
(
||AR||2F

)
= ||A||F .

Theorem 3.3 shows that particular realizations will, with high probability, be close
to the expected value. In particular, we can approximate the difference between
our approximation and the actual matrix sub-block, allowing us to compute both330

the absolute and relative error in contrast to Lemma 3.1. We call Eq. (3.10) the

10

This manuscript is for review purposes only.

Gaussian Error Bound (GEB) because we use Gaussian random vectors to accurately
estimate the matrix F-norm, allowing us to approximate ‖(I−QQ∗)A‖F . Future work
investigating a random variable whose expectation value is ||A||2 (or some power)
would be beneficial. At this point, we settle for using the Frobenius norm because we335

can accurately approximate it.
In order to facilitate the analysis, we define the random variable

(3.11) X ∼ σ2
1ξ

2
1 + · · ·+ σ2

rξ
2
r ,

where ξi ∼ N (0, 1), and thus E (X) = ||A||2F . From (3.7), we see that ||Ax||22 and X
have the same probability distribution, so we focus on understanding X. Consider340

(3.12) Xd ∼
1

d
(X1 + · · ·+Xd) ,

where Xi are independent realizations of X. It is easy to see E
(
Xd

)
= ||A||2F .

From [2], we have the following theorem:

Theorem 3.2 (Chernoff’s Inequality). Given a random variable X, we have

(3.13) P [X ≥ a] ≤ min
t>0

e−ta E
(
etX
)
.345

Here, E
(
etX
)

is the moment generating function of a random variable X. A slight
modification of Theorem 3.2 gives

(3.14) P [X ≤ a] ≤ min
t>0

eta E
(
e−tX

)
.

We can now prove the probability tails of X and Xd decay exponentially away from
||A||2F . Taken together, we have the following theorem:350

Theorem 3.3 (Probabilistic Error Bounds). Given Xd as defined in Eq. (3.12)
with r ≥ 2, the following bounds on the tail probabilities hold:

P
[
Xd ≥ ||A||2F µ

]
≤ exp

(
−dµ

2

)
||A||drF

r∏
k=1

(A′k)
−d

µ > 1

P
[
Xd ≤ ||A||2F µ

]
≤ exp

(
dµ

2

)
||A||drF

r∏
k=1

(A′′k)
−d

µ ∈ [0, 1).(3.15)

355

Here,

||A||2F = σ2
1 + · · ·+ σ2

r

(A′k)
2

= ||A||2F − σ
2
k(3.16)

(A′′k)
2

= ||A||2F + σ2
k.360

We know E
(
Xd

)
= ||A||2F , so µ controls multiplicative deviation above or below the

expectation value. Furthermore, these tail probabilities decay exponentially away from
the expectation value under mild conditions.

Proof. From its definition, X is a linear combination of chi-squared distributions,
so by using properties of the moment generating function we see365

(3.17) MXd
(t) =

r∏
k=1

(
1− 2σ2

k

d
t

)− d
2

.

11

This manuscript is for review purposes only.

By setting t̄ = d
2||A||2F

and a = ||A||2F µ with µ > 1, Theorem 3.2 implies

(3.18) P
[
Xd ≥ ||A||2F µ

]
≤ exp

(
−dµ

2

)
||A||drF

r∏
k=1

(A′k)
−d

µ > 1,

where A′k is defined in Eq. (3.16). In a similar manner, we can obtain the upper
bound370

(3.19) P
[
Xd ≤ ||A||2F µ

]
≤ exp

(
dµ

2

)
||A||drF

r∏
k=1

(A′′k)
−d

µ ∈ [0, 1) .

It is clear that these upper bounds are not optimal and more rigorous analysis would
produce tighter bounds, but we will not investigate this further. The bounds we just
obtained are sufficient for our purposes.

We now determine when Xd has exponentially decaying tail probabilities. For375

µ > 1, we have

P
[
Xd ≥ ||A||2F µ

]
≤ exp

(
−dµ

2

)
||A||drF

r∏
k=1

(A′k)
−d

= exp

[
d

2
{(ν1 + · · ·+ νr)− µ}

]
,(3.20)

where380

(3.21) νk = ln

 1

1− σ2
k

||A||2F

 .
To have exponential decay in probability, we require

(3.22) ν1 + · · ·+ νr < µ .

Because − lnx is convex on (0,∞), we see that for α ∈ (0, 1), we have

(3.23) ln

(
1

1− x

)
≤ x

α
ln

(
1

1− α

)
x ∈ [0, α] .385

Now, we know σk ≤ ||A||2, so we set α =
||A||22
||A||2F

. Combining this with the fact that

ln(1 + x) ≤ x, we see

ν1 + · · ·+ νr ≤
σ2

1

||A||2F

1

α
ln

(
1

1− α

)
+ · · ·+ σ2

r

||A||2F

1

α
ln

(
1

1− α

)
≤ 1

1− α
.(3.24)

390

Thus, we require

(3.25) µ > 1 +
||A||22

||A||2F − ||A||
2
2

in order to have exponentially decaying tail probabilities in d.
The case when µ ∈ [0, 1) is similar, and we obtain exponentially decaying tail

probabilities in d when µ < ln 2.395

12

This manuscript is for review purposes only.

3.5. New Adaptation Algorithm with New Stopping Criteria. Algo-
rithm 3 presents a new approach to adaptive rank determination. In contrast to
Algorithm 2, in Algorithm 3, the rank-revealing factorization is only performed when
the number of sample vectors is guaranteed to be sufficient. This decision criterion is
based on Eq. (3.10) and uses an adaptive blocked implementation.400

We have been unable to find an explicit reference to a relative stopping crite-
rion. From [23, 24] we know that using a relative tolerance for the compression of
off-diagonal blocks leads to a relative error in Frobenius norm for the final computed
HSS approximation. Since this is frequently desired, we use both relative and abso-
lute stopping criteria explicitly (see Line 7 in Algorithm 3). Relative tolerances are405

especially useful if the magnitude of different matrix sub-blocks differ significantly.

Algorithm 3: Adaptive computation of Q, an approximate basis for the
range of the Hankel block A, using the Incrementing strategy.

1 function Q = RS-Incrementing(A, d0, ∆d, εrel, εabs)
2 k ← 1; m← rows(A)

3 R1 ← randn(m, d0)

4 S1 ← AR1

5 {Q,R1} ← QR(S1)

6 while true do
7 k ← k + 1
8 Rk ← randn(m, ∆d)
9 Sk ← ARk // new samples

10 Ŝk ← (I −QQ∗)2Sk // iterated block Gram-Schmidt

11 if (||Ŝk||F /||Sk||F < εrel or ||Ŝk||F /
√

∆d < εabs) then break

12 {Qk, Rk} ← QR(Ŝk)

13 if min(diag(|Rk|))< εabs or min(diag(|Rk|))< εrel|(R1)11| then
break

14 Q← [Q Qk]

15 end
16 {Q, r} ← RRQR([S1 . . . Sk], εrel, εabs)
17 return Q

Additional difficulties arise in the blocked version that do not appear in the single
vector case. Adding single vectors to the basis allows one to always ensures that
each basis vector adds new information. In the blocked case however, Ŝ can become
(numerically) rank-deficient. Therefore, in Algorithm 3, Line 13, we look at the410

diagonal elements of R in order to determine if Ŝ is rank-deficient. If the diagonal
elements of R are less than a specified tolerance (relative or absolute), then we have
complete knowledge of the range space (up to the specified tolerance) and we can
compress the HSS node. Ideally, if we continue sampling the range at this point,
the error will only decrease and while new information is gained, enough information415

is already known to compute the ID. For stringent compression tolerances (such as
εrel ≈ 10−14 in double precision), continuing to compute more random samples would
potentially lead to forming Q which is not orthonormal so that the stopping criterion
is never reached until the maximum allowable samples are computed. When this
happens, Q is no longer an approximation of the range of the Hankel block. This can420

also happen for small εabs tolerances as well; see Section 5.

13

This manuscript is for review purposes only.

In summary, the new stopping criteria is based on the four conditions below
(3.26), i.e. when ||Ŝ||F is small or R is rank-deficient. As soon as any of them are
satisfied, we will compute the interpolative decomposition of the random samples at
that node.425

(3.26)
||Ŝ||F
||S||F

< εrel ,
1√
d
||Ŝ||F < εabs ,

mini
∣∣Rii∣∣
ρ

< εrel , mini
∣∣Rii∣∣ < εabs .

Here, ρ estimates the 2-norm of the random samples in order to quantify when the R
matrices are determined to be rank-deficient. Because the actual computation of this
would be expensive, a few possible choices are |(R1)11|, maxj |(R1)jj |, maxk,j |(Rk)jj |,
or an approximation of ||A||F . All of these values give an estimate of how large430

the diagonal values of R are, although the first two give reasonable estimates with
minimizing communication by only needing to check the diagonal elements of R once.

3.6. Comparison between GEB and HMT. In this section we present a
small set of examples comparing HMT error bound and Gaussian Error Bound (GEB)
applied to low-rank QB approximation. If Q is approximate orthonormal basis for A,435

then a QB factorization is A ≈ Q(Q∗A) = QB [15]. We will compare HMT and GEB
when attempting to solve the low-rank fixed-precision approximation of A with a QB
factorization using block randomized sampling with one pivoted QR factorization at
the end to accurately compute an orthonormal basis for the range space; this happens
during the compression of each matrix sub-block. We are not the first to recognize440

the shortcomings of the HMT error bound; [30] presents an algorithm for solving the
fixed-precision low-rank approximation problem. One downside to that method is that
a good approximation of ||A||F must be known a priori and the method only allows
for approximation down to relative error O(

√
εmach). From the examples presented

here and in Section 5, our method does not appear to have this limitation.445

The test matrices we use in this section are similar to those in [30]. The matrices
all have the SVD A = UΣV ∗, where U and V are matrices with orthonormal columns
and Σ will vary depending on the matrix. The tests are run using double precision with
εmach ≈ 10−16. All of these matrices will have rank r = 100 with A ∈ R1,000×1,000.
We use the following nonzero singular values:450

• Matrix 1: σk = k−2. This matrix is chosen to have singular values that decay
slowly.

• Matrix 2: σk = 2−53(k−1)/100. This matrix is chosen to have singular values
which decay quickly.

• Matrix 3: σk = 100εmach + (1 + 2k−26)−1. This matrix is chosen to have455

singular values with S-decay: they initially hover around 1, quickly decay,
and then hover around 100εmach ≈ 10−14.

All of these matrices are chosen with σ1 ≈ 1. A plot of the singular values are shown
in Figure 4.

We will perform two sets of tests. In the first, we will look at how well we can460

approximate or bound the 2-norm or Frobenius norm of the three matrices. In the
second, we will attempt compute a QB factorization by building up an orthonormal
basis for the range in block form until the stopping criterion determines enough sam-
ples have been computed. At this point, a RRQR factorization (QRCP) will be used
to compute the QB factorization.465

From Lemma 3.1, we can vary α and p. We let α ∈ {2, 5, 10} and chose p smallest
so that α−p ≤ 10−`. To be sure to get a range of probability failures, we looked at
α−p ∈ {10−9, 10−12, 10−15}. From the results in Table 2, we see in every case the

14

This manuscript is for review purposes only.

Fig. 4. Here is a plot of the singular values in of Matrices 1–3 in Section 3.6: Matrix 1 – slow
decay; Matrix 2 – fast decay; Matrix 3 – S-shaped decay.

0 20 40 60 80 10010-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Matrix 1

Matrix 2

Matrix 3

Table 2
Here we present results for computing the upper bound of ||A||2 for Matrices 1–3 based on

Lemma 3.1 for different failure probabilities (columns) and α (rows). p is the smallest integer for
which α−p ≤ 10−`. We performed 10,000 trials and computed the mean (M) and standard deviation
(S). The correct values are ||A||2 ≈ 1.

1E-9 1E-12 1E-15
p M S p M S p M S

Matrix 1
2 30 3.73 0.71 40 3.90 0.70 50 4.04 0.68
5 13 8.02 1.96 18 8.55 1.89 22 8.87 1.85
10 9 14.9 4.1 12 15.8 3.9 15 16.5 3.9

Matrix 2
2 30 4.11 0.66 40 4.26 0.64 50 4.38 0.63
5 13 9.12 1.77 18 9.58 1.72 22 9.85 1.69
10 9 17.2 3.6 12 18.0 3.6 15 18.6 3.5

Matrix 3
2 30 10.07 0.60 40 10.22 0.58 50 10.33 0.56
5 13 24.1 1.7 18 24.5 1.6 22 24.8 1.6
10 9 47.1 3.5 12 47.9 3.4 15 48.6 3.3

average value for the 2-norm upper bound is always at least 3x larger than the actual
value (||A||2 ≈ 1), and frequently is 10x larger. If one is wanting a good estimate of470

the error, and not an overestimate, this will not be useful. We contrast this with the
accurate results seen in Table 3 when we attempt to compute the F-norm of Matrices
1–3. Using 8 random samples gives a close F-norm estimate, although using more
samples results in a better approximation. In each case, we computed the average
over 10,000 trials to compute the mean and standard deviation.475

For the second test, we performed the adaptive QB compression algorithm 1,000
times and averaged the final 2-norm error of the approximation and the total samples
used. We built up the approximation in blocks of 16 random samples and stopped
based on the HMT stopping criterion (we chose α = 5 and used 13 samples, so
the failure probability was less than 10−9) or Eq. (3.26) (we set εabs = εrel because480

||A||2 ≈ 1). The results are shown in Table 4 for Matrices 1–3; the different matrices
were compressed to various tolerances. In every instance, more random samples are
used in HMT than the new stopping criterion, while the 2-norm error is below the
desired tolerance in each case (both HMT and GEB).

15

This manuscript is for review purposes only.

Table 3
Here we present results for computing ||A||F for Matrices 1–3 using Eq. (3.10) (GEB). We

performed 10,000 trials and computed the mean (M) and standard deviation (S) for samples d ∈
{8, 16, 32, 64}. The true F-norm values are listed.

8 16 32 64
True M S M S M S M S

Matrix 1 1.040 1.012 0.233 1.029 0.167 1.036 0.119 1.038 0.085
Matrix 2 1.386 1.367 0.200 1.378 0.142 1.383 0.101 1.384 0.073
Matrix 3 4.905 4.903 0.244 4.901 0.172 4.903 0.122 4.904 0.087

Table 4
Here are QB approximation results for Matrices 1–3. For each absolute error tolerance, we

averaged 1,000 trials to determine the average error (Err) and average samples used (Samp) in order
to compute a QB approximation once we used either the HMT stopping criterion or new stopping
criterion to determine when we had approximated the range. Random samples were computed in
blocks of 16. In the case when we used 200+ samples, we were not able to meet the HMT stopping
criterion and used the maximum of 200 random samples.

1E-1 1E-2 1E-3 1E-4
Matrix 1 Err Samp Err Samp Err Samp Err Samp

HMT 4E-2 42 3E-3 92 3E-4 128 2E-15 128
GEB 4E-2 32 5E-3 32 4E-4 80 2E-15 112

1E-3 1E-6 1E-9 1E-12
Matrix 2 Err Samp Err Samp Err Samp Err Samp

HMT 4E-4 48 4E-7 76 4E-10 96 4E-13 112
GEB 6E-4 32 7E-7 48 1E-9 65 7E-13 94

1E-3 1E-6 1E-9 1E-12
Matrix 3 Err Samp Err Samp Err Samp Err Samp

HMT 4E-4 64 3E-7 80 4E-10 80 3E-13 200+
GEB 5E-4 48 9E-7 59 6E-10 64 6E-13 80

While these two tests were performed on only a few matrices, it lends support to485

the fact that the new stopping criterion is useful for adaptive compression algorithms.
Numerical results for HSS compression can be found in Section 5, where we also see
favorable results.

3.7. Flop Counts: Doubling vs. Incrementing. First, note that the full QR
factorization Q = QR(A) for A ∈ Rm×n (with m� n) performs 2mn2 floating point490

operations (flops). Assuming the numerical rank of A is r, then the rank-revealing QR
factorization Q = RRQR(A) requires 2mnr flops. Given S ∈ Rm×r and X ∈ Rm×d,
the projection S ← (I−XX∗)S requires 4mdr flops (ignoring a lower order mr term),
and twice that for the iterated (2×) block Gram-Schmidt step.

In the Doubling strategy, Algorithm 2, at step k, 2k−1d0 + p random vectors495

have already been used, where p is a small oversampling parameter (e.g. p = 10).
Then, 2k−1d0 new random samples are added to the sample matrix Sk, leading to
2kd0 + p columns for Sk. Except for the final step, the operation Qk ← RRQR(Sk)
costs ∼ 2m(2kd0)2 = 2m4kd2

0 flops. The total number of steps needed to reach the

final rank r is N ∼ log(r/d0). Summing the costs of N steps: 2md2
0

∑N
k=1 4k, we500

obtain the total flop count ∼ 8
3mr

2. In the final step, the RRQR terminates early
when the tolerance is satisfied at rank r, but the number of sample vectors can be up

16

This manuscript is for review purposes only.

to ∼ 2r in the worst case, with the RRQR cost ∼ 2m(2r)r = 4mr2. Adding together,
the total flop count is ∼ 20

3 mr
2.

The Incrementing strategy, Algorithm 3, starts with d0 random samples and505

adds ∆d new random vectors at each step. At step k we have the sample matrix
S = [S1 · · · Sk], and the orthogonal matrix Q = [Q1 · · · Qk−1]. We first compute
the orthogonal projection Ŝk ← (I − QQ∗)2Sk, which costs 8m(k − 1)∆d2 flops,
followed by Qk ← QR(Ŝk), which costs 2m∆d2, and then append Qk to Q. The
total number of steps needed to reach the final rank r is N ∼ (r − d0)/∆d ∼ r/∆d.510

Summing the cost of N steps: 8m∆d2∑N
k=1(k − 1), gives the overall cost ∼ 4mr2.

The additional cost of the final step RRQR is ∼ 2mr2. Adding together, the total
flop count is ∼ 6mr2.

From the above analysis, we see that the Doubling scheme may require more
flops mainly due to the potentially large sampling size in the final step. Doubling515

also involves a larger amount of data movement due to the column pivoting needed
in each step of RRQR. This manifests itself in the communication cost of the parallel
algorithm, which will be analyzed in Section 4.3.

4. Parallel Algorithm. The parallel algorithm uses the same parallelization
framework as described in [18, Section 3]. The data partitioning and layout is based520

on the HSS tree, following a proportional mapping of subtrees to subsets of processes
in a top-down traversal. The HSS tree can be specified by the user. The tree should be
binary, but can be imbalanced and does not need to be complete. For HSS nodes that
are mapped to multiple processors, the matrices stored at those nodes are distributed
in 2D block-cyclic (ScaLAPACK style) layout.525

4.1. Partially Matrix-Free Interface. The randomized HSS compression al-
gorithm is so-called “partially” matrix-free. This means it does not require every
single element of the input matrix A. What is required is a routine to perform the
random sampling S = AR, as well as a way to extract sub-blocks from A. Recall
from Section 2 that at the leafs, Dφ = A(Iφ, Iφ). Furthermore, due to the use of530

interpolative decompositions, Bν1,ν2 = A(Jrν1 , J
c
ν2), is a sub-block of A.

If the input matrix A is given as an explicit dense matrix, the random sampling
S = AR is performed in parallel using the PBLAS routine PDGEMM with a 2D block-
cyclic data layout for A, S and R. In this case, the input matrix A is also redistributed
– with a single collective MPI call – from the 2D block-cyclic layout to a layout535

corresponding to the HSS tree, such that extraction of sub-blocks for Dφ and Bν1,ν2
does not require communication between otherwise independent HSS subtrees.

Instead of forming an explicit dense matrix A, the user can also specify multi-
plication and element extraction routines. The multiplication routine computes, for
a given random matrix R, the random sample matrices Sr = AR and Sc = A∗R.540

This is the more interesting use case, since for certain classes of structured matri-
ces a fast multiplication algorithm is available; consider for instance sparse matrices,
low-rank and hierarchical matrices, combinations of sparse and low-rank matrices or
operators which can be applied using the fast Fourier transform or similar techniques.
The element extraction routine should be able to return matrix sub-blocks A(I, J),545

defined by row and column index sets I and J respectively. Depending on how the
user data is distributed, computing matrix elements might involve communication
between all processes. In this case, the HSS compression traverses the tree level by
level (from the leafs to the root), with synchronization at each level, and element
extraction for all blocks Dφ and Bν1,ν2 on the same level, performed simultaneously550

in order to aggregate communication messages and minimize communication latency.

17

This manuscript is for review purposes only.

If no communication is required for element extraction, then independent subtrees
can be compressed concurrently.

4.2. Parallel Restart. During factorization, nodes can be in either UNTOUCHED
(U), PARTIALLY COMPRESSED (PC) or COMPRESSED (C) state. A node can not start555

compression until both its children are in the C state. If during HSS compression,
a process encounters an internal HSS node with children that are not both in the C

state, this process stops the HSS tree traversal. Independent subtrees proceed with
compression if they can be compressed successfully with the current number of random
samples. This can lead to load imbalances if the HSS tree, or the off-diagonal block560

ranks, are imbalanced. Eventually, all processes synchronize to perform the random
sampling in parallel. Hence there is some overhead associated with restarting the HSS
compression algorithm to add more random samples. In addition, random sampling
is more efficient, in terms of floating point throughput, when performed with more
random vectors at once.565

4.3. Communication Cost in Parallel Adaptation. In [18], we analyzed the
communication cost of the entire parallel HSS algorithm, assuming no adaptivity. In
this section, we will focus only on the cost of adaptivity, using either Doubling or
Incrementing strategy.

Consider the current node of the HSS tree that requires adaptation (called “PC”570

node). Assume the final rank is r, the row dimension of the sample matrix is m,
and P processes work on this node in parallel. We use the pair [#messages, #words]
to denote the communication cost which counts the number of messages and the
number of words transferred for a given operation, typically along the critical path.
A broadcast of W words among P processes has the cost [logP , W logP]. This575

assumes that broadcast follows a tree-based implementation: there are logP steps on
the critical path (any branch of the tree) and W words are transferred at each step,
yielding logP messages and w logP words.

Both Doubling and Incrementing strategies need a sampling phase. In the
worst case, the Doubling scheme may use up to 2r sample vectors while r vec-580

tors are sufficient for the Incrementing scheme. We use the PxGEMM routine from
PBLAS to compute the matrix-matrix product. The implementation uses SUMMA
algorithm [20] and can be modeled, asymptotically, as [n log p, mn√p] for the product

matrix S of dimension m×n. This relies on the fact that, when computing a product
S = AR, the PxGEMM routine selects an algorithm that reduces communication based585

on the size of the operands A, S, R. In our case, matrix A is the largest operand, so
PxGEMM chooses an algorithm that communicates only S and R. The selection strategy
is described in [9].

For a rectangular matrix of dimension m× n, assuming m/P ≥ n, the communi-
cation cost for non-pivoted QR factorization (PDGEQRF in ScaLAPACK) is590

[2n logP, mn√
P

logP] [1, 5]. For QR factorization with column pivoting, i.e., PDGEQPF

in ScaLAPACK, additional communication is needed at each step to compute the
column norm and permutes the column with the maximum norm to the leading po-
sition. Computing the maximum column norm needs two reductions along row and
column dimensions, costing 2 log

√
P = O(logP) messages. The additional commu-595

nication volume is of lower order term. In total, PDGEQPF has communication cost
[3n logP, mn√

P
logP]

In the Doubling strategy (Algorithm 2), we need s = log r
d0

steps of augmenta-
tions to reach the final rank r. At the k-th step, we perform RRQR (ID) for Sk of

18

This manuscript is for review purposes only.

dimension m × d02k, using PDGEQPF. The total communication cost of s steps sums600

up to:

s∑
k=0

[
3d02k logP,

m(d02k)√
P

logP

]
=

[
3d0 logP

s∑
k=0

2k,
md0√
P

logP

s∑
k=0

2k

]
(4.1)

=

[
3d02s+1 logP,

md02s+1

√
P

logP

]
=

[
6r logP,

2mr√
P

logP

]
.

In the final step, we may need to perform a RRQR on a sample matrix as large605

as m × (2r), which has the communication cost
[
3(2r) logP, m(2r)√

P
logP

]
. Adding

together, the total communication cost is
[
12r logP, 4mr√

P
logP

]
.

In the Incrementing strategy (Algorithm 3), we need s = r
∆d steps of increments

to reach the final rank r. At the k-th step, two costly operations are the block Gram-
Schmidt and block QR (Lines 10 and 12 respectively in Algorithm 3).610

Each Gram-Schmidt orthogonalization step requires two matrix multiplications;
we use PDGEMM in PBLAS, which uses a pipelined SUMMA algorithm [20]. The Q
matrix is of dimension m × d, where d = ∆d(k − 1). The Sk matrix is of dimension

m×∆d. The communication cost for Q∗ · Sk is [∆d, ∆d(m+d)√
P

]. The cost for another

multiplication Q · (Q∗ · Sk) is the same. Since we do Gram-Schmidt twice, the total615

communication cost of s steps sums up to:

(4.2) 2 · 2
s∑

k=1

[
∆d,

∆d(m+ d)√
P

]
= 4 ·

[
r,

s∑
k=1

m∆d+ ∆d2 · k√
P

]
=

[
4r, 4

mr + r2/2√
P

]
.

Next, we perform QR for Ŝk of dimension m × ∆d, using PDGEQRF. The total
communication cost of s steps sums up to:

(4.3)

s∑
k=1

[
2 ∆d logP,

m∆d√
P

logP

]
=

[
2r logP,

mr√
P

logP

]
.620

Comparing Eqs. (4.2) and (4.3), we see that the communication in Gram-Schmidt
is a lower order term compared to the QR factorizations, therefore we ignore it. In a
final step (Line 16 in Algorithm 3) we perform a large RRQR, with communication
cost [3r logP, mr√

P
logP]. This is added into Eq. (4.3). The leading cost of the In-

crementing strategy is [5r logP, 2mr√
P

logP]. Compared to the Doubling strategy,625

the Incrementing strategy requires both fewer messages and smaller communication
volume.

Table 5 summarizes the computational costs of the old Doubling algorithm and
the new Incrementing algorithm. As can be seen, the Incrementing algorithm is
superior to the Doubling algorithm in both flop count and communication count.630

Within each algorithm, the sampling stage (matrix-matrix multiplication) incurs fewer
messages and asymptotically lower communication volume than the RRQR stage.

5. Numerical Experiments.

5.1. Experiments Setup. Numerical experiments were conducted using the
Cori supercomputer at NERSC. Each node has two sockets, each socket is populated635

with a 16-core Intel c© XeonTM Processor E5-2698 v3 (“Haswell”) at 2.3 GHz and
128 GB of RAM memory. We used STRUMPACK v2.2 linked with Intel MKL and
compiled with the Intel compilers version 17.0.1.132 in Release mode.

19

This manuscript is for review purposes only.

Table 5
Algorithmic characteristics of Doubling and Incrementing strategies. All the counts are

in big-O sense. Here, we only list the costs of the two most expensive phases of the algorithms:
sampling and RRQR.

Flop count [#messages, #words] Stopping criteria
Doubling

→ sampling 4mnr
[
2r logP, 2mr√

P

]
→ RRQR 20

3
mr2

[
12r logP, 4mr√

P
logP

]
Eq. (3.2)

Incrementing

→ sampling 2mnr
[
r logP, mr√

P

]
→ RRQR 6mr2 [5r logP, 2mr√

P
logP] Eq. (3.26)

5.2. Test Problems. The first set of numerical experiments depicts six dense
linear systems from a variety of applications in double precision (dp) and single-640

precision (sp). A complete description of the problems under consideration can be
found in [18], with the exception of the first experiment at Table 6. The first experi-
ment is the parameterized example αI + βUDV ∗. U and V are orthogonal matrices
of rank r and are distributed in order to allow for fast element extraction and scalable
tests, and D is either the identity matrix or a diagonal matrix with decaying entries,645

giving us a matrix that has off-diagonal blocks with either constant or decaying singu-
lar values. In this particular case we set Dk,k = 2−53(k−1)/`, such that ` = 500 is the
double precision numerical rank. Each experiment is performed at three increasingly
tighter approximation tolerances, while we report on the three main stages involved in
the solution of the linear system: Approximation –compression– of the dense matrix,650

factorization, and solve. The metrics of interest at each stage are memory consump-
tion, flops, and max wall-clock time from all MPI ranks.

Numerical experiments (Table 6) show that compression takes the most flops
and time, followed by a ULV factorization and solve [4], which are much cheaper in
comparison. Nonetheless, as we increase the accuracy of the approximation, we notice655

a moderate increase in the wall-clock time in all three stages.

5.3. Performance Breakdown. The second set of numerical experiments illus-
trates the new Incrementing adaptive technique in comparison with the traditional
Doubling adaptive technique that relies on RRQR with column pivoting. Table 7
shows the detailed breakdown of the flops and time in different stages of the two660

algorithms for the BEM Sphere linear system with d0 = 128 and ∆d = 256, and using
p = 1, 024 cores.

The first observation is that in both Incrementing and Doubling, nearly 90%
of the flops are in the initial sampling step. On the other hand, since the sampling
step involves highly efficient matrix-matrix multiplication, the percentage time spent665

at this step is under 50%.
The second most costly step is ID, i.e., RRQR. It has less than 5% of the flops, but

takes 28% and 37% time respectively. This shows that the data movement associated
with column pivoting is expensive.

Using the same tolerance 1E − 3, the Incrementing strategy achieves sufficient670

accuracy, while the Doubling strategy does more adaptations, leading to higher rank
and the accuracy level more than needed, and taking longer time.

5.4. Adaptivity Performance.

20

This manuscript is for review purposes only.

Table 6
Solving linear systems from different applications. The largest experiments (N = 500, 000) used

p = 1, 024 cores, whereas the rest of the experiments used p = 64 cores. The absolute tolerance εabs
is kept constant at 1E − 08. All tests use the Incrementing adaptive strategy.

Matrix N εrel
HSS compression ULV ∗ factorization Solve

HSS

rank

Mem

(MB)

Flops

×1012

Time

(s)

Mem

(MB)

Flops

×1012

Time

(s)

Flops

×109

Time

(s)

αI + βUDV ∗

(dp)
500k

1E-02 28 356 0.01 4.22 559 0.01 0.17 0.19 0.10

1E-06 59 671 0.03 4.71 1343 0.03 0.18 0.45 0.14

1E-10 73 868 0.06 4.93 1927 0.06 0.24 0.64 0.15

Toeplitz

(dp)
500k

1E-02 2 40 0.70 1.50 64 0.001 0.11 0.02 0.06

1E-06 2 40 0.70 1.52 64 0.001 0.11 0.02 0.08

1E-10 2 40 0.70 1.62 64 0.001 0.11 0.02 0.09

Quantum

Chem. (dp)
500k

1E-02 12 235 34.60 9.26 383 0.01 0.11 0.12 0.09

1E-06 75 308 34.61 9.51 486 0.01 0.22 0.16 0.09

1E-10 113 377 34.62 9.66 615 0.01 0.28 0.21 0.09

BEM

Acoustic (dp)
10k

1E-02 723 363 2.49 6.10 770 0.40 0.91 0.54 0.09

1E-06 1249 607 5.12 12.72 1304 1.12 1.91 0.91 0.17

1E-10 1332 631 5.20 12.90 1366 1.23 1.97 0.95 0.27

BEM

Sphere (sp)
27k

1E-01 500 159 9.77 11.16 364 0.13 0.55 0.47 0.09

1E-03 1491 433 26.17 29.85 1089 1.20 1.91 1.39 0.16

1E-05 2159 795 46.97 60.07 1908 3.57 4.63 2.51 0.20

Schur100

(sp)
10k

1E-01 283 41 0.05 1.37 93 0.02 0.20 0.12 0.053

1E-03 429 82 0.20 2.26 195 0.08 0.32 0.26 0.055

1E-05 490 109 0.34 2.49 255 0.14 0.41 0.34 0.056

Table 7
Performance breakdown. “Compute Samples” and “Reduce Samples” are defined in Table 1.

Flops ×1012 (% Flops) Time (% Time)
Incrementing Doubling Incrementing Doubling

Compression 29.75 56.07 5.50 8.24
HSS Rank 1480 1945

Relative error 2.40E-03 2.68E-04
→ Random samp. 26.61 (89.5%) 50.22 (89.6%) 2.40 (43.5%) 3.93 (47.8%)
→ ID 0.85 (2.9%) 2.73 (4.9%) 1.54 (27.9%) 3.04 (36.9%)
→ QR 0.51 (1.7%) - 0.52 (9.5%) -
→ Orthogonalize 0.61 (2.1%) - 0.18 (3.3%) -
→ Comp. samples 1.08 (3.6%) 2.89 (5.2%) 0.55 (10.0%) 0.86 (10.4%)
→ Red. samples 0.09 (0.3%) 0.23 (0.4%) 0.32 (5.8%) 0.41 (5.0%)
Factorization 1.29 2.67 1.98 2.83
Solve 0.001 0.002 0.14 0.15

5.4.1. Evaluation of New Stopping Criterion. This section considers the
parametrized problem αI + βUDV ∗ with N = 20, 000, α = 1, β = 1 and Dk,k =675

2−53(k−1)/`, with ` = 200, using p = 256 cores. We provide a comparison with the
classical stopping criterion proposed in HMT [12], as shown in Table 8. In our strategy,
we vary both εrel and εabs. HMT only works with absolute tolerance, so we put it in
the last row of the table.

It can be seen that with our new criterion, when we set εrel and εabs to be the680

same, the approximation accuracy is at the same level of the requested tolerance (see
the diagonal of Table 8).

With the HMT criterion, however, since it uses an upper bound as a termination

21

This manuscript is for review purposes only.

Table 8
New stopping criterion and HMT criterion [12]. Each entry has two numbers: one is the

relative error of the HSS approximation given by ||A−HSS · I||F /||A||F , another is the HSS rank.

εabs
1E-02 1E-06 1E-10 1E-14

εrel

1E-02 1.05E-02/43 1.05E-02/43 1.05E-02/43 1.05E-02/43
1E-06 1.82E-05/77 1.82E-05/77 1.82E-05/77 1.82E-05/77
1E-10 4.91E-06/87 5.18E-09/127 5.18E-09/127 5.18E-09/127
1E-14 4.91E-06/87 6.68E-10/138 6.58E-13/187 6.58E-13/187

HMT 3.14E-06/87 3.50E-10/139 3.61E-14/192 5.53E-15/5,000+

metric, this in practice can be pessimistic, delivering an approximation error that is
usually smaller than requested, at the expense of large ranks. From a user point of685

view it is difficult to choose a proper compression tolerance.
As a result, when the given tolerance is close to machine precision, HMT criterion

requires many steps, as depicted in the bottom right corner of Table 8, where the
algorithm terminated not due to achieving εabs, but because it reached the maximum
allowable rank (5,000 in this case). Thus, there will be some absolute tolerances which690

cannot be satisfied, yet it is not clear how small this tolerance is or how to determine
it before attempting compression. Furthermore, it is not clear how to determine when
this happens during compression, either. A relative tolerance is much easier to set
and frequently of most practical interest.

5.4.2. Evaluation of Adaptivity Cost. In order to assess the cost associated695

with our adaptivity strategy, we performed the following experiments with two ma-
trices for which we know the HSS ranks. Thus, we can choose a precise number of
random vectors, so that there is no need for adaptation. This should be the fastest
possible case, and we denote this as “known-rank”. Suppose we do not have an adap-
tive implementation, the best a user can do is to restart compression from scratch700

(unable to reuse the partial compression results) when the final residual is large, man-
ually increasing the number of random vectors. We denote this as “hard-restart”. In
between these two modes is our adaptive strategy Incrementing.

The first matrix is I + UDV ∗, where Dk,k = 2−53(k−1)/`, ` = 1200, N = 60, 000.
The second matrix is the BEM Acoustic problem, with N = 10, 000. Table 9 shows705

the compression times with different configurations of d0 and ∆d. It is clear that our
adaptive strategy is nearly as fast as the fastest “known-rank” case, and is up to 2.7x
faster than the “hard-restart”.

5.5. Scalability. The last numerical experiment depicts two strong scaling stud-
ies, as shown in Figure 5. The first test problem depicts the Quantum Chemistry dense710

linear system of size N = 300, 000 and HSS relative approximation error of 1E−2 and
HSS leaf size of 128. This matrix is amenable to efficient rank compression, resulting
in an HSS rank of 12. In contrast, for a problem with larger numerical rank and
tighter numerical accuracy, we show the scalability from the parametrized test case
αI + βUDV ∗ with N = 500, 000, α = 1, β = 1 and Dk,k = 2−53(k−1)/`, with ` = 500.715

The resulting HSS rank is ` = 480 at an HSS relative approximation tolerance of
1E − 14 with HSS leaf size of 128. The first example scales better since its HSS rank
is small and there is no need for adaptation, whereas the second example requires a
few steps for rank adaptation, given that its HSS rank is quite large.

22

This manuscript is for review purposes only.

Table 9
Evaluation of adaptivity cost. For all the tests, we use εabs = εrel = 1E−14, We use 1, 024 cores

for the first problem and 64 cores for the second one. With each strategy, we report the compression
time (Compr. time), HSS rank, and the number of adaptation steps needed (# adapt.)

“Known-rank” Incrementing “Hard-restart”

I + UDV ∗

d0 = 128
∆d = 64

Compr. time 36.5 37.2 100.3
HSS-rank 1162 1267 1165
Num. adapt. 0 17 4

I + UDV ∗

d0 = 512
∆d = 128

Compr. time 35.7 36.6 54.6
HSS-rank 1162 1194 1161
adapt. 0 5 2

BEM Acoustics
d0 = 128
∆d = 64

Compr. time 11.15 12.5 18.3
HSS-rank 1264 1334 1348
Adapt. 0 24 4

BEM Sphere
d0 = 512
∆d = 128

Compr. time 11.9 10.5 18.9
HSS-rank 1276 1352 1362
Adapt. 0 9 2

26 27 28 29 210 211 212

101

102

Processors

T
ot
al

ti
m
e
(s
)

Quantum Chemistry
αI + βUDV ∗

Fig. 5. Strong scaling experiment up to p = 4, 096 cores of the Cori supercomputer. The
Quantum Chemistry problem has N = 300, 000 and HSS rank of 12, and the parametrized problem
has N = 500, 000 and HSS rank of 480.

6. Conclusion. We presented two new stopping criteria which allow to accu-720

rately predict the quality of low-rank approximations computed using randomized
sampling. This helps reduce the total number of random samples as well as reduce
the communication cost. We apply these adaptive randomized sampling schemes for
the construction of hierarchically semi-separable matrices. Compared to previous
adaptive randomized HSS compression approaches, our new methods are more rigor-725

ous and include both absolute and relative stopping criteria. The numerical examples
show faster compression time for the new incremental adaptive strategy compared to
previous methods. Randomized numerical linear algebra methods are very interesting
from a theoretical standpoint. However, writing robust and efficient, parallel software
is far from trivial. In this paper we have focused on a number of practical issues re-730

garding the adaptive compression of HSS matrices, leading to faster compression, with
guaranteed accuracy. The methods shown here should carry over to other structured
matrix representations.

Acknowledgments. This research was supported in part by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy735

Office of Science and the National Nuclear Security Administration, and in part by the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing

23

This manuscript is for review purposes only.

Research, Scientific Discovery through Advanced Computing (SciDAC) program.
This research used resources of the National Energy Research Scientific Comput-

ing Center (NERSC), a U.S. Department of Energy Office of Science User Facility740

operated under Contract No. DE-AC02-05CH11231.
We thank Guillaume Sylvand (Airbus) for providing us with the BEM test prob-

lems. We thank Daniel Haxton (LBNL) and Jeremiah Jones (Arizona State Univer-
sity) for providing us with the Quantum Chemistry test problem.

We thank Yang Liu (LBNL), Wissam Sid Lakhdar (LBNL), and Liza Rebrova745

(UCLA) for the insightful discussions throughout this research.

REFERENCES

[1] L. S. Blackford, J. Choi, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLA-
PACK Users’ Guide, SIAM, Philadelphia, 1997.750

[2] P. Brémaud, Discrete Probability Models and Methods: Probability on Graphs and Trees,
Markov Chains and Random Fields, Entropy and Coding, Probability Theory and Stochas-
tic Modelling, Springer International Publishing, 2017.

[3] S. Chandrasekaran, M. Gu, and W. Lyons, A fast adaptive solver for hierarchically semisep-
arable representations, CALCOLO, 42 (2005), pp. 171–185.755

[4] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM Journal on Matrix Analysis and Applications, 28
(2006), pp. 603–622.

[5] J. Demmel, L. Grigori, M. Hoemmen, , and J. Langou, Communication-optimal Parallel
and Sequential QR and LU Factorizations, SIAM Journal on Scientific Computing, 34760
(2012), pp. A206–A239.

[6] P. Ghysels, X. S. Li, C. Gorman, and F.-H. Rouet, A robust parallel preconditioner for in-
definite systems using hierarchical matrices and randomized sampling, in Parallel and Dis-
tributed Processing Symposium (IPDPS), 2017 IEEE International, IEEE, 2017, pp. 897–
906.765

[7] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov, An efficient multi-core
implementation of a novel HSS-structured multifrontal solver using randomized sampling,
SIAM Journal on Scientific Computing, 38 (2016), pp. 358–384.

[8] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM Journal on Scientific Computing, 17 (1996), pp. 848–869.770

[9] J. Gunnels, C. Lin, G. Morrow, and R. Van De Geijn, A flexible class of parallel ma-
trix multiplication algorithms, in Proceedings of the First Merged International Parallel
Processing Symposium and Symposium on Parallel and Distributed Processing, Orlando,
1998, IEEE, pp. 110–116.

[10] W. Hackbusch and S. Börm, Data-sparse Approximation by Adaptive H2-Matrices, Comput-775
ing, 69 (2002), pp. 1–35.

[11] W. Hackbusch and B. N. Khoromskij, A Sparse H-Matrix Arithmetic., Computing, 64
(2000), pp. 21–47.

[12] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53780
(2011), pp. 217–288.

[13] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from
matrix–vector multiplication, Journal of Computational Physics, 230 (2011), pp. 4071–
4087.

[14] X. Liu, J. Xia, and M. V. de Hoop, Parallel Randomized and Matrix-Free Direct Solvers785
for Large Structured Dense Linear Systems, SIAM Journal on Scientific Computing, 38
(2016), pp. S508–S538.

[15] P. Martinsson and S. Voronin, A randomized blocked algorithm for efficiently comput-
ing rank-revealing factorizations of matrices, SIAM Journal on Scientific Computing,
38 (2016), pp. S485–S507, https://doi.org/10.1137/15M1026080, https://doi.org/10.1137/790
15M1026080, https://arxiv.org/abs/https://doi.org/10.1137/15M1026080.

[16] P.-G. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable
representation of a matrix, SIAM Journal on Matrix Analysis and Applications, 32 (2011),
pp. 1251–1274.

24

This manuscript is for review purposes only.

https://doi.org/10.1137/15M1026080
https://doi.org/10.1137/15M1026080
https://doi.org/10.1137/15M1026080
https://doi.org/10.1137/15M1026080
https://arxiv.org/abs/https://doi.org/10.1137/15M1026080

[17] Å. Björck, Numerics of Gram-Schmidt orthogonalization, Linear Algebra and its Applications,795
197-198 (1994), pp. 297 – 316.

[18] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov, A distributed-memory package for dense
Hierarchically Semi-Separable matrix computations using randomization, ACM Transac-
tions on Mathematical Software, 42 (2016).

[19] G. Stewart, Block Gram-Schmidt Orthogonalization, SIAM Journal on Scientific Computing,800
31 (2008), pp. 761–775.

[20] R. A. van de Geijn and J. Watts, SUMMA: Scalable universal matrix multiplication algo-
rithm, Concurrency Practice and Experience, 9 (1997), pp. 255–274.

[21] J. Vogel, J. Xia, S. Cauley, and V. Balakrishnan, Superfast divide-and-conquer method
and perturbation analysis for structured eigenvalue solutions, SIAM Journal on Scientific805
Computing, 38 (2016), pp. A1358–A1382.

[22] S. Wang, X. S. Li, J. Xia, Y. Situ, and M. V. De Hoop, Efficient scalable algorithms for
solving dense linear systems with hierarchically semiseparable structures, SIAM Journal
on Scientific Computing, 35 (2013), pp. C519–C544.

[23] Y. Xi and J. Xia, On the Stability of Some Hierarchical Rank Structured Matrix Algorithms,810
SIAM Journal on Matrix Analysis and Applications, 37 (2016), pp. 1279–1303.

[24] Y. Xi, J. Xia, S. Cauley, and V. Balakrishnan, Superfast and Stable Structured Solvers for
Toeplitz Least Squares via Randomized Sampling, SIAM Journal on Matrix Analysis and
Applications, 35 (2014), pp. 44–72.

[25] Y. Xi, J. Xia, and R. Chan, A fast randomized eigensolver with structured LDL factorization815
update, SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 974–996.

[26] J. Xia, Randomized sparse direct solvers, SIAM Journal on Matrix Analysis and Applications,
34 (2013), pp. 197–227.

[27] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numerical Linear Algebra with Applications, 17 (2010), pp. 953–976.820

[28] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast Multifrontal Method for Large
Structured Linear Systems of Equations, SIAM Journal on Matrix Analysis and Applica-
tions, 31 (2010), pp. 1382–1411.

[29] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear systems via random-
ized sampling, SIAM Journal on Matrix Analysis and Applications, 33 (2012), pp. 837–858.825

[30] W. Yu, Y. Gu, and Y. Li, Efficient randomized algorithms for the fixed-precision low-
rank matrix approximation, SIAM Journal on Matrix Analysis and Applications, 39
(2018), pp. 1339–1359, https://doi.org/10.1137/17M1141977, https://doi.org/10.1137/
17M1141977, https://arxiv.org/abs/https://doi.org/10.1137/17M1141977.

25

This manuscript is for review purposes only.

https://doi.org/10.1137/17M1141977
https://doi.org/10.1137/17M1141977
https://doi.org/10.1137/17M1141977
https://doi.org/10.1137/17M1141977
https://arxiv.org/abs/https://doi.org/10.1137/17M1141977

	Introduction
	Hierarchically Semi-Separable Matrices and Randomized Construction
	Adaptive Randomized Sampling
	Previous algorithms
	Doubling Strategy with Oversampling

	Blocked Incrementing Strategy
	Need for New Stopping Criteria for Incrementing Adaptation
	Mathematical Theory for the New Error Bound
	New Adaptation Algorithm with New Stopping Criteria
	Comparison between GEB and HMT
	Flop Counts: Doubling vs. Incrementing

	Parallel Algorithm
	Partially Matrix-Free Interface
	Parallel Restart
	Communication Cost in Parallel Adaptation

	Numerical Experiments
	Experiments Setup
	Test Problems
	Performance Breakdown
	Adaptivity Performance
	Evaluation of New Stopping Criterion
	Evaluation of Adaptivity Cost

	Scalability

	Conclusion
	References

