
ar
X

iv
:0

90
4.

46
15

v1
  [

cs
.D

S]
  2

9 
A

pr
 2

00
9

Dynami FTSS in Asynhronous Systems: the Case of UnisonSwan Dubois∗ Maria Gradinariu Potop-Butuaru† Sébastien Tixeuil‡AbstratDistributed fault-tolerane an mask the e�et of a limited number of permanent faults,while self-stabilization provides forward reovery after an arbitrary number of transient faulthit the system. FTSS protools ombine the best of both worlds sine they are simultaneouslyfault-tolerant and self-stabilizing. To date, FTSS solutions either onsider stati (i.e. �xedpoint) tasks, or assume synhronous sheduling of the system omponents.In this paper, we present the �rst study of dynami tasks in asynhronous systems, onsid-ering the unison problem as a benhmark. Unison an be seen as a loal lok synhronizationproblem as neighbors must maintain digital loks at most one time unit away from eah other,and inrement their own lok value in�nitely often. We present many impossibility results forthis di�ult problem and propose a FTSS solution when the problem is solvable that exhibitsoptimal fault ontainment.
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1 IntrodutionThe advent of ubiquitous large-sale distributed systems advoates that tolerane to variouskinds of faults and hazards must be inluded from the very early design of suh systems. Self-stabilization [8, 10℄ is a versatile tehnique that permits forward reovery from any kind oftransient fault, while Fault-tolerane [14℄ is traditionally used to mask the e�et of a limitednumber of permanent faults. Making distributed systems tolerant to both transient and per-manent faults is appealing yet proved di�ult [15, 1, 2℄ as impossibility results are expeted inmany ases.The seminal works of [1, 15℄ de�ne FTSS protools as protools that are both fault tolerantand self-stabilizing, i.e. able to tolerate a few rash faults as well as arbitrary initial mem-ory orruption. In [1℄, impossibility results for size omputation and eletion in asynhronoussystems are presented, while unique naming is proved possible. In [15℄, a general transformeris presented for synhronous systems, as well as positive results with failure detetors. Thetransformer of [15℄ was proved impossible to transpose to asynhronous systems in [2℄ due tothe impossibility of tight synhronization in the FTSS ontext. For loal tasks (i.e. tasks whoseorretness an be heked loally, suh as vertex oloring), the notion of strit stabilization wasproposed [21, 19℄. Strit stabilization guarantees that there exists a ontainment radius outsidewhih the e�et of permanent faults is masked, provided that the problem spei�ation makesit possible to break the ausality hain that is aused by the faults.It turns out that FTSS possibility results in fully asynhronous systems known to date arerestrited to stati tasks, i.e. tasks that require eventual onvergene to some global �xed point(tasks suh as naming or vertex oloring fall in this ategory). In this paper, we onsider themore hallenging problem of dynami tasks, i.e. tasks that require both eventual safety andliveness properties (examples of suh tasks are lok synhronization and token passing). Due tothe aforementioned impossibility of tight lok synhronization, we onsider the unison problem,that an bee seen as a loal lok synhronization problem. In the unison problem [20℄, eahnode is expeted to keep its digital lok value within one time unit of every of its neighbors'lok values (weak synhronization), and inrement its lok value in�nitely often. Note that insynhronous ompletely onneted systems where loks have disrete time unit values, unisonindues tight lok synhronization. Several self-stabilizing solutions exist for this problem [17,6, 4, 5℄, both in synhronous and asynhronous systems, yet none of those an tolerate rashfaults.As a matter of fat, there exists a number of FTSS results for dynami tasks in synhronoussystems. In [12, 22℄ provide self-stabilizing lok synhronization that is also wait free, i.e thattolerate napping faults, in omplete networks. Also, [11℄ presents a FTSS lok synhronizationfor general networks. Still in synhronous systems, it was proved that even maliious (i.e.Byzantine) faults an be tolerated, to some extent. In [13, 3℄, probabilisti FTSS protools wereproposed for up to one third of Byzantine proessors, while in [18, 9℄ deterministi solutiontolerate up to one fourth and one third of Byzantine proessors, respetively. Note that allsolutions presented in this paragraph are for fully synhronous systems.In this paper, we takle the open issue of FTSS solutions to dynami tasks in asynhronoussystems, using the unison problem as a ase study. Our �rst negative results show that whenevertwo or more rash faults may our, FTSS unison is impossible in any asynhronous setting.The remaining ase of one rash fault drives the most interesting results (see Setion 3). We�rst extrat two key properties satis�ed by all previous self-stabilizing asynhronous unisonprotools: minimality and priority. Minimality means that nodes maintain no extra variablesbut the digital lok value. Priority means that whenever inrementing the lok value does not2



Unfair Weakly fair Strongly fairMinimal Priority Neither Minimal Priority Neither
f = 1, Imp. Imp.
∆ ≥ 3 Imp. Imp. Imp. ?? (Prop.5) (Prop.6) ??
f = 1, (Prop.2) (Prop.3) (Prop.4) Pos.
∆ ≤ 2 (Prop.11)
f ≥ 2 Imp. (Prop.1)Table 1: Summary of resultsbreak the loal safety prediate between neighbors, the lok value is atually inremented in a�nite number of ativations, even when no neighbor modi�es its lok value. Then, dependingon the fairness properties of the sheduling of nodes, we provide various results with respet tothe possibility or impossibility of unison. When the sheduling is unfair (only global progressis guaranteed), FTSS unison is impossible. When the sheduling is weakly fair (a proessorthat is ontinuously enabled is eventually ativated), then it is impossible to solve FTSS unisonby a protool that satis�es either minimality or priority. The ase of strongly fair sheduling(a proessor that is ativated in�nitely often is eventually ativated) is similar whenever themaximum degree of the graph is at least three. Our negative results still apply when the lokvariable is unbounded and the sheduling is entral (i.e. a single proessor is ativated at anytime).On the positive side (Setion 4), we present a FTSS protool for onneted networks ofmaximum degree at most two (i.e. rings and hains), that satis�es both minimality and priorityproperties. This protool makes minimal system hypotheses with respet to the aforementionedimpossibility results (maximum degree, sheduling, et.) and is optimal with respet to theontainment radius that is ahieved (no orret proessor is ever prevented from inrementingits lok). Table 1 provides a summary of the main results of the paper. Remaining openquestions (denoted by question marks in the above table) are disussed in Setion 5.2 Model, de�nitions and notationsWe onsider a network as an undireted onneted graph G = (V, E) where V is a set ofproessors and E is a binary relation that denotes the ability for two proessors to ommuniate((p, q) ∈ E if and only if p and q are neighbors). Every proessor p an distinguish its neighborsand loally label them, and we assume that p maintains Np, the set of its neighbors loal labels.In the following, n denotes the number of proessors, and ∆ the maximal degree. If p and qare two proessors of the network, we denote by d(p, q) the length of the shortest path between

p and q (i.e the distane from p to q). In this paper, we assume that the network an be hitby rash faults, i.e. some proessors an stop exeuting their ations permanently and withoutany warning to their neighborhood. Sine the system is assumed to be fully asynhronous, noproessor an detet if one of its neighbors is rashed or slow.We onsider the lassial loal shared memory model of omputation (see [10℄) where om-muniations between neighbors are modeled by diret reading of variables instead of exhangeof messages. In this model, the program of every proessor onsists in a set of shared variables(heneforth, referred to as variables) and a �nite set of rules. A proessor an write to its ownvariables only, and read its own variables and those of its neighbors. Eah rule onsists of:3



<label>::<guard>−→<statement>. The label of a rule is simply a name to refer the ation inthe text. The guard of a rule in the program of p is a boolean prediate involving variables of pand its neighbors. The statement of a rule of p updates one or more variables of p. A statementan be exeuted only if the orresponding guard is satis�ed (the proessor rule is then enabled).The state of a proessor is de�ned by the value of its variables. The state of a system (a.k.a.the on�guration) is the produt of the states of all proessors. We also refer to the state of aproessor and its neighborhood as a loal on�guration. We note Γ the set of all on�gurationsof the system.Proessor p is enabled in γ ∈ Γ if and only if at least one rule is enabled for p in γ. Let adistributed protool P be a olletion of binary transition relations denoted by →, on Γ. Anexeution of a protool P is a maximal sequene of on�gurations ǫ = γ0γ1 . . . γiγi+1 . . . suhthat, ∀i ≥ 0, γi → γi+1 ((γi, γi+1) ∈→ is alled a step) if γi+1 exists (else γi is a terminalon�guration). Maximality means that the sequene is either �nite (and no ation of P isenabled in the terminal on�guration) or in�nite. E is the set of all possible exeutions of P . Aproessor p is neutralized in step γi → γi+1 if p is enabled in γi and is not enabled in γi+1, yetdid not exeute any rule in step γi → γi+1.A sheduler (also alled daemon) is a prediate over the exeutions. In any exeution, eahstep γ −→ γ′ results from a non-empty subset of enabled proessors atomially exeuting a rule.This subset is hosen by the sheduler. A sheduler is entral if it hooses exatly one enabledproessor in any partiular step, it is distributed if it hooses at least one enabled proessor,and loally entral if it hooses at least one enabled proessor yet ensures that no two neighborsare hosen onurrently. A sheduler is synhronous if it hooses every enabled proessor inevery step. A sheduler is asynhronous if it is either entral, distributed or loally entral. Asheduler may also have some fairness properties. A sheduler is strongly fair (the strongestfairness assumption for asynhronous shedulers) if every proessor that is enabled in�nitelyoften is eventually hosen to exeute a rule. A sheduler is weakly fair if every ontinuouslyenabled proessor is eventually hosen to exeute a rule. Finally, the unfair sheduler has theweakest fairness assumption: it only guarantees that at least one enabled proessor is eventuallyhosen to exeute a rule. As the strongly fair sheduler is the strongest fairness assumption, anyproblem that annot be solved under this assumption annot be solved for all weaker fairnessassumptions. In ontrast, any algorithm performing under the unfair sheduler also works forall stronger fairness assumptions.Fault-ontainment and Stabilization In a partiular exeution ǫ, we distinguish theset of proessors V ∗ that never rash in ǫ (i.e. the set of orret proessors). By extension, C∗denotes the set of orret proessors in C ⊂ V . As rashed proessors annot be distinguishedfrom slow ones by their neighbors, we assume that variables of rashed proessors are alwaysreadable. We now reall de�nitions about self-stabilization and fault-tolerant self-stabilization.De�nition 1 (self-stabilization [8℄) Let T be a task, and ST a spei�ation of T . A protool
P is self-stabilizing for ST if and only if for every on�guration γ0 ∈ Γ, for every exeution
ǫ = γ0γ1 . . ., there exists a �nite pre�x γ0γ1 . . . γl of ǫ suh that all exeutions starting from γlsatis�es ST .De�nition 2 ((f, r)−ontainment [21℄) Let T be a task, and ST a spei�ation of T . Aon�guration γ ∈ Γ is (f, r)−ontained for spei�ation ST if and only if, given at most frashed proessors, every exeution starting from γ, always satis�es ST on the sub-graph induedby proessors whih are at distane r or more from any rashed proessor.4



De�nition 3 (fault-tolerant self-stabilization (FTSS) [1, 15℄) Let T be a task, and ST aspei�ation of T . A protool P is fault-tolerant and self-stabilizing with radius r for f rashedproessors (and denoted by (f, r) − ftss) for spei�ation ST if and only if, given at most frashed proessors, for every on�guration γ0 ∈ Γ, for every exeution ǫ = γ0γ1 . . ., there existsa �nite pre�x γ0γ1 . . . γl of ǫ suh that γl is (f, r)−ontained for spei�ation ST .Problem and spei�ations In the following, Hp is the variable of proessor p thatrepresents its lok value. Values are taken in the set of natural integers (that is, the numberof states is unbounded, and a total order an be de�ned on lok values). We now de�ne twonotions related to loal lok synhronization: the �rst one restrits the safety property toorret proessors, while the seond one onsiders all proessors.De�nition 4 (weakly synhronized on�gurations Γ∗
1) Let be γ ∈ Γ. We say that γ isweakly synhronized (denoted by γ ∈ Γ∗

1) if and only if :
∀p ∈ V ∗, ∀q ∈ N∗

p , |Hp − Hq| ≤ 1De�nition 5 (uniform weakly synhronized on�gurations Γ1) Let be γ ∈ Γ. We saythat γ is uniformly weakly synhronized (denoted by γ ∈ Γ1) if and only if :
∀p ∈ V, ∀q ∈ Np, |Hp − Hq| ≤ 1Remark 1 If no proessor is rashed, we have: Γ1 = Γ∗

1, on the ontrary ase, we have:
Γ1 ( Γ∗

1For example, if G = (V, E) with V = {p0, p1, p2} and E = {{p0, p1}, {p1, p2}}, then on�g-uration γ de�ned by Hp0
= 0, Hp1

= Hp2
= 2, and where p0 is rashed satis�es γ ∈ Γ∗

1 and
γ /∈ Γ1.We now speify the two variants of our problem (depending whether safety property isextended to rashed proessors):Spei�ation 1 (asynhronous unison � AU)Let be γ0 ∈ Γ. An exeution ǫ = γ0γ1 . . . starting from γ0 is a legitimate exeution for AU ifand only if:

• Safety: ∀i ∈ N, γi ∈ Γ∗
1.

• Liveness: Eah proessor p ∈ V ∗ inrements its lok in�nitely often in ǫ.Spei�ation 2 (uniform asynhronous unison � UAU)Let be γ0 ∈ Γ. An exeution ǫ = γ0γ1 . . . starting from γ0 is a legitimate exeution for UAU ifand only if:
• Safety: ∀i ∈ N, γi ∈ Γ1.
• Liveness: Eah proessor p ∈ V ∗ inrements its lok in�nitely often in ǫ.Remark 2 Note that:
• An algorithm whih omplies to the seond spei�ation omplies to the �rst (the onverseis not true).
• These two spei�ations do not forbid derementation of loks.5



We now present two key properties satis�ed by all known self-stabilizing unison protools.Those properties are used in the impossibility results presented in Setion 3.De�nition 6 (minimality) A unison is minimal if and only if the set of variables of eahproessor is redued to its lok.Remark 3 As the exeution of a rule by a proessor always modi�es its state, every exeutionof rule by a proessor by a minimal unison modi�es its lok value.De�nition 7 (priority) A unison is priority if and only if it satis�es the following property:if there exists a proessor p suh that ∀q ∈ Np, (Hq = Hp or Hq = Hp + 1) in a on�guration
γi, then there exists a fragment of exeution ǫ = γi . . . γi+k suh that:

• only p is hosen by the sheduler during ǫ.
• Hp is not modi�ed during γi+j −→ γi+j+1, for j ∈ {0, . . . , k − 2}.
• Hp is inremented during γi+k−1 −→ γi+k.Remark 4 If a priority unison is also minimal, then k = 1 sine every exeution of a rule bya proessor modi�es its lok value.3 Impossibility resultsIn this setion we present a broad lass of impossibility results related to the FTSS unison.For the sake of the generality we assume the most onstrained sheduler (the entral one).Additionally we assume eah proessor has an in�nite memory.3.1 PreliminariesFirst, we introdue two preliminary results whih show that in any exeution of a (f, r)−ftssalgorithm for AU (under an asynhronous daemon) a proessor an not modify its lok valueif it has two neighbors q and q′ suh that: Hq = Hp − 1 and Hq′ = Hp + 1.Lemma 1 Let A be a (f, r)−ftss algorithm for AU (under an asynhronous daemon). Let γbe a on�guration in whih a proessor p (suh that Hp ≥ 1) has two neighbors q and q′ suhthat: Hq = Hp − 1 and Hq′ = Hp + 1. If p exeutes an ation of A during the step γ −→ γ′,then this ation does not modify the value of Hp.Proof. Let A be a (f, r)−ftss algorithm for AU (under an asynhronous daemon). Let Gbe a network and γ be a on�guration of G suh that no proessor is rashed, γ ∈ Γ1 and thereexists a proessor p (suh that Hp ≥ 1) whih has two neighbors q and q′ suh that: Hq = Hp−1and Hq′ = Hp + 1.Assume p exeutes an ation of A during the step γ −→ γ′ (and only p) suh that this ationmodi�es the value of Hp. Note that Hq and Hq′ are idential in γ and γ′. Let α be the valueof Hp in γ and α′ be the value of Hp in γ′. alpha and alpha′ verify one of the two followingrelations:Case 1: α < α′.This implies that |α′ −Hq| = |α′ −α|+ |α−Hq| > 1 (sine |α′ −α| ≥ 1 by hypothesis and

|α − Hq| = 1). 6



Case 2: α′ < α.This implies that |α′ − Hq′ | = |α′ − α| + |α − Hq′ | > 1 (sine |α′ − α| ≥ 1 by hypothesisand |α − Hq′ | = 1).In the two above ases, γ′ /∈ Γ1, hene the safety property of A is not veri�ed. �Lemma 2 Let A be a (f, r)−ftss algorithm for minimal AU (under an asynhronous daemon).Let γ be a on�guration in whih a proessor p (suh that Hp ≥ 1) has two neighbors q and q′suh that: Hq = Hp − 1 and Hq′ = Hp + 1. Proessor p is not enabled for A in γ.Proof. This is a diret onsequene of Lemma 1. �3.2 With respet to the number of rashed proessorsProposition 1 For any natural number r, there exists no (f, r)−ftss algorithm for AU underan asynhronous daemon if f ≥ 2.Proof. Let r be a natural number. Let A be a (2, r)−ftss algorithm for AU (under anasynhronous daemon). Consider a network represented by the following graph: G = (V, E)with V = {p0, . . . , p2(r+1)} and E = {{pi, pi+1}|i ∈ {0, . . . , 2r + 1}}. Let γ be the followingon�guration of the network: p0 and p2(r+1) are rashed and ∀i ∈ {0, . . . , 2(r + 1)}, Hpi
= i (allthe other variables an have any value).By Lemma 1, no proessor between p2 and p2r+1 an hange its lok value in every exeutionstarting from γ. However, pr+1 must verify the spei�ation of the problem sine the nearestrashed proessor is at r hops away. This ontradits the liveness property of A. �3.3 With respet to unfair daemonProposition 2 For any natural number r, there exists no (1, r)−ftss algorithm for AU underan unfair daemon.Proof. Let r be a natural number. Assume that there exists an (1, r)−ftss algorithm A forAU under an unfair daemon. Consider a network, G, of diameter greater than 2r + 2 1. Let pbe a proessor of G. Sine the daemon is unfair, it an hoose to never ativate p unless thisproessor beomes the only enabled proessor of G.Assume that there exists a on�guration γ suh that no proessor is rashed and in whih

p is the only enabled proessor of the network. The asynhronism assumption makes this on-�guration indistinguishable from γ′, the same on�guration in whih p is rashed. We assumedthat in γ no other proessor but p is enabled. Consequently, the network is starved in γ′. Thisontradits the liveness property of A, hene no suh on�guration γ exists.Sine there exists no on�guration in whih p is the unique enabled proessor (in everyexeution starting from an arbitrary on�guration), the unfair daemon an starve p in�nitely(if no rash ours). This ontradits the liveness property of A. �1At least one proessor veri�es the spei�ation of the AU problem
7
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r+2r+32r+2 2r+1 2r r+2Figure 1: The three on�gurations used in the proof of Lemma 3 (the numbers represent lokvalues and the double irles represent rashed proessors).3.4 With respet to weakly fair daemonIn this setion we prove there exists no (1, r)−ftss algorithm for minimal or priority AU undera weakly fair daemon for any r value. The �rst impossibility result uses the following property:if there exists an algorithm A whih is (1, r)−ftss for minimal AU under a weakly fair daemonfor a natural number r, then an arbitrary proessor p is not enabled for A if it has only oneneighbor p′ and if Hp = Hp′ (proved in Lemma 3 formally stated below). Then, we show that
A starves the network redued to a two-orret-proessor hain in whih all lok values areidential (see Proposition 3).Lemma 3 If there exists an algorithm A whih is (1, r)−ftss for minimal AU under a weaklyfair daemon for a natural number r, then an arbitrary proessor p is not enabled for A if it hasonly one neighbor p′ and if Hp = Hp′ .Proof. Let r be a natural number. Let A be a (1, r)−ftss algorithm for the minimal AUunder a weakly fair daemon.Let G be the network redued to a hain of length r + 2. Assume proessors in G labeled asfollows: p0, p1, . . . , pr+2. Consider the following on�gurations of G (see Figure 1):

• γ1 de�ned by ∀i ∈ {0, . . . , r + 1}, Hpi
= i and Hpr+2

= r + 1 and p0 rashed.
• γ2 de�ned by ∀i ∈ {0, . . . , r + 1}, Hpi

= 2r + 2 − i and Hpr+2
= r + 1 and p0 rashed.

• γ3 de�ned by ∀i ∈ {0, . . . , r + 2}, Hpi
= i and p0 rashed.By Lemma 2, proessors from p1 to pr are not enabled in suh on�gurations (and remainnot enabled until one of the proessors within p0 . . . pr+1 exeute a rule).Note that for the proessor pr+2, the on�gurations γ1 and γ2 are indistinguishable (otherwisethe unison would not be minimal). We are going to prove the result by absurd. Assume pr+2 isenabled in γ1 and γ2. The safety property of A implies that the enabled rule for pr+2 modi�esits lok either to r + 2 or to r. In the following we disuss these ases separately:8



Case 1: The enabled rule for pr+2 modi�es its lok to r + 2.Assume w.r.g. pr+2 is the only ativated proessor hene its lok takes the value r + 2.The following ases are possible in the new on�guration:Case 1.1: pr+2 is not enabled.If the exeution started from γ1, then no proessor is enabled, whih ontradits theliveness property of AU.Case 1.2 : pr+2 is enabled and after exeution its lok modi�es to r + 1.Let ǫ be an exeution starting from γ1 in whih only pr+2 is ativated. Consequently,the lok of the proessor pr+2 takes in�nitely the following sequene of values: r +
1, r + 2. In this exeution, pr+2 exeutes in�nitely often while proessors from p0 to
pr are never enabled. Note that pr+1 is not enabled when Hpr+2

= r + 2, hene thisproessor is never in�nitely enabled. Overall, this exeution is allowed by the weaklyfair sheduler, however it starves pr+1, whih ontradits the liveness property of A.Case 1.3 : pr+2 is enabled and after exeution it modi�es its lok to r.The exeution of this rule leads to ase 2.Case 2 : The enabled rule for pr+2 modi�es its lok into r.Assume w.r.g. pr+2 is the only ativated proessor and after its exeution the new on�g-uration veri�es one of the the following ases:Case 2.1 : pr+2 is not enabled.If the exeution started from γ2, then no proessor is enabled, whih ontradits theliveness property (the network is starved).Case 2.2 : pr+2 is enabled and its lok modi�es to r + 1.Let ǫ be an exeution starting from γ2 whih ontains only ations of pr+2 (its loktakes in�nitely the following value sequene : r+1, r). In this exeution, pr+2 exeutesa rule in�nitely often (by onstrution) and proessors from p0 to pr are never enabled.Note that pr+1 is not enabled when Hpr+2
= r, so this proessor is never in�nitelyenabled. In onlusion, this exeution veri�es the weakly fair sheduling.Note that this exeution starves pr+1, whih ontradits the liveness property of A.Case 2.3 : pr+2 is enabled and the exeution of its enabled rule modi�es its lok to r+2.The exeution of these rule leads to ase 1.Overall, the only two possible ases (ases 1.3 and 2.3) are the following:1. pr+2 is enabled for modifying its lok value to r when Hpr+2

= r + 2 and Hpr+1
= r + 1.2. pr+2 is enabled for modifying its lok value to r + 2 when Hpr+2

= r and Hpr+1
= r + 1.Let ǫ be an exeution starting from γ3 whih ontains only ations of pr+2 (its lok takesin�nitely the following sequene of values: r + 2, r). In this exeution, pr+2 exeutes a rulein�nitely often (by onstrution) and proessors in p0 . . . pr are never enabled. Note that pr+1is not enabled when Hpr+2

= r + 2, so this proessor is never in�nitely enabled. In onlusion,this exeution veri�es the weakly fair sheduling.This exeution starves pr+1, whih ontradits the liveness property of A and proves theresult. �Proposition 3 For any natural number r, there exists no (1, r)−ftss algorithm for minimalAU under a weakly fair daemon. 9
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G in whih Hp = Hp′ and no rashed proessor. Notie that no proessor is enabled in γ whihontradits the liveness property of A and proves the result. �The seond main result of this setion is that there exists no (1, r)−ftss algorithm for priorityAU under a weakly fair daemon for any natural number r (see Proposition 4).To prove this result by ontradition we onstrut an exeution (allowed by a weakly fairsheduler) starting from the on�guration γ0
0 shown in Figure 2. We prove that this exeutionstarves pr+1 whih ontradits the liveness property of the algorithm.Proposition 4 For any natural number r, there exists no (1, r)−ftss algorithm for priority AUunder a weakly fair daemon.Proof. Let r be a natural number. Assume that there exists a (1, r)−ftss algorithm Afor priority AU under a weakly fair daemon. Let G be the network redued to a hain oflength r + 2. Assume that proessors in G are labeled as follows: p0, p1, . . . , pr+2. Let γ0

0 be aon�guration and p0 rashed and ∀i ∈ {0, . . . , r + 2}, Hpi
= i (See Figure 2). Note that all theother variables an have any value.We onstrut a fragment of exeution ǫ′0 = γ0

0γ0
1γ0

2 . . . γ0
r+1 starting from γ0

0 suh that ∀i ∈
{0, 1, . . . , r}, the step γ0

i → γ0
i+1 ontains only the ation of pi+1 if pi+1 is enabled. By Lemma1, this fragment does not modify the lok value of proessors in p0 . . . pr+1.We also onstrut a fragment of exeution, ǫ′′0 , starting from γ0

r+1 using the following ases:Case 1: pr+2 is not enabled in γ0
r+1.Let ǫ′′0 be ǫ (empty word).Case 2: pr+2 is enabled in γ0

r+1.In the sequel we distinguish following ases:Case 2.1: The exeution of a rule by pr+2 in γ0
r+1 doesn't modify its lok value.Let ǫ′′0 be γ0

r+1γ
0
r+2 in whih the step γ0

r+1 → γ0
r+2 ontains only the exeution of arule by pr+2.Case 2.2: The exeution of a rule by pr+2 in γ0

r+1 modi�es its lok value.The safety property of A implies that the lok of pr+2 takes the value r or r + 1.Case 2.2.1: The exeution of a rule by pr+2 in γ0
r+1 modi�es its lok value into

r + 1.Sine A is a priority unison, there exists by de�nition a fragment of exeution
ǫ′′0 = γ0

r+1γ
0
r+2 . . . γ0

r+k whih ontains only ations of pr+2 suh that (i) in thesteps from γ0
r+2 to γ0

r+k−1 the lok value of pr+2 is not modi�ed while (ii) in thestep γ0
r+k−1 → γ0

r+k the lok value of pr+2 is inremented.10



Case 2.2.2: The exeution of a rule by pr+2 in γ0
r+1 modi�es its lok value into r.Sine A is a priority unison, there exists by de�nition a fragment of exeution

ǫa = γ0
r+1γ

0
r+2 . . . γ0

r+k whih ontains only ations of pr+2 suh that (i) in thesteps from γ0
r+2 to γ0

r+k−1 the lok value of pr+2 is not modi�ed and (ii) in thestep γ0
r+k−1 → γ0

r+k the lok of pr+2 takes the value r + 1.Sine A is a priority unison, there exists by de�nition a fragment of exeution
ǫb = γ0

r+kγ0
r+k+1 . . . γ0

r+j whih ontains only ations of pr+2 suh that (i) in thesteps from γ0
r+k+1 to γ0

r+j−1 the lok value of pr+2 is not modi�ed and (ii) inthe step γ0
r+j−1 → γ0

r+j the lok value of pr+2 is inremented.Let ǫ′′0 be ǫaǫb.In all ases, we onstrut a fragment of exeution ǫ0 = ǫ′0ǫ
′′
0 suh that its last on�guration(let us denote it by γ1

0) veri�es: the values of the network loks are idential to those in γ0
0 (theothers variables may have hanged). Then, we an reiterate the reasoning and obtain a fragmentof exeution ǫ1, ǫ2 . . . (respetively starting from γ1

0 , γ2
0 , . . .) that veri�es the same property.We �nally obtain an exeution ǫ = ǫ0ǫ1 . . . whih veri�es:

• No proessor is in�nitely enabled without exeuting a rule (sine all enabled proessors in
γi
0 exeute a rule or are neutralized during ǫi). Consequently ǫ is an exeution that veri�esthe weakly fair sheduling.

• The lok of the proessor pr+1 never hanges (whereas d(p0, pr+1) = r + 1).This exeution ontradits the liveness property of A whih is a (1, r)−ftss algorithm forpriority AU under a weakly fair daemon by hypothesis. �3.5 With respet to strongly fair daemonIn this setion we prove that there exists no (1, r)−ftss algorithm for minimal or priority AUunder a strongly fair daemon if the degree of the network is greater or equal to 3. In order toprove the �rst impossibility result, we use the following property: if a proessor p has only oneneighbor q suh that Hq = r + 1 and if |Hp − Hq| ≤ 1, then p is enabled in any (1, r)−ftssalgorithm for minimal AU (see Lemma 4). Then we onstrut a strongly fair in�nite exeutionwhih starves a proessor more than r hops away from a rashed proessor. This exeutionontradits the liveness property of the AU problem (see Proposition 5).Lemma 4 Let A a (1, r)−ftss algorithm for minimal AU. If a proessor p has only one neighbor
q suh that Hq = r + 1 and if |Hp − Hq| ≤ 1, then p is enabled in A.Proof. Assume that there exists an algorithm A whih is (1, r)−ftss for minimal AU. Let Gbe a network that exeutes A and whih ontains at least one proessor p whih has only oneneighbor q. Assume Hq = r + 1 and |Hp − Hq| ≤ 1. Then, we have:1. If Hp = r, then p is enabled for at least one rule of A. Otherwise, the network redued tothe hain p0, . . . , pr, q, p in the on�guration γ1 de�ned by ∀i ∈ {0, . . . , r}, Hpi

= 2r+2− i,
Hq = r +1, Hp = r where p0 is rashed (see Figure 3) is starved sine no orret proessoris enabled (by Lemma 2).2. If Hp = r +1, then p is enabled for at least one rule of A. Otherwise, the network reduedto the hain q, p in the on�guration γ2 de�ned by Hq = Hp = r + 1 and in whih noproessor is rashed (see Figure 3) is starved sine no orret proessor is enabled.11



��
��

��
��

��
��

��
��

��
��

��
��

��
��

γ1 r+1p0 p1 p2 pr−1 pr

��
��

��
��

��
��

��
��

��
��

��
��

��
��0 1 2 r+1rr-1p0 p1 p2 pr−1 pr

��
��

��
��

γ2

q pr+2r+1 r+1q p

γ3

q prr+2r+32r+2 2r+1 2r

Figure 3: The three on�gurations used in the proof of Lemma 4 (the numbers represent lokvalues and the double irles represent rashed proessors).3. If Hp = r+2, then p is enabled for at least one rule of A. Otherwise, the network redued tothe hain p0, . . . , pr, q, p in the on�guration γ3 de�ned by ∀i ∈ {0, . . . , r}, Hpi
i, Hq = r+1,

Hp = r + 2 and p0 rashed (see Figure 3) is starved sine no orret proessor is enabled(by Lemma 2).
�Proposition 5 For any natural number r, there exists no (1, r)−ftss algorithm for minimalAU under a strongly fair daemon if the graph modeling the network has a degree greater orequal to 3.Proof. Let r be a natural number. Assume that there exists a (1, r)−ftss algorithm Afor the minimal AU under a strongly fair daemon in a network with a degree greater or equalto 3. Let G be the network de�ned by: V = {p0, . . . , pr+1, q, q

′} and E = {{pi, pi+1}, i ∈
{0, . . . , r}} ∪ {{pr+1, q}, {pr+1, q

′}}.As A is deterministi, q and q′ must behave identially if they have the same lok value (inthis ase, their loal on�gurations are idential). If Hpr+1
= r + 1 and |Hpr+1

− Hq| ≤ 1, thereexists three loal on�gurations for q: (1) Hq = r, (2) Hq = r + 1 or (3) Hq = r + 2 (the sameproperty holds for q′).By Lemma 4, Proessor q (respetively q′) is enabled in any on�guration in whih Hpr+1
=

r +1 and |Hpr+1
−Hq| ≤ 1 (respetively |Hpr+1

−Hq′ | ≤ 1). Moreover, in this ase, the enabledrule for q (respetively q′) modi�es its lok into a value in {r, r + 1, r + 2} \ Hq (respetively
{r, r + 1, r + 2} \ Hq′) by the safety property of A.For eah of the three possible loal on�gurations for q or q′ (studied in the proof of Lemma4), A an only allow 2 moves. Hene, there exists 8 possible moves for A. Let denote eah ofthese possibilities by a triplet (a, b, c) where a, b and c are the lok value of q after the allowedmove when Hq = r, Hq = r+1, and Hq = r+2 respetively. Note that, due to the determinismof A, moves allowed for q′ and q are idential. There exists the following ases:Case 1: (r + 1, r, r)Let γ1 be the on�guration of G de�ned by: ∀i ∈ {0, . . . , r+1}, Hpi

= 2r+2−i, Hq = r+112
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r+2r+1Figure 4: The three on�gurations used in the proof of Proposition 5 (the numbers represent lokvalues and the double irles represent rashed proessors).and Hq′ = r and p0 rashed (see Figure 4). Note that only q and q′ are enabled (by Lemma2). Assume q exeutes. Hene, its lok takes the value r. By Lemma 2, only q and q′ areenabled. Assume now that q′ exeutes. Its lok takes the value r + 1. This on�gurationis idential to γ1 (sine proessors are anonymous), we an repeat the above reasoning inorder to obtain an in�nite exeution in whih proessors p1, . . . , pr+1 are never enabled(see Figure 5 for an illustration when r = 1).Case 2: (r + 1, r + 2, r)Let γ2 be the on�guration of G de�ned by: ∀i ∈ {0, . . . , r + 1}, Hpi
i, Hq = r and

Hq′ = r+2 and p0 rashed (see Figure 4). Note that only q and q′ are enabled (by Lemma2). Assume q exeutes. Its lok takes the value r + 1. By Lemma 2, only q and q′ areenabled. Assume q exeutes its rule again. Its lok takes the value r + 2. By Lemma 2,only q and q′ are enabled. Assume now that q′ exeutes its rule. Its lok takes the value
r. This on�guration is idential to γ2 (sine proessors are anonymous). We an repeatthe reasoning in order to obtain an in�nite exeution in whih proessors in p1, . . . , pr+1are never enabled.Case 3: (r + 1, r, r + 1)Similar to the reasoning of ase 1.Case 4: (r + 1, r + 2, r + 1)Let γ3 be the on�guration of G de�ned by: ∀i ∈ {0, . . . , r + 1}, Hpi

= i, Hq = r + 2 and
Hq′ = r + 1 and in whih p0 is rashed (see Figure 4). Note that only q and q′ are enabled(by Lemma 2). Assume q′ exeutes its rule. Its lok takes the value r + 2. By Lemma2, only q and q′ are enabled. Assume now that q exeutes its rule. Its lok takes the13



��
��

��
��

��
��

γ1

p0 p1 p2 ��
��

��
��

q

q′

234 21
��
��

��
��

��
��

p0 p1 p2 ��
��

��
��

q

q′

234 1
��
��

��
��

��
��

p0 p1 p2 ��
��

��
��

q

q′

234 21
1@

@
@

@
@@R

�
�

�
�

��	γ1Figure 5: Example of the exeution onstruted in ase 1 of Proposition 5 when r = 1 (the numbersrepresent lok values and the double irles represent rashed proessors).value r + 1. This on�guration is idential to γ3 (sine proessors are anonymous). Wean repeat the reasoning in order to obtain an in�nite exeution in whih proessors in
p1, . . . , pr+1 are never enabled.Case 5: (r + 2, r, r)Let γ2 be the on�guration of G as de�ned in the ase 2 above. Note that only q and q′are enabled (by Lemma 2). Assume q exeutes its rule. Its lok takes the value r + 2.By Lemma 2, only q and q′ are enabled. Assume now that q′ exeutes its rule. Its loktakes the value r. This on�guration is idential to γ2 (sine proessors are anonymous).We an repeat the reasoning in order to obtain an in�nite exeution in whih proessors
p1, . . . , pr+1 are never enabled.Case 6: (r + 2, r + 2, r)The reasoning is similar to the ase 5.Case 7: (r + 2, r, r + 1)Let γ2 be the on�guration of G as de�ned in the ase 2 above. Note that only q and q′are enabled (by Lemma 2). Assume q exeutes its rule. Its lok takes the value r + 2.By Lemma 2, only q and q′ are enabled. Assume q′ exeutes its rule. Its lok takesthe value r + 1. By Lemma 2, only q and q′ are enabled. Assume q′ exeutes again itsrule. Its lok takes the value r. This on�guration is idential to γ2 (sine proessors areanonymous). We an repeat the above senario in order to obtain an in�nite exeution inwhih proessors p1, . . . , pr+1 are never enabled.Case 8: (r + 2, r + 2, r + 1)The proof is similar to the ase 4. 14
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0 r+2Figure 6: The initial on�guration for the proof of Proposition 6 (the numbers represent lok valuesand the double irles represent rashed proessors).Overall, we an onstrut an in�nite exeution in whih proessor p0 is rashed, proessorsfrom p1 to pr+1 are never enabled and proessors q and q′ exeute a rule in�nitely often. Thisexeution veri�es the strongly fair sheduling. Notie that in this exeution pr+1 is never enabled,hene it is starved. This ontradits the liveness property of A and proves the result. �The seond main result of this setion is that there exists no (1, r)−ftss algorithm for priorityAU under a strongly fair daemon for any natural number r if the degree of the graph modelingthe network is greater or equal to 3. (see Proposition 6).To prove this result we assume the ontrary and we onstrut an exeution starting fromthe on�guration γ0

0 of Figure 6 verifying the strongly fair sheduling whih starves pr+1, thatontradits the liveness of the algorithm.Proposition 6 For any natural number r, there exists no (1, r)−ftss algorithm for priority AUunder a strongly fair daemon if the graph modeling the network has a degree greater or equal to3.Proof. Let r be a natural number. Assume that there exists a (1, r)−ftss algorithm Afor priority AU under a strongly fair daemon even if the graph modeling the network has adegree greater or equal to 3. Let G be the network de�ned by: V = {p0, . . . , pr+1, q, q
′} and

E = {{pi, pi+1}, i ∈ {0, . . . , r}} ∪ {{pr+1, q}, {pr+1, q
′}}. Note that G has a degree equal to 3.Let γ0

0 be the following on�guration: ∀i ∈ {0, . . . , r + 1}, Hpi
= i, Hq = Hq′ = r + 2 and

p0 rashed (see Figure 6). Note that, for all exeution ǫ starting from γ0
0 , the proessors q and

q′ are allowed to modify their loks in a �nite time (otherwise the network would be starvedfollowing Lemma 1).Let ǫ0a = γ0
0γ0

1 . . . γ0
k be a fragment of exeution with the following properties:1. k ≥ 1 if there exists i ∈ {0, . . . , r + 1} suh that pi is enabled in γ0

0 ; k = 0 otherwise2. it ontains no modi�ation of lok values3. γ0
k is the �rst on�guration in whih q or q′ are enabled for the modi�ation of their lokvalue.We onsider the following sheduling senario: in eah step in ǫ0a is exeuted the least reentlyexeuted proessor in the set of enabled proessors. Note that this senario is ompatible witha strongly fair sheduling. Let us study the following ases:Case 1: q is enabled in γ0

k for a modi�ation of its lok value. The safety property of A impliesthat the value of Hq should be modi�ed to either r or r + 1.Case 1.1: The value of Hq is modi�ed to r.Sine A is a priority unison, there exists by de�nition a fragment of exeution ǫ0b1 =
γ0

kγ0
k+1 . . . γ0

k+r whih ontains only ations of q suh that (i) in the steps from γ0
k to15



γ0
k+r−1 the lok value of q is not modi�ed and (ii) in the step γ0

k+r−1 → γ0
k+r thelok value of q is inremented.Sine A is a priority unison, there exists by de�nition a fragment of exeution ǫ0b2 =

γ0
k+rγ

0
k+r+1 . . . γ0

k+j whih ontains only exeutions of a rule by q suh that (i) in thesteps from γ0
k+r to γ0

k+j−1 the lok value of q is not modi�ed and (ii) in the step
γ0

k+j−1 → γ0
k+j the lok value of q is inremented.Let ǫ0b be ǫ0b1ǫ

0
b2.Case 1.2: The value of Hq is modi�ed to r + 1.Sine A is a priority unison, there exists by de�nition a fragment of exeution ǫ0b =

γ0
kγ0

k+1 . . . γ0
k+r whih ontains only ations of q suh that (i) in the steps from γ0

k to
γ0

k+r−1 the lok value of q is not modi�ed and (ii) in the step γ0
k+r−1 → γ0

k+r thelok value of q inrements.If q′ is enabled in the last on�guration of ǫ0b
2, we an onstrut ǫ0c similarly to ǫ0b usingproessor q′. Otherwise, let ǫ0c be ǫ (the empty word).Case 2: q′ is enabled in γ0

k for a modi�ation of its lok value.We an onstrut ǫ0b and ǫ0c similar to the ase 1 by reversing the roles of q and q′.Let us de�ne ǫ0 = ǫ0aǫ
0
bǫ

0
c . Notie that the lok values are idential in the �rst and the laston�guration of ǫ0. This implies that we an in�nitely repeat the previous reasoning in orderto obtain an in�nite exeution ǫ = ǫ0ǫ1 . . . whih satis�es:

• No orret proessor is in�nitely often enabled without exeuting a rule (sine q and q′exeute a rule in�nitely often and others proessors are hosen in funtion of their lastexeution of a rule, that implies that an in�nitely often enabled proessor exeutes a rulein a �nite time). This exeution veri�es a strongly fair sheduling.
• The lok value of pr+1 is never modi�ed (whereas d(p0, pr+1) = r + 1).This exeution ontradits the liveness property of A, whih implies the result. �4 A protool for hains and ringsIn the following we onsider some possibility results related to the asynhronous unison on hainsand rings (networks with a degree inferior to 3).In this setion, we propose an (1, 0)−ftss algorithm for AU under a loally entral stronglyfair daemon for hains and rings. The proposed algorithm is both minimal and priority.4.1 Algorithm desriptionEah proessor heks if it is "loally synhronized", i.e. if the drift between its lok value andthe lok values of its neighbors does not exeed 1.If a proessor is "loally synhronized", it modi�es its lok value in a �nite time in orderto preserve this property. If a proessor is not synhronized with at least one of its neighbors,it makes a orretion in a �nite time in order to orret its lok value. More preisely, eahproessor p has only one variable: its lok denoted by Hp. At eah step, every proessor pomputes a set of possible lok values, i.e. the set of lok values whih have a drift of at most2In this ase, q

′ was already enabled in the last on�guration of ǫ
0

a16
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• |Inter(Np)| = 0: p has two neighbors and the drift between their lok values is stritlygreater than 2. In this ase, p is enabled to take the average value between these two lokvalues if its lok does not have yet this value.
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• |Inter(Np)| ≥ 2: p has one neighbor or the drift between the lok values of its twoneighbors is stritly less than 2. In this ase, p is enabled to modify its lok value asfollows: if Hp + 1 ∈ Inter(Np), then Hp is modi�ed to Hp + 1, otherwise Hp is modi�edto min{Inter(Np)}.Note that our orretion rules use the average instead of maximum or minimum (whih arefrequently used in the literature, see e.g. [9, 11, 12, 22℄) in order to not favors the lok valueof a partiular neighbor. That is, the hosen neighbor may be rashed and prevent the systemto reah the synhronization.The detailed desription of our solution is proposed in Algorithm 1. In order to betterunderstand our algorithm Figures from 7 to 10 propose some toy examples.4.2 Corretion Proof roadmapIn this setion, we present the key ideas in order to prove the orretness of our algorithm.First, we introdue some useful notations:Notation 1 Let p be a proessor. If q denotes one of its neighbors, we denote the other neighborby q̄ (if this neighbor exists). 17
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(N)Figure 9: An example of exeution of UFT SS on a ring with no rash (the numbers represent lokvalues and squared proessors in γi exeuted the indiated rule during the step γi −→ γi+1).
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Figure 10: An example of exeution of UFT SS on a ring with a rash (the numbers represent lokvalues, the double irles represent rashed proessors and squared proessors in γi exeuted theindiated rule during the step γi −→ γi+1).Algorithm 1 (UFT SS): AU (minimal and priority) (1, 0)-ftss.Data:- Np: set of neighbors of p.Variable:- Hp: natural integer representing the lok of the proessor.Maros:- For A ⊆ N and a ∈ N, next(A, a) =

{

a + 1 if a + 1 ∈ A

min{A} otherwise
.- For q ∈ Np, poss(q) =

{

{Hq − 1,Hq,Hq + 1} if Hq 6= 0

{Hq,Hq + 1} otherwise
.- Inter(Np) =

⋂

q∈Np

poss(q).Rules:/* Normal rule */
(N) :: |Inter(Np)| ≥ 2 −→ Hp := next (Inter(Np),Hp)/* Corretion rules */
(C1) :: (|Inter(Np)| = 0) ∧

(

Hp 6=

⌈

P

q∈Np

Hq

|Np|

⌉)

∧

(

Hp 6=

⌊

P

q∈Np

Hq

|Np|

⌋)

−→ Hp :=

⌊

P

q∈Np

Hq

|Np|

⌋

(C2) :: (Inter(Np) = {h}) ∧ (Hp 6= h) −→ Hp := h19



Notation 2 We denote the value of Hp for a proessor p in a on�guration γi by (Hp)
γi .We denote the value of Inter(Np) for a proessor p in a on�guration γi by (Inter(Np))
γi .In order to prove that UFT SS is a (1, 0)-ftss algorithm for AU under a loally entralstrongly fair daemon on a hain and on a ring (see Proposition 11), we prove in the sequel thefollowing properties:1. UFT SS is a self-stabilizing algorithm for AU under a loally entral strongly fair daemonon a hain (Proposition 7).2. UFT SS is a self-stabilizing algorithm for AU under a loally entral strongly fair daemonon a hain even if one proessor is rashed in the initial on�guration (Proposition 8).3. UFT SS is a self-stabilizing algorithm for AU under a loally entral strongly fair daemonon a ring (Proposition 9).4. UFT SS is a self-stabilizing algorithm for AU under a loally entral strongly fair daemonon a ring even if one proessor is rashed in the initial on�guration (Proposition 10).The proof of eah of these 4 propositions is dedued from 3 lemmas as follows:1. Firstly, we prove that UFT SS veri�es the losure of the safety of UAU under the on-sidered hypothesis (i.e. if there exists a on�guration γ suh that γ ∈ Γ1, then everyon�guration γ′ reahable from γ verify: γ′ ∈ Γ1, see respetively Lemma 5, 11, 14, and20).The idea of the proof is as follows: we �rst prove that only the normal rule is enabled in asuh on�guration and then, we show that this rule respets the "loally synhronization"property.2. Seondly, we prove that UFT SS veri�es liveness of UAU under the onsidered hypothesisin every exeution starting from a legitimate on�guration (i.e. every (orret) proessorinrements in�nitely often its lok, see respetively Lemma 7, 12, 16, and 21).This proof is done in the following way: we �rst show that every (orret) proessorexeutes in�nitely often the normal rule in every exeution starting from a on�guration

γ ∈ Γ1 and then, we show that if a proessor exeutes in�nitely often the normal rule, itinrements its lok in a �nite time.3. Finally, we prove that UFT SS onverges to a legitimate on�guration of UAU under theonsidered hypothesis in every exeution (i.e. there exists a on�guration γ ∈ Γ1 in everyexeution, see respetively Lemma 10, 13, 19, and 22).In order to omplete the proof we studying a potential funtion.4.3 Proof on a hainIn this setion, we assume that our algorithm is exeuted on a hain under a strongly fair loallyentral daemon. In the following we prove that UFT SS is a FTSS UAU (that implies that itis a FTSS AU) under these assumptions.. The proof ontains two major steps:- First, we prove that our algorithm is self-stabilizing.- Seond, we prove that our algorithm is self-stabilizing even if the initial on�gurationontains a rashed proessor.
20



4.3.1 Proof of self-stabilizationIn this setion, ǫ = γ0, γ1 . . . denotes an exeution of UFT SS in whih there is no rash.Firstly, we are going to prove the losure of our algorithm.Lemma 5 If there exists i ≥ 0 suh that γi ∈ Γ1, then γi+1 ∈ Γ1.Proof. Assume that there exists i ≥ 0 suh that γi ∈ Γ1. This implies that ∀p ∈ V,
(Inter(Np))

γi 6= ∅ and then the rule (C1) is not enabled in γi. Assume rule (C2) is enabled in
γi. This implies that (Inter(Np))

γi = {h} and that (Hp)
γi 6= h. Then, we have γi /∈ Γ1 (sineif (Hp)

γi 6= h, then the following holds: ∃q ∈ Np, | (Hp)
γi − (Hq)

γi | ≥ 2). This ontraditionallows us to onlude that the enabled proessors in γi are only enabled for rule (N).Let p be a proessor whih exeutes a rule during the step γi → γi+1. Sine the dae-mon is loally entral, neighbors of p do not exeute a rule during this step (their lokvalues remain idential). Assume the following holds: ∃q ∈ Np, | (Hp)
γi+1 − (Hq)

γi+1 | ≥ 2.By onstrution of rule (N), (Hp)
γi+1 ∈ (Inter(Np))

γi . By onstrution, (Inter(Np))
γi ⊆

{(Hq)
γi − 1, (Hq)

γi , (Hq)
γi + 1}. It follows that ∀q ∈ Np, | (Hp)

γi+1 − (Hq)
γi+1 | < 2 for eahproessor p whih exeutes a rule (sine ∀q ∈ Np, (Hq)

γi = (Hq)
γi+1). Overall, γi+1 ∈ Γ1. �Seondly, we prove the liveness of our algorithm.Lemma 6 ∀γ0 ∈ Γ1, ∀p ∈ V, p exeutes the rule (N) in a �nite time in any exeution startingfrom γ0.Proof. Let γ ∈ Γ1. Following Lemma 5, the only enabled rule is (N). We prove this propertyby indution. To this end, we de�ne the following property (where p denotes a proessor):

(Pd) : If d is the distane between p and the nearest end of the hain, then p exeutes the rule
(N) in a �nite time in any exeution starting from γ0.Initialization (d = 0): For all γ′, on�gurations ontained in an exeution starting from γ0, pis enabled for rule (N) sine (Inter(Np))

γ′

⊇ {(Hq)
γ′

, (Hq)
γ′

+ 1} where q denotes theonly neighbor of p. Sine the daemon is strongly fair, p exeutes a rule in a �nite time.Indution (d > 0): Assume (Pd−1) is true. Denote q the neighbor of p whih is on the half-hain starting with p whih realize d. Assume by absurd that p is never enabled for rule
(N) in an exeution ǫ starting from γ0 ∈ Γ1. This implies that, for eah on�guration γ′whih is ontained in ǫ, we have | (Inter(Np))

γ′

| = 1 (sine if | (Inter(Np))
γ′

| = 0, then
γ′ /∈ Γ1). Let us study the following ases:Case 1: q̄ never exeutes a rule in ǫ.It follows that: ∀γ′ ∈ ǫ, (Hq)

γ′

= (Hq̄)
γ′

+ 2 or (Hq)
γ′

= (Hq̄)
γ′

− 2. By onstrutionof (Inter(Nq))
γ′ and of rule (N), the lok of q an not move from a value to theother in a step (reall that only rule (N) an be enabled for q sine γ′ ∈ Γ1 by lemma5), this implies that q never exeutes the rule (N), whih ontradits (Pd−1).Case 2: q̄ exeutes a rule in a �nite time in ǫ.Let γ → γ′ be the �rst step in whih q̄ exeutes the rule (N). It is known that, forany γ ∈ Γ1:

| (Inter(Np))
γ | = 1 ⇒











(Hq̄)
γ

= ((Hp)
γ − 1) ∧ (Hq)

γ
= ((Hp)

γ
+ 1) (A)

or

(Hq̄)
γ

= ((Hp)
γ

+ 1) ∧ (Hq)
γ

= ((Hp)
γ − 1) (B)21



Let us study the following ases:Case 2.1: (A) is true in γ and (B) is true in γ′. The lok move of q̄ is in ontra-dition with the onstrution of maro next.Case 2.2: (B) is true in γ and (A) is true in γ′. The lok move of q is in ontra-dition with the onstrution of maro next.This proves that ase 2 is absurd.Sine the two ases are absurd, we an onlude that p is enabled for rule (N) in a �nitetime in every exeution starting from a on�guration γ ∈ Γ1. Sine the daemon is stronglyfair, we an say that p exeutes rule (N) in a �nite time in every exeution starting from
γ0. Consequently (Pd) is true.

�The above property implies that ∀γ0 ∈ Γ1, ∀p ∈ V, p exeutes the rule (N) in�nitely oftenin every exeution starting from γ0.Lemma 7 If γ ∈ Γ1, then any proessor inrements its lok in a �nite time in any exeutionstarting from γ.Proof. Assume by ontradition that there exists a proessor p and an exeution ǫ startingfrom γ0 ∈ Γ1 suh that p never inrements its lok in ǫ.Let be α = (Hp)
γ0 . By Lemma 6, p exeutes in�nitely often (N). But, it never inre-ments, that implies that next((Inter(Np))

γ
, (Hp)

γ
) = min{(Inter(Np)

γ
)} at eah exeutionof a rule by p (in a on�guration γ). Sine ∀γ ∈ Γ1, ∀q ∈ Np, | (Hp)

γ − (Hq)
γ | < 2 and

∀q ∈ Np, (Inter(Np))
γ ⊆ {(Hq)

γ − 1, (Hq)
γ , (Hq)

γ + 1}, we have: min{(Inter(Np))
γ} ≤ (Hp)

γ .Assume that there exists γ ∈ Γ1 suh that min{(Inter(Np))
γ} = (Hp)

γ . This implies thatthere exists q ∈ Np suh that (Hq)
γ

= (Hp)
γ

+ 1.If q̄ does not exist or if (Hq̄)
γ ∈ {(Hp)

γ
, (Hp)

γ
+ 1}, then (Hp)

γ
+ 1 ∈ (Inter(Np))

γ . Thisontradits next((Inter(Np))
γ

, (Hp)
γ
) = min{(Inter(Np)

γ
)}. We dedue that q̄ exists and that

(Hq̄)
γ = (Hp)

γ − 1. This implies that (N) is not enabled for p.We an dedue that, if rule (N) is exeuted by a proessor p in a on�guration γ, then
min{(Inter(Np))

γ} < (Hp)
γ . We an now state that, in at most α exeutions of p, Hp = 0.The next exeution of p inrements its lok value, whih ontradits the assumption on of pand the onstrution of ǫ. Then, we obtain the announed result. �In the following we prove the onvergene of our algorithm.Let γ ∈ Γ, we de�ne the following notations:

∀e = {p, q} ∈ E, ω(e, γ) = | (Hp)
γ − (Hq)

γ |
∀p ∈ V, ̟(p, γ) = max

e∈E/p∈e
{ω(e, γ)}

∀i ∈ N, p(i, γ) = |{e ∈ E/ω(e, γ) = i}|Consider the following potential funtion:
P :

{

Γ −→ N∞

γ 7−→ (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(2, γ)) with k = max
e∈E

{ω(e, γ)}We ompare two values of P by lexiographi order. The following properties are veri�ed:
∀γ ∈ Γ, P (γ) ≥ (. . . 0, 0)

∀γ ∈ Γ, γ ∈ Γ1 ⇔ P (γ) = (. . . , 0, 0)
∀γ ∈ Γ, γ ∈ Γ \ Γ1 ⇔ P (γ) > (. . . , 0, 0)22



Lemma 8 If γ ∈ Γ \ Γ1, then every step γ → γ′ whih ontains the exeution of a rule by aproessor p suh that ̟(p) ≥ 2 veri�es P (γ′) < P (γ).Proof. Let γ ∈ Γ \ Γ1. Let γ → γ′ be a step whih ontains the exeution of a rule by aproessor p suh that ̟(p) ≥ 2 and γ ∈ Γ \ Γ1. Sine the daemon is loally entral, neighborsof p do not modify their loks during this step. Consider the following ases:Case 1: p's degree equals 1.Let q be its only neighbor and j = ω({p, q}, γ) = | (Hp)
γ − (Hq)

γ |. (Inter(Np))
γ

=

{(Hq)
γ −1, (Hq)

γ
, (Hq)

γ
+1}. It follows that p exeuted rule (N). So, we have | (Hp)

γ′

−

(Hq)
γ′

| ≤ 1. Then: ̟({p, q}, γ′) ≤ 1 and :
P (γ) = (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(j, γ), . . . , p(2, γ))

P (γ′) = (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(j, γ) − 1, . . . , p(2, γ))And then: P (γ′) < P (γ).Case 2: p's degree equals 2.Let q be the neighbor of p suh that ω({p, q}, γ) = ̟(p, γ) ≥ 2 and denote j = ω({p, q̄}, γ) ≤
̟(p, γ), e = {p, q} and ē = {p, q̄}. Consider the following ases:Case 2.1: p exeuted the rule (N) during the step γ → γ′.By onstrution of (Inter(Np))

γ , we have ω(e, γ′) ≤ 1 and ω(ē, γ′) ≤ 1. Then:
P (γ) = (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(̟(p, γ), γ), . . . , p(j, γ), . . . , p(2, γ))

P (γ′) = (. . . , 0, p(k, γ), . . . , p(̟(p, γ), γ) − 1, . . . , p(j, γ) − 1, . . . , p(2, γ))And then: P (γ′) < P (γ).Case 2.2: p exeuted the rule (C2) during the step γ → γ′.This ase is similar to the ase 2.1.Case 2.3: p exeuted the rule (C1) during the step γ → γ′.Let us study the following ases:Case 2.3.1: We have: (Hq)
γ

< (Hq̄)
γ .By hypothesis, we know that ω(e, γ) ≥ ω(ē, γ) and then:

(Hp)
γ ≥

(Hq)
γ + (Hq̄)

γ

21) Assume that (Hp)
γ > (Hq̄)

γ +
(Hq)γ+(Hq̄)γ

2 .We an say that:
ω(e, γ) > (Hq̄)

γ − (Hq)
γ

+
(Hq)γ+(Hq̄)γ

2

ω(e, γ′) =
⌊

(Hq)γ+(Hq̄)γ

2

⌋Then: ω(e, γ′) < ω(e, γ).On the other hand,
ω(ē, γ) >

(Hq)γ+(Hq̄)γ

2

ω(ē, γ′) = (Hq̄)
γ −

⌊

(Hq)γ+(Hq̄)γ

2

⌋23



Then: ω(ē, γ′) ≤ ω(ē, γ).In onlusion, we have: P (γ′) < P (γ).2) Assume that (Hp)
γ ≤ (Hq̄)

γ
+

(Hq)γ+(Hq̄)γ

2 .We have then:
ω(e, γ) >

(Hq)γ+(Hq̄)γ

2

ω(e, γ′) =
⌊

(Hq)γ+(Hq̄)γ

2

⌋Then: ω(e, γ′) < ω(e, γ).In ontrast, we have that: ω(ē, γ′) ≥ ω(ē, γ). But we an say that ω(ē, γ′) <

ω(e, γ) (obvious if (Hp)
γ > (Hq̄)

γ , due to the fat that (Hp)
γ >

⌈

(Hq)γ+(Hq̄)γ

2

⌉ inthe ontrary ase).In onlusion, we have: P (γ′) < P (γ).Case 2.3.2: We have (Hq)
γ

> (Hq̄)
γ .This ase is similar to the ase 2.3.1 when we permute q and q̄.That proves the result. �Lemma 9 If γ0 ∈ Γ\Γ1, then every exeution starting from γ0 ontains the exeution of a ruleby a proessor p suh that ̟(p, γ0) ≥ 2.Proof. Let γ0 ∈ Γ \ Γ1. We reason by absurd. Assume that there exists an exeution

ǫ = γ0γ1 . . . starting from γ0 whih ontains no exeution of a rule by proessors p verifying
̟(p, γ0) ≥ 2.In a �rst time, assume that one of the end p of the hain verify: ̟(p, γ0) ≥ 2. Denote qthe only neighbor of p. If q is ativated during ǫ, we obtain a ontradition (sine ̟(q, γ0) ≥
̟(p, γ0) ≥ 2). If q is not ativated during ǫ, we obtain that ∀i ∈ N, (Inter(Np))

γi = {(Hq)
γ0 −

1, (Hq)
γ0 , (Hq)

γ0 + 1}, p is so always enabled for rule (N). Sine the daemon is strongly fair, pexeutes a rule in a �nite time, that is ontraditory. We an dedue that the two ends of thehain veri�es: ̟(p, γ0) < 2.Under a strongly fair daemon, the only way for a proessor to never exeute a rule is tobe never enabled from a given on�guration. Here, we assume that all proessors p verifying
̟(p, γ0) ≥ 2 never exeute a rule, that implies that the network verify:

∃k ∈ N, ∀j ≥ k, ∀p ∈ V/̟(p, γ0) ≥ 2,















(Inter(Np))
γj = ∅

and

(Hp)
γj ∈

{⌈

(Hq)γj +(Hq̄)γj

2

⌉

,
⌊

(Hq)γj +(Hq̄)γj

2

⌋}Number proessors of the hain from p1 to pn. Let i be the smallest integer suh that
̟(pi, γk) ≥ 2 (remark that, by hypothesis, pi+1 never exeute a rule, that implies that its lokvalue never hanges). All these onstraints allows us to say:











(

Hpi−1

)γk = (Hpi
)
γk + 1 ∧

(

Hpi+1

)γk = (Hpi
)
γk − 2 (A)

or
(

Hpi−1

)γk = (Hpi
)γk − 1 ∧

(

Hpi+1

)γk = (Hpi
)γk + 2 (B)By a reasoning similar to these of the proof of Lemma 7, we an prove that all proessorsbetween p0 and pi−1 exeutes in�nitely often the rule (N) in every exeution starting from γk24



even if pi never exeute a rule (this is the ase by hypothesis). By a reasoning similar to theseof the proof of Lemma 7, we an state that Hpi−1
not remains onstant. The onstrution of

Inter(Npi−1
) implies that (Inter(Npi−1

)
)γj ⊆ {(Hpi

)
γk −1, (Hpi

)
γk , (Hpi

)
γk +1} for eah j ≥ k(sine Hpi

does not hange by hypothesis).If we are in the ase (A), we an dedue that Hpi−1
takes in�nitely often the value (Hpi

)γk−1or (Hpi
)
γk . We an see that pi is enabled by (N) and (C1) respetively. This ontradits theonstrution of k (reall that pi is never enabled in ǫ from γk).If we are in the ase (B), we an dedue that Hpi−1

takes in�nitely often the value (Hpi
)
γk +1or (Hpi

)
γk . We an see that pi is enabled by (N) and (C1) respetively. This ontradits theonstrution of k (reall that pi is never enabled in ǫ from γk).This �nishes the proof. �Lemma 10 There exists i ≥ 0 suh that γi ∈ Γ1.Proof. The result follows diretly from Lemmas 8 and 9. �Finally, we an onlude:Proposition 7 UFT SS is a self-stabilizing AU under a loally entral strongly fair daemon.Proof. Lemmas 5, 7, and 10 allows us to say that UFT SS is a self-stabilizing UAU undera loally entral strongly fair daemon. Then, we an dedue the result. �4.3.2 Proof of self-stabilization in spite of a rashIn this setion, ǫ = γ0, γ1 . . . denotes an exeution of UFT SS suh that a proessor c is rashedin γ0.Firstly, we are going to prove the losure of our algorithm under these assumptions.Lemma 11 If there exists i ≥ 0 suh that γi ∈ Γ1, then γi+1 ∈ Γ1.Proof. We an repeat the reasoning of Lemma 5 sine the fat that a proessor is rashed ornot does not modify the proof. �Seondly, we are going to prove the liveness of our algorithm under these assumptions.Lemma 12 If γ0 ∈ Γ1, then every proessor p 6= c inrements its lok in a �nite time in ǫ.Proof. We repeat the reasoning of Lemma 7 taking in aount a proessor p ∈ V ∗.In order to prove the property of Lemma 6, we take d as the distane between p and the end

e of the hain whih veri�es: no proessor between p and e is rashed. This implies that theproessor q is not rashed. The ase in whih q̄ is rashed appear in the ase 1 of the indution.We an repeat the reasoning of the proof of Lemma 7 sine the fat that a proessor israshed or not does not modify the proof. �Now, we are going to prove the onvergene of our algorithm under these assumptions.Lemma 13 There exists i ≥ 0 suh that γi ∈ Γ1.Proof. We repeat the reasoning of Lemma 10 taking in aount a proessor p ∈ V ∗.We an repeat the reasoning of the proof of the property of Lemma 8 sine the fat that aproessor is rashed or not does not modify the proof.25



In order to prove the property of Lemma 9, we take a numbering of proessors whih ensurethe following property: no proessor between p0 and pi (inluding) is rashed. It is alwayspossible to hoose suh numbering sine there exists at least one edge e suh that ω(e, γk) ≥ 2by hypothesis, that implies that there exists at least two proessors p suh that ̟(p, γk) ≥ 2,that allows us to hoose one whih is not rashed. The ase in whih pi+1 is rashed does notmodify the proof sine we assumed that this proessor never exeute a rule. �Finally, we an onlude:Proposition 8 UFT SS is a self-stabilizing AU under a loally entral strongly fair daemoneven if a proessor is rashed in the initial on�guration.Proof. Lemmas 11, 12, and 13 allows us to say that UFT SS is a self-stabilizing UAU undera loally entral strongly fair daemon even if a proessor is rashed in the initial on�guration.Then, we an dedue the result. �4.4 Proof on a ringIn this setion, we assume that our algorithm is exeuted on a ring under a strongly fair loallyentral daemon. In fat, we are going to show that UFT SS is a FTSS UAU (that implies thatit is a FTSS AU) under these assumptions.. The proof ontains two major steps:- Firstly, we show that our algorithm is self-stabilizing under these assumptions.- Seondly, we show that our algorithm is self-stabilizing even if the initial on�gurationontains a rashed proessor under these assumptions.4.4.1 Proof of self-stabilizationIn this setion, ǫ = γ0, γ1 . . . denotes an exeution of UFT SS in whih there is no rash.Firstly, we are going to prove the losure of our algorithm under these assumptions.Lemma 14 If there exists i ≥ 0 suh that γi ∈ Γ1, then γi+1 ∈ Γ1.Proof. We an repeat the reasoning of the proof of Lemma 5 sine the topology of thenetwork has no impat on the proof. �Seondly, we are going to prove the liveness of our algorithm under these assumptions.Lemma 15 ∀γ0 ∈ Γ1, ∀p ∈ V, p exeutes rule (N) in a �nite time in every exeution startingfrom γ0.Proof. Let be γ0 ∈ Γ1 (we have seen in the proof of Lemma 5 that implies that only rule
(N) an be enabled). Assume that there exists a proessorp and an exeution ǫ = γ0, γ1 . . .starting from γ0 suh that p never exeute a rule in ǫ. Sine the daemon is strongly fair, thatimplies that ∃k ∈ N, ∀j ≥ k, p is not enabled in γjSine Proessor p is not enabled, it verify: ∃q ∈ Np, (Hp)

γj = (Hq)
γj + 1 and (Hp)

γj =
(Hq̄)

γj − 1. Let i be the smallest integer greater than k suh that the step γi → γi+1 ontainsthe exeution of rule by at least one neighbor of p. Let us study the following ases:Case 1: q and q̄ simultaneously exeute a rule during the step γi → γi+1.Sine p is not enabled in γi+1 (by hypothesis) and that the exeution of rule (N) always26



modi�es the lok values (f. proof of Lemma 7),we have:










(Hp)
γi = (Hq)

γi + 1 and (Hp)
γi = (Hq̄)

γi − 1

and

(Hp)
γi+1 = (Hq)

γi+1 − 1 and (Hp)
γi+1 = (Hq̄)

γi+1 + 1The lok move of q̄ ontradits the onstrution of rule (N) and (Inter(Np))
γi . Therefore,this ase is impossible.Case 2: Only q exeutes a rule during the step γi → γi+1.By onstrution of rule (N), (Inter(Nq))

γi , and the fat that the exeution of this rulemust hange the lok value, we have: (Hq)
γi+1 ∈ {(Hp)

γi , (Hp)
γi − 1}. Proessor p isthen enabled for rule (N) (sine the loks of p and q̄ have not hanged by hypothesis).This ontradits the onstrution of k. Therefore, this ase is impossible.Case 3: Only q̄ exeutes a rule during the step γi → γi+1.This ase is similar to ase 2.Case 4: Neither q nor q̄ exeutes a rule during the step γi → γi+1.By the three previous ontradition, it is the only possible ase.We an dedue that ∀j ≥ k, q and q̄ do not exeute a rule in γj , that implies that theirlok values remains onstant from γk. If we repeat the previous reasoning, we obtain that it ispossible only if the seond neighbor of q has a lok value equal to (Hp)
γk + 2 and if the seondneighbor of q̄ have a lok value equals to (Hp)

γk − 2, et..Sine the ring has a �nite length n, we obtain (following the same reasoning) there exists twoneighboring proessors p1, p2 suh that (Hp1
)
γk = (Hp)

γk + α and (Hp2
)
γk = (Hp)

γk − β (with
α and β integers greater or equal to 1 depending on the parity of n). Therefore, | (Hp1

)γk −
(Hp2

)
γk | = α + β ≥ 2. Then, we obtain that γk /∈ Γ1, whih ontradits Lemma 14 and provesthe lemma. �Lemma 16 If γ0 ∈ Γ1, then every proessor inrements its lok in a �nite time in ǫ.Proof. The proof is similar to these of Lemma 7 using Lemma 15 (instead of Lemma 6) sinethe topology of the network has no impat on the proof. �Now, we are going to prove the onvergene of our algorithm under these assumptions.In the following, we onsider the potential funtion P previously de�ned and use similararguments as for the proof of Lemma 10.Lemma 17 If γ ∈ Γ \ Γ1, then every step γ → γ′ whih ontains the exeution of a rule of aproessor p suh that ̟(p) ≥ 2 veri�es P (γ′) < P (γ).Proof. The proof is similar to the proof of Lemma 8 sine the topology of the network hasno impat on the proof (note that the ase 1 is impossible on a ring). �Lemma 18 If γ0 ∈ Γ \ Γ1, then every exeution starting from γ0 ontains the exeution of arule of a proessor p suh that ̟(p, γ0) ≥ 2.Proof. Let γ0 ∈ Γ \ Γ1. Assume, by ontradition, that there exists an exeution ǫ =

γ0γ1 . . . starting from γ0 whih ontains no exeution of a rule by any proessor p whih veri�es
̟(p, γ0) ≥ 2. Sine the daemon is strongly fair, this implies that ∃k ∈ N, ∀j ≥ k, p is notenabled in γj 27



Let q be the neighbor of p verifying ω({p, q}, γk) = ̟(p, γk). By hypothesis, q never exeutesa rule. Therefore, its lok value remains onstant. Let us study the following ases:Case 1: | (Hq)
γj − (Hq̄)

γj | ≤ 1It follows that p is enabled for the rule (N) sine | (Inter(Np))
γj | ≥ 2. This ontraditsthe onstrution of k.Case 2: | (Hq)

γj − (Hq̄)
γj | = 2It follows that p is enabled for the rule (C1) sine (Inter(Np))

γj = {h} and (Hp)
γj 6= h(beause ̟(p, γj) = ̟(p, γk) ≥ 2). This ontradits the onstrution of k.Case 3: | (Hq)

γj − (Hq̄)
γj | ≥ 3By the two previous ontraditions, it is the only possible ase. Sine p is not enabled (byhypothesis), we obtain that:

∀j ≥ k,















(Inter(Np))
γj = ∅

and

(Hp)
γj ∈

{⌈

(Hq)γj +(Hq̄)γj

2

⌉

,
⌊

(Hq)γj +(Hq̄)γj

2

⌋}Sine the lok values of p and q are onstants by hypothesis, we an dedue that the one of
q̄ remains also onstant (beause, in the ontrary ase, p beomes enabled, that ontraditsthe hypothesis). It follows: (Hq)

γj < (Hp)
γj < (Hq̄)

γj or (Hq)
γj > (Hp)

γj > (Hq̄)
γj .Sine this reasoning holds for every proessor on the ring, we an always label the nodes ofany ring by p0, p1,. . . ,pn suh that the following property is satis�ed : Hp0

< Hp1
< . . . < Hpn

.But, the previous reasoning for Proessor Hp0
implies that we have: Hpn

< Hp0
< Hp1

. Itis impossible to satisfy simultaneously these two inequalities, that proves the result �Lemma 19 There exists i ≥ 0 suh that γi ∈ Γ1.Proof. The result follows diretly from Lemmas 17 and 18. �Finally, we an onlude:Proposition 9 UFT SS is a self-stabilizing AU under a loally entral strongly fair daemon.Proof. Lemmas 14, 16, and 19 lead to the onlusion that UFT SS is a self-stabilizing UAUunder a loally entral strongly fair daemon.
�4.4.2 Proof of self-stabilization in spite of a rashIn this setion, ǫ = γ0, γ1 . . . denotes an exeution of UFT SS suh that a proessor c is rashedin γ0.Firs, we prove the losure of our algorithm, then we prove the onvergene property.Lemma 20 If there exists i ≥ 0 suh that γi ∈ Γ1, then γi+1 ∈ Γ1.Proof. This proof is similar to the proof of Lemma 14 sine the fat that a proessor israshed or not does not modify the proof. �Seondly, we are going to prove the liveness of our algorithm under these assumptions.28



Lemma 21 If γ0 ∈ Γ1, then every proessor p 6= c inrements its lok in a �nite time in ǫ.Proof. This proof is similar to the proof of Lemma 16. Note that the rash of a proessor ispossible only for the ase 4. �In the following we prove the onvergene of our algorithm.Lemma 22 There exists i ≥ 0 suh that γi ∈ Γ1.Proof. This proof is similar to the proof of Lemma 19 sine the fat that a proessor israshed or not does not modify the proof. �Finally, we an onlude:Proposition 10 UFT SS is a self-stabilizing AU under a loally entral strongly fair daemoneven if a proessor is rashed in the initial on�guration.Proof. Lemmas 20, 21, and 22 allows us to say that UFT SS is a self-stabilizing UAU undera loally entral strongly fair daemon even if a proessor is rashed in the initial on�guration.Then, we an dedue the result. �4.5 ConlusionWe are now in position to state our �nal result:Proposition 11 UFT SS is a (0, 1)-ftss AU on a hain or a ring under a loally entralstrongly fair daemon.Proof. This a diret onsequene of Propositions 7, 8, 9, and 10. �5 ConlusionWe presented the �rst study of FTSS protools for dynami tasks in asynhronous systems, andshowed the intrinsi problems that are indued by the wide range of faults that we address. Theombination of asynhrony and maintenane of liveness properties implies many impossibilityresults, and the deterministi protool that we provided for one of the few remaining ases isoptimal with respet to all impossibility results and ontainment measures.There remains the open ase of protools that neither satisfy the minimality or the priorityproperties (see Table 1). We onjeture that at least one of those properties is neessary for thepurpose of deterministi self-stabilization, yet none of those ould be required for deterministiweak stabilization [16℄ (weak stabilization is a weaker property than self-stabilization sineexistene of exeution reahing a legitimate on�guration is guaranteed). As reent results [7℄hint that weak-stabilizing solutions ould indue probabilisti self-stabilizing ones, this raisesthe open question of the possibility of probabilisti FTSS for dynami tasks in asynhronoussystems.
29
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