
Introducing Speculation in Self-Stabilization
An Application to Mutual Exclusion

Swan Dubois∗

LPD, EPFL, Switzerland
Rachid Guerraoui†

LPD, EPFL, Switzerland

Abstract

Self-stabilization ensures that, after any transient fault, the system recovers in a finite time
and eventually exhibits. Speculation consists in guaranteeing that the system satisfies its require-
ments for any execution but exhibits significantly better performances for a subset of executions
that are more probable. A speculative protocol is in this sense supposed to be both robust and
efficient in practice.

We introduce the notion of speculative stabilization which we illustrate through the mutual
exclusion problem. We then present a novel speculatively stabilizing mutual exclusion protocol.
Our protocol is self-stabilizing for any asynchronous execution. We prove that its stabilization
time for synchronous executions is ddiam(g)/2e steps (where diam(g) denotes the diameter of
the system).

This complexity result is of independent interest. The celebrated mutual exclusion protocol
of Dijkstra stabilizes in n steps (where n is the number of processes) in synchronous executions
and the question whether the stabilization time could be strictly smaller than the diameter has
been open since then (almost 40 years). We show that this is indeed possible for any underlying
topology. We also provide a lower bound proof that shows that our new stabilization time of
ddiam(g)/2e steps is optimal for synchronous executions, even if asynchronous stabilization is
not required.

Keywords: Fault-tolerance; Speculation; Self-stabilization; Mutual exclusion.

1 Introduction

The speculative approach to distributed computing [21, 23, 18, 13, 14] lies on the inherent trade-of
between robustness and efficiency. Indeed, we typically require distributed applications to be safe
and live under various hostile conditions such as asynchronism, faults, attacks, and contention.
This typically leads to high consumption of system resources, e.g. time of computation, which is
due to the need to perform synchronizations, redundancies or checking.

The speculative approach assumes that, even if degraded conditions are indeed possible, they
are less probable than friendly conditions (for example, synchronous executions without faults).
The underlying idea is to simultaneously ensure that the protocol is correct whatever the execution
is (even in degraded conditions) but to optimize it for a subset of executions that are the most
probable in practice. Even if this idea was applied in various contexts, it has never been applied
to distributed systems tolerant to transient faults, i.e. self-stabilizing systems [8]. In fact, it was

∗swan.dubois@epfl.ch
†rachid.guerraoui@epfl.ch

1

ar
X

iv
:1

30
2.

22
17

v1
 [

cs
.D

C
]

 9
 F

eb
 2

01
3

not clear whether self-stabilization and speculation could be even combined because of the specific
nature of transient faults, for they could corrupt the state of the entire system. The objective of
this paper is to explore this avenue.

Self-stabilization was introduced by Dijkstra [8]. Intuitively, a self-stabilizing system ensures
that, after the end of any transient fault, the system reaches in a finite time, without any external
help, a correct behavior. In other words, a self-stabilizing system repairs itself from any catastrophic
state. Since the seminal work of Dijkstra, self-stabilizing protocols were largely studied (see e.g.
[9, 24, 16]). The main objective has been to design self-stabilizing systems tolerating asynchronism
while reducing the stabilization time, i.e., the worst time needed by the protocol to recover a correct
behavior over all executions of the system.

Our contribution is twofold. First, we define a new variation of self-stabilization in which the
main measure of complexity, the stabilization time, is regarded as a function of the adversary and
not as a single value. Indeed, we associate to each adversary (known as a scheduler or daemon in
self-stabilization) the worst stabilization time of the protocol over the set of executions captured
by this adversary. Then, we define a speculatively stabilizing protocol as a protocol that self-
stabilizes under a given adversary but that exhibits a significantly better stabilization time under
another (and weaker) adversary. In this way, we ensure that the protocol stabilizes in a large set
of executions but guarantees efficiency only on a smaller set (the one we speculate more probable
in practice). For the sake of simplicity, we present our notion of speculative stabilization for two
adversaries. It could be easily extended to an arbitrary number of adversaries.

Although the idea of optimizing the stabilization time for some subclass of executions is new,
some self-stabilizing protocols satisfy (somehow by accident) our definition of speculative stabiliza-
tion. For example, the Dijkstra’s mutual exclusion protocol stabilization time falls to n steps (the
number of processes) in synchronous executions. The question whether one could do better has
been open since then, i.e. during almost 40 years. We close the question in this paper through the
second contribution of this paper.

Indeed, we present a novel speculatively stabilizing mutual exclusion protocol. We prove that
its stabilization time for synchronous executions is ddiam(g)/2e steps (where diam(g) denotes the
diameter of the system), which significantly improves the bound of Dijkstra’s protocol. We prove
that we cannot improve it. Indeed, we present a lower bound result on the stabilization time of
mutual exclusion for synchronous executions. This result is of independent interest since it remains
true beyond the scope of speculation and holds even for a protocol that does not need to stabilize
in asynchronous executions.

Designing our protocol went through addressing two technical challenges. First, we require
the stabilization of a global property (the uniqueness of critical section) in a time strictly smaller
than the diameter of the system, which is counter-intuitive (even for synchronous executions).
Second, the optimization of the stabilization time for synchronous executions must not prevent the
stabilization for asynchronous ones.

The key to addressing both challenges was a “reduction” to clock synchronization: more specif-
ically, leveraging the self-stabilizing asynchronous unison protocol of [2] within mutual exclusion.
We show that it is sufficient to choose correctly the clock size and to grant the access to critical
section upon some clock values to ensure (i) the self-stabilization of the protocol for any asyn-
chronous execution as well as (ii) the optimality of its stabilization time for synchronous ones.
This reduction was also, we believe, the key to the genericity of our protocol. Unlike Dijkstra’s
protocol which assumes an underlying ring shaped communication structure, our protocol runs over

2

any communication structure.
We could derive our lower bound result for synchronous executions based on the observation

that a process can gather information at most at distance d in d steps whatever protocol it executes.
Hence, in the worst case, it is impossible to prevent two processes from simultaneously entering a
critical section during the first ddiam(g)/2e steps of all executions with a deterministic protocol.

The rest of this paper is organized as follows. Section 2 introduces the model and the definitions
used through the paper. Section 3 presents our notion of speculative stabilization. Section 4 presents
our mutual exclusion protocol. Section 5 provides our lower bound result. Section 6 ends the paper
with some perspectives.

2 Model, Definitions, and Notations

We consider the classical model of distributed systems introduced by Dijkstra [8]. Processes com-
municate by atomic reading of neighbors’ states and the (asynchronous) adversary of the system is
captured by an abstraction called daemon.

Distributed protocol. The distributed system consists of a set of processes that form a commu-
nication graph. The processes are vertices in this graph and the set of those vertices is denoted by
V . The edges of this graph are pairs of processes that can communicate with each other. Such pairs
are neighbors and the set of edges is denoted by E (E ⊆ V 2). Hence, g = (V,E) is the communica-
tion graph of the distributed system. Each vertex of g has a set of variables, each of them ranges
over a fixed domain of values. A state γ(v) of a vertex v is the vector of values of all variables of v
at a given time. An assignment of values to all variables of the graph is a configuration. The set of
configurations of g is denoted by Γ. An action α of g transitions the graph from one configuration
to another. The set of actions of g is denoted by A (A = {(γ, γ′)|γ ∈ Γ, γ′ ∈ Γ, γ 6= γ′}). A
distributed protocol π on g is defined as a subset of A that gathers all actions of g allowed by π.
The set of distributed protocols on g is denoted by Π (Π = P (A) where, for any set S, P (S) denotes
the powerset of S).

Execution. Given a graph g, a distributed protocol π on g, an execution σ of π on g, starting
from a given configuration γ0, is a maximal sequence of actions of π of the following form σ =
(γ0, γ1)(γ1, γ2)(γ2, γ3) An execution is maximal if it is either infinite or finite but its last
configuration is terminal (that is, there exists no actions of π starting from this configuration).
The set of all executions of π on g, starting from all configurations of Γ, is denoted by Σπ.

Adversary (daemon). Intuitively, a daemon is a restriction on the executions of distributed
protocols to be considered possible. For a distributed protocol π, at each configuration γ, a subset
of vertices are enabled, that is there exists an action of π that modifies their state (formally,
∃γ′ ∈ Γ, (γ, γ′) ∈ π, γ(v) 6= γ′(v)). The daemon then chooses one of the possible action of π
starting from γ (and hence, selects a subset of enabled vertices that are allowed to modify their
state during this action). A formal definition follows.

Definition 1 (Daemon). Given a graph g, a daemon d on g is a function that associates to each
distributed protocol π on g a subset of executions of π, that is d : π ∈ Π 7−→ d(π) ∈ P (Σπ).

3

Given a graph g, a daemon d on g and a distributed protocol π on g, an execution σ of π
(σ ∈ Σπ) is allowed by d if and only if σ ∈ d(π). Also, given a graph g, a daemon d on g and a
distributed protocol π on g, we say that π runs on g under d if we consider that the only possible
executions of π on g are those allowed by d.

Some classical examples of daemons follow. The unfair distributed daemon [19] (denoted by
ud) is the less constrained one because we made no assumption on its choices (any execution of
the distributed protocol is allowed). The synchronous daemon [15] (denoted by sd) is the one that
selects all enabled vertices in each configuration. The central daemon [8] (denoted by cd) selects
only one enabled vertex in each configuration.

This way of viewing daemons as a set of possible executions (for a particular graph g) drives
a natural partial order over the set of daemons. For a particular graph g, a daemon d is more
powerful than another daemon d′ if all executions allowed by d′ are also allowed by d. Overall, d
has more scheduling choices than d′. A more precise definition follows.

Definition 2 (Partial order over daemons). For a given graph g, we define the following partial
order 4 on D: ∀(d, d′) ∈ D, d 4 d′ ⇔ (∀π ∈ Π, d(π) ⊆ d′(π)). If two daemons d and d′ satisfy
d 4 d′, we say that d′ is more powerful than d.

For example, the unfair distributed daemon is more powerful than any daemon (in particular
the synchronous one). Note that some daemons (for example the synchronous and the central ones)
are not comparable. For a more detailed discussion about daemons, the reader is referred to [10].

Further notations. Given a graph g and a distributed protocol π on g, we introduce the following
set of notations. First, n denotes the number of vertices of the graph whereas m denotes the number
of edges (n = |V | and m = |E|). The set of neighbors of a vertex v is denoted by neig(v). The
distance between two vertices u and v (that is, the length of a shortest path between u and v in g)
is denoted by dist(g, u, v). The diameter of g (that is, the maximal distance between two vertices
of g) is denoted by diam(g). For any execution e = (γ0, γ1)(γ1, γ2) . . ., we denote by ei the prefix
of e of length i (that is ei = (γ0, γ1)(γ1, γ2) . . . (γi−1, γi)).

Guarded representation of distributed protocols. For the sake of clarity, we do not describe
distributed protocols by enumerating all their actions. Instead, we represent distributed protocols
using a local description of actions borrowed from [8]. Each vertex has a local protocol consisting
of a set of guarded rules of the following form: < label > :: < guard > −→ < action >.
< label > is a name to refer to the rule in the text. < guard > is a predicate that involves variables
of the vertex and of its neighbors. This predicate is true if and only if the vertex is enabled in the
current configuration. We say that a rule is enabled in a configuration when its guard is evaluated
to true in this configuration. < action > is a set of instructions modifying the state of the vertex.
This set of instructions must describe the changes of the vertex state if this latter is activated by
the daemon.

Self-stabilization. Intuitively, to be self-stabilizing [8], a distributed protocol must satisfy the
two following properties: (i) closure, that is there exists some configuration from which any exe-
cution of the distributed protocol satisfies the specification; and (ii) convergence, that is starting
from any arbitrary configuration, any execution of the distributed protocol reaches in a finite time
a configuration that satisfies the closure property.

4

Self-stabilization induces fault-tolerance since the initial configuration of the system may be
arbitrary because of a burst of transient faults. Then, a self-stabilizing distributed protocol ensures
that after a finite time (called the convergence or stabilization time), the distributed protocol
recovers on his own a correct behavior (by convergence property) and keeps this correct behavior
until there is no faults (by closure property).

Definition 3 (Self-stabilization [8]). A distributed protocol π is self-stabilizing for specification spec
under a daemon d if starting from any arbitrary configuration every execution of d(π) contains a
configuration from which every execution of d(π) satisfies spec.

For any self-stabilizing distributed protocol π under a daemon d for a specification spec, its
convergence (or stabilization) time (denoted by conv time(π, d)) is the worst stabilization time
(that is, the number of actions required to reach a configuration from which any execution satisfies
spec) of executions of π allowed by d. Note that, for any self-stabilizing distributed protocol π
under a daemon d, π is self-stabilizing under any daemon d′ such that d′ 4 d and conv time(π, d′) ≤
conv time(π, d).

3 Speculative Stabilization

Intuitively, a speculative protocol ensures the correctness in a large set of executions but is optimized
for some scenarios that are speculated to be more frequent (maybe at the price of worst performance
in less frequent cases).

Regarding self-stabilization, the most common measure of complexity is the stabilization time.
Accordingly, we choose to define a speculatively stabilizing protocol as a self-stabilizing protocol
under a given daemon that exhibits a significantly better stabilization time under a weaker daemon
(the latter gathers scenarios that are speculated to be more frequent). We can now define our
notion of speculative stabilization.

Definition 4 (Speculative Stabilization). For two daemons d and d′ satisfying d′ ≺ d, a distributed
protocol π is (d, d′, f)-speculatively stabilizing for specification spec if: (i) π is self-stabilizing for

spec under d; and (ii) f is a function on g satisfying conv time(π,d)
conv time(π,d′) ∈ Ω(f).

We restrict ourselves for two daemons here for the sake of clarity. We can easily extend this
definition to an arbitrary number of daemons (as long as they are comparable). For instance, we
can say that a distributed protocol π is (d, d1, d2, f1, f2)-speculatively stabilizing (with d1 ≺ d and
d2 ≺ d) if it is both (d, d1, f1)-speculatively stabilizing and (d, d2, f2)-speculatively stabilizing.

Still for the sake of simplicity, we say in the following that a distributed protocol π is d-
speculatively stabilizing for specification spec if there exists a daemon d 6= ud such that π is
(ud, d, f)-speculatively stabilizing for specification spec with f > 1. In other words, a d-speculatively
stabilizing distributed protocol is self-stabilizing under the unfair distributed daemon (and hence
always guarantees convergence) but is optimized for a given subclass of executions described by d.

Examples. Although the idea of speculation approaches in self-stabilization has not been yet
precisely defined, there exists some examples of self-stabilizing distributed protocols in the literature
that turn out to be speculative. We survey some of them in the following.

The seminal work of Dijkstra [8] introduced self-stabilization in the context of mutual exclusion.
His celebrated protocol operates only on rings. It is in fact (ud, sd, g 7→ n)-speculatively stabilizing

5

since it stabilizes upon Θ(n2) steps under the unfair distributed daemon and it is easy to see that
it needs only n steps to stabilize under the synchronous daemon. The well-known min+ 1 protocol
of [17] is (ud, sd, g 7→ n2/diam(g))-speculatively stabilizing for BFS spanning tree construction. Its
stabilization time is in Θ(n2) steps under the unfair distributed daemon while it is in Θ(diam(g))
steps under the synchronous daemon. Another example is the self-stabilizing maximal matching
protocol of [22]. This protocol is (ud, sd, g 7→ m/n)-speculatively stabilizing: its stabilization time is
4n+2m (respectively 2n+1) steps under the unfair distributed (respectively synchronous) daemon.

4 A new Mutual Exclusion Protocol

Mutual exclusion was classically adopted as a benchmark in self-stabilization under various settings
[8, 20, 11, 5, 1]. Intuitively, it consists in ensuring that each vertex can enter infinitely often in
critical section and there is never two vertices simultaneously in the critical section. Using such a
distributed protocol, vertices can for example access shared resources without conflict.

Our contribution in this context is a novel self-stabilizing distributed protocol for mutual exclu-
sion under the unfair distributed daemon that moreover exhibits optimal convergence time under
the synchronous daemon. Contrary to the Dijkstra’s protocol, our protocol supports any underlying
communication structure (we do not assume that the communication graph is reduced to a ring).
Thanks to speculation, our protocol is ideal for environment in which we speculate that most of
the executions are synchronous.

We adopt the following specification of mutual exclusion. For each vertex v, we define a predicate
privilegedv (over variables of v and possibly of its neighbors). We say that a vertex v is privileged in
a configuration γ if and only if privilegedv = true in γ. If a vertex v is privileged in a configuration
γ and v is activated during an action (γ, γ′), then v executes its critical section during this action.
We can now specify the mutual exclusion problem as follows.

Specification 1 (Mutual exclusion specME). An execution e satisfies specME if at most one vertex
is privileged in any configuration of e (safety) and any vertex infinitely often executes its critical
section in e (liveness).

The rest of this section is organized as follows. Section 4.1 overviews our protocol. Section 4.2
proves the correctness of our protocol under the unfair distributed daemon. Section 4.3 analyzes
its stabilization time under the synchronous and the unfair distributed daemon.

4.1 Speculatively Stabilizing Mutual Exclusion

As we restrict ourselves to deterministic protocols, we know by [4] that, to ensure mutual exclusion,
we must assume a system with identities (that is, each vertex has a distinct identifier). Indeed,
we know by [4] that the problem does not admit deterministic solution on uniform (i.e. without
identifiers) rings of composite size. Without loss of generality, we assume that the set of identities
(denoted by ID) is equals to {0, 1, . . . , n−1} (if this assumption is not satisfied, it is easy to define
a mapping of identities satisfying it).

Our protocol is based upon an existing self-stabilizing distributed protocol for the asynchronous
unison problem [12, 6]. This problem consists in ensuring, under the unfair distributed daemon,
some synchronization guarantees on vertices’ clocks. More precisely, each vertex has a register rv
that contains a clock value. A clock is a bounded set enhanced with an incrementation function.

6

Intuitively, an asynchronous unison protocol ensures that the difference between neighbors’ registers
is bounded and that each register is infinitely often incremented.

In the following, we give the definition of this problem and the solution proposed in [2] from
which we derive our mutual exclusion protocol.

Clock. A bounded clock X = (C, φ) is a bounded set C = cherry(α,K) (parametrized with two
integers α ≥ 1 and K ≥ 2) enhanced with an incrementation function φ defined as follows.

Figure 1: A bounded clock X =
(cherry(α,K), φ) with α = 5 and
K = 12.

Let c be any integer. Denote by c the unique element in
[0, . . . ,K − 1] such that c = c mod K. We define the dis-
tance dK(c, c′) = min{c− c′, c′ − c} on [0, . . . ,K − 1]. Two
integers c and c′ are said to be locally comparable if and
only if dK(a, b) ≤ 1. We then define the local order relation
≤l as follows: c ≤l c′ if and only if 0 ≤ c′ − c ≤ 1. Let us
define cherry(α,K) = {−α, . . . , 0, . . . ,K − 1}. Let φ be the
function defined by:

φ : c ∈ cherry(α,K) 7→
{

(c+ 1) if c < 0
(c+ 1) mod K otherwise

The pair X = (cherry(α,K), φ) is called a bounded clock
of initial value α and of size K (see Figure 1). We say that a
clock value c ∈ cherry(α,K) is incremented when this value
is replaced by φ(c). A reset on X consists of an operation
replacing any value of cherry(α,K) \ {−α} by −α. Let
initX = {−α, . . . , 0} and stabX = {0, . . . ,K−1} be the set of
initial values and correct values respectively. Let us denote init∗X = initX \{0}, stab∗X = stabX \{0},
and ≤init the usual total order on initX .

Asynchronous unison. Given a distributed system in which each vertex v has a register rv taken
a value of a bounded clock X = (C, φ) with C = cherry(α,K), we define a legitimate configuration
for asynchronous unison as a configuration satisfying: ∀v ∈ V,∀u ∈ neig(v), (rv ∈ stabX) ∧ (ru ∈
stabX) ∧ (dK(rv, ru) ≤ 1). In other words, a legitimate configuration is a configuration in which
each clock value is a correct one and the drift between neighbors’ registers is bounded by 1. We
denote by Γ1 the set of legitimate configurations for asynchronous unison. Note that we have, for
any configuration of Γ1 and any pair of vertices, (u, v), dK(ru, rv) ≤ diam(g) by definition. We can
now specify the problem.

Specification 2 (Asynchronous unison specAU). An execution e satisfies specAU if every configu-
ration of e belongs to Γ1 (safety) and the clock value of each vertex is infinitely often incremented
in e (liveness).

In [2], the authors propose a self-stabilizing asynchronous unison distributed protocol in any
anonymous distributed system under the unfair distributed daemon. The main idea of this protocol
is to reset the clock value of each vertex that detects any local safety violation (that is, whenever
some neighbor that has a not locally comparable clock value). Otherwise, a vertex is allowed to
increment its clock (of initial or of correct value) only if this latter has locally the smallest value.

7

Algorithm 1 SSME : Mutual exclusion protocol for vertex v.

Constants:
idv ∈ ID : identity of v
n ∈ N : number of vertices of the communication graph
diam(g) ∈ N : diameter of the communication graph
X = (cherry(n, (2.n− 1)(diam(g) + 1) + 2), φ) : clock of v

Variable:
rv ∈ X : register of v

Predicates:
privilegedv ≡ (rv = 2.n+ 2.diam(g).idv)
correctv(u) ≡ (rv ∈ stabX) ∧ (ru ∈ stabX) ∧ (dK(rv, ru) ≤ 1)
allCorrectv ≡ ∀u ∈ neig(v), correctv(u)
normalStepv ≡ allCorrectv ∧ (∀u ∈ neig(v), rv ≤l ru)
convergeStepv ≡ rv ∈ init∗X ∧ ∀u ∈ neig(v), (ru ∈ initX ∧ rv ≤init ru)
resetInitv ≡ ¬allCorrectv ∧ (rv /∈ initX)

Rules:
NA :: normalStepv −→ rv := φ(rv)
CA :: convergeStepv −→ rv := φ(rv)
RA :: resetInitv −→ rv := −n

The choice of parameters α and K are crucial. In particular, to make the protocol self-stabilizing
for any anonymous communication graph g under the unfair distributed daemon, the parameters
must satisfy α ≥ hole(g) − 2 and K > cyclo(g), where hole(g) and cyclo(g) are two constants
related to the topology of g. Namely, hole(g) is the length of a longest hole in g (i.e. the longest
chordless cycle), if g contains a cycle, 2 otherwise. cyclo(g) is the cyclomatic characteristic of g
(i.e. the length of the maximal cycle of the shortest maximal cycle basis of g), if g contains a cycle,
2 otherwise. Actually, [2] shows that taking α ≥ hole(g)− 2 ensures that the protocol recovers in
finite time a configuration in Γ1. Then, taking K > cyclo(g) ensures that each vertex increments
its local clock infinitely often. Note that, by definition, hole(g) and cyclo(g) are bounded by n.

The mutual exclusion protocol. The main idea behind our protocol is to execute the asyn-
chronous unison of [2], presented earlier, with a particular bounded clock and then to grant the
privilege to a vertex only when its clock reaches some value. The clock size must be sufficiently
large to ensure that at most one vertex is privileged in any configuration of Γ1. If the definition
of the predicate privileged guarantees this property, then the correctness of our mutual exclusion
protocol follows from the one of the underlying asynchronous unison.

More specifically, we choose a bounded clock X = (cherry(α,K), φ) with α = n and K =
(2.n−1)(diam(g)+1)+2 and we define privilegedv ≡ (rv = 2.n+2.diam(g).idv). In particular, note
that we have : privilegedv0 ≡ (rv0 = 2.n) and privilegedvn−1 ≡ (rvn−1 = (2.n−2)(diam(g)+1)+2).

Our distributed protocol, called SSME (for Speculatively Stabilizing Mutual Exclusion), is
described in Algorithm 1. Note that this protocol is identical to the one of [2] except for the size of
the clock and the definition of the predicate privileged (that does not interfere with the protocol).

We prove in the following that this protocol is self-stabilizing for specME under the unfair
distributed daemon and exhibits the optimal convergence time under the synchronous one. In
other words, we will prove that this protocol is sd-speculatively stabilizing for specME .

8

4.2 Correctness

We prove here the self-stabilization of SSME under the unfair distributed daemon.

Theorem 1. SSME is a self-stabilizing distributed protocol for specME under ufd.

Proof. As we choose α = n ≥ hole(g) − 2 and K = (2.n − 1)(diam(g) + 1) + 2 > n ≥ cyclo(g),
the main result of [2] allows us to deduce that SSME is a self-stabilizing distributed protocol for
specAU under ufd (recall that the predicate privileged does not interfere with the protocol). By
definition, this implies that there exists, for any execution e of SSME under ufd, a suffix e′ reached
in a finite time that satisfies specAU .

Let γ be a configuration of e′ such a vertex v is privileged in γ. Then, by definition, we have
rv = 2.n + 2.diam(g).idv. As γ belongs to e′, we can deduce that γ ∈ Γ1. Hence, for any vertex
u ∈ V \ {v}, we have dK(ru, rv) ≤ diam(g). Then, by definition of the predicate prvileged, no
other vertex than v can be privileged in γ. We can deduce that the safety of specME is satisfied
on e′. The liveness of specME on e′ follows from the one of specAU and from the definition of the
predicate privileged.

Hence, for any execution of SSME under ufd, there exists a suffix reached in a finite time that
satisfies specME , that proves the theorem.

4.3 Time Complexities

This section analyses the time complexity of our self-stabilizing mutual exclusion protocol. In
particular, we provide an upper bound of its stabilization time under the synchronous daemon (see
Theorem 2) and under the unfair distributed daemon (see Theorem 3).

Synchronous daemon. We first focus on the stabilization time of SSME under the synchronous
daemon. We need to introduce some notations and definitions.

From now, e = (γ0, γ1)(γ1, γ2) . . . denotes a synchronous execution of SSME starting from an
arbitrary configuration γ0. For a configuration γi and a vertex v, riv denotes the value of rv in γi.

Definition 5 (Island). In a configuration γi, an island I is a maximal (w.r.t. inclusion) set of
vertices such that I (V and ∀(u, v) ∈ I, u ∈ neig(v) ⇒ correctv(u). A zero-island is an island
such that ∃v ∈ I, riv = 0. A non-zero-island is an island such that ∀v ∈ I, riv 6= 0.

Note that any vertex v that satisfies rv ∈ stabX in a configuration γ /∈ Γ1 belongs by definition
to an island (either a zero-island or a non-zero-island) in γ.

Definition 6 (Border and depth of an island). In a configuration γi that contains an island I 6= ∅,
the border of I (denoted by border(I)) is defined by border(I) = {v ∈ I|∃u ∈ V \ I, u ∈ neig(v)}
and the depth of I (denoted by depth(I)) is defined by depth(I) = max{min{dist(g, v, u)|u ∈
border(I)}|v ∈ I}.

Then, we have to prove a set of preliminaries lemmas before stating our main theorem.

Lemma 1. If a vertex v is privileged in a configuration γi (with 0 ≤ i < diam(g)), then v cannot
execute rules CA and RA in ei.

9

Proof. As the result is obvious for i = 0, let γi (with 0 < i < diam(g)) be a configuration such that
a vertex v is privileged in γi. Then, we have by definition that riv = 2.n+ 2.diam(g).idv.

By contradiction, assume that v executes at least once rule CA or RA in ei. Let j be the biggest
integer such that v executes rule CA or RA during action (γj , γj+1) with j < i.

Assume that v executes rule RA during (γj , γj+1). Then, we have rj+1
v = −n. From this point,

only rule CA may be enabled at v but v does not execute it by construction of j. Then, we can
deduce that riv = −n that is contradictory.

Hence, we know that v executes rule CA during (γj , γj+1). Consequently, we have rj+1
v ∈ initX

by construction of the rule. As v can only execute rule NA between γj+1 and γi by construction
of j, we can deduce that riv ∈ initX ∪ {0, . . . , 0 + i − (j + 1)}. As 0 + i − (j + 1) < diam(g), this
contradiction proves the result.

Lemma 2. If a vertex v is privileged in a configuration γi (with 0 ≤ i < diam(g)), then v cannot
belong to a zero-island in any configuration of ei.

Proof. Let γi (with 0 ≤ i < diam(g)) be a configuration such that a vertex v is privileged in γi.
Then, we have by definition that riv = 2.n+ 2.diam(g).idv.

By contradiction, assume that there exists some configurations of ei such that v belongs to a
zero-island. Let j be the biggest integer such that v belongs to a zero-island I in γj with j ≤ i.

By definition of a zero-island, we know that there exists a vertex u in I such that rju = 0. As
dist(g, u, v) ≤ diam(g) and u and v belongs to the same island in γj , we have dK(rju, r

j
v) ≤ diam(g).

By construction of the clock, we have so rjv ∈ {(2.n− 2)(diam(g) + 1) + 3, . . . , 0, . . . , diam(g)}.
By Lemma 1, we know that v may execute only rule NA between γj and γj . Then, we have

riv ∈ {(2.n− 2)(diam(g) + 1) + 3, . . . , 0, . . . , diam(g) + (i− j)}. As diam(g) + (i− j) < 2.diam(g),
v cannot be privileged in γi (whatever is its identity). This contradiction proves the result.

Lemma 3. If a vertex v belongs to a non-zero-island of depth k ≥ 0 in a configuration γi (with
0 < i < diam(g)), then v belongs either to a non-zero-island of depth greater or equals to k + 1 or
to a zero-island in γi−1.

Proof. Let γi (with 0 < i < diam(g)) be a configuration such that a vertex v belongs to a non-
zero-island I of depth k ≥ 0 in γi.

Assume that v does not belongs to any island in γi−1. In other words, we have ri−1v ∈ init∗X .
Consequently, v may only execute rule CA during action (γi−1, γi) and we have riv ∈ initX . This
means that v either belongs to a zero-island or does not belong to any island in γi. This contradiction
shows us that v belongs to an island in γi−1.

If v belongs to a zero-island in γi−1, we have the result. Otherwise, assume by contradiction
that v belongs to a non-zero island I ′ such that depth(I ′) ≤ k in γi−1. By definition of a non-zero-
island, all vertices of border(I ′) are enabled by rule RA in γi−1. As we consider a synchronous
execution, we obtain that I (the non-zero-island that contains v in γi) satisfies depth(I) < k. This
contradiction shows the lemma.

Lemma 4. If γ0 /∈ Γ1, then any vertex v satisfies r
diam(g)
v ∈ initX ∪ {(2.n − 2)(diam(g) + 1) +

3, . . . , 0, . . . , 2.diam(g)− 1}.

Proof. Assume that γ0 /∈ Γ1. Then, by definition of Γ1 and by the construction of the protocol, we
know that there exists a set ∅ 6= V ′ ⊆ V such that vertices of V ′ are enabled by rule RA in γ0. Let
v be an arbitrary vertex of V .

10

If v executes at least once the rule RA during ediam(g), let i be the biggest integer such that v
executes rule RA during (γi, γi+1) with i < diam(g). Then, we have ri+1

v = −n. As diam(g)− (i+
1) < n, we can deduce that v may execute only rule CA between γi and γdiam(g). Consequently,

we have r
diam(g)
v ∈ initX .

If v executes at least once the rule CA but never executes rule RA during ediam(g), let i be the
biggest integer such that v executes rule CA during (γi, γi+1) with i < diam(g). Then, we have
ri+1
v ∈ initX . By construction of i, we can deduce that v may execute only rule NA between γi

and γdiam(g). As diam(g)− (i+ 1) < diam(g), we have r
diam(g)
v ∈ initX ∪ {0, . . . , diam(g)− 1}.

Otherwise (v executes only rule NA during ediam(g)), let i be the integer defined by i =
min{dist(g, v, v′)|v′ ∈ V ′}. Note that 0 < i ≤ diam(g) by construction (recall that v /∈ V ′). We can
deduce that v belongs to a zero-island in γi (otherwise, v executes rule RA or CA during (γi, γi+1)).
By definition of a zero-island, we have then riv ∈ {(2.n − 2)(diam(g) + 1) + 3, . . . , 0, . . . diam(g)}.
As v may execute only rule NA between γi and γdiam(g) and diam(g)− i < diam(g), we can deduce

that r
diam(g)
v ∈ {(2.n− 2)(diam(g) + 1) + 3, . . . , 0, . . . , 2.diam(g)− 1}.

Theorem 2. conv time(SSME , sd) ≤
⌈
diam(g)

2

⌉
Proof. By contradiction, assume that conv time(SSME , sd) >

⌈
diam(g)

2

⌉
. This means that there

exists a configuration γ0 such that the synchronous execution e = (γ0, γ1)(γ1, γ2) . . . of SSME
satisfies: there exists an integer i ≥

⌈
diam(g)

2

⌉
and two vertices u and v such that u and v are

simultaneously privileged in γi. Let us study the following cases (note that they are exhaustive):

Case 1:
⌈
diam(g)

2

⌉
≤ i < diam(g)

By Lemma 1, we know that u may execute only rule NA in ei. This implies that ∀j ≤ i, rju ∈
stabX and then dK(riu, r

0
u) ≤ i. By the same way, we can prove that dK(riv, r

0
v) ≤ i.

If u is privileged in γi, this means that riu ∈ stabX and dK(riu, 0) > diam(g). As u and v
are simultaneously privileged in γi, we have by definition that dK(riu, r

i
v) > diam(g). This

implies that γi /∈ Γ1 and that u belongs to a non-zero-island I such that depth(I) ≥ 1 in γi.
By recursive application of Lemmas 2 and 3, we deduce that u belongs to a non-zero-island

I ′ such that depth(I ′) ≥ i + 1 ≥
⌈
diam(g)

2

⌉
+ 1 in γ0. The same property holds for v. As

dist(g, u, v) ≤ diam(g), we can deduce that u and v belongs to the same non-zero-island in
γ0, that allows us to state dK(r0u, r

0
v) ≤ diam(g).

Without loss of generality, assume that idu < idv. Let us now distinguish the following cases:

If idv − idu ≥ 2, as u and v are simultaneously privileged in γi, we have dK(riu, r
i
v) ≥

2.n + diam(g) + 1 (if idu = n − 1 and idv = 0) or dK(riu, r
i
v) ≥ 4.diam(g) (otherwise). Note

that in both cases, we have dK(riu, r
i
v) ≥ 3.diam(g). Recall that dK is a distance. In particular,

it must satisfy the triangular inequality. Then, we have dK(riu, r
i
v) ≤ dK(riu, r

0
u)+dK(r0u, r

0
v)+

dK(r0u, r
i
v). By previous result, we obtain that dK(riu, r

i
v) ≤ diam(g) + 2.i < 3.diam(g), that

is contradictory.

If idv − idu = 1, by construction of γi, we have riu = 2.n + 2.diam(g).idu > 0 and riv =
2.n + 2.diam(g). (idu + 1). Then, we obtain riv − riu = 2.diam(g). Hence, we have 0 <
r0u ≤ riu < r0v ≤ riv. Then, we can deduce from riv − riu = 2.diam(g) and riu − rou ≥ 0 that

11

riv − r0u ≥ 2.diam(g). On the other hand, previous results show us that r0v − r0u ≤ diam(g)
and riv − r0v < diam(g). It follows riv − r0u < 2.diam(g), that is contradictory.

Case 2: diam(g) ≤ i < 2.n+ diam(g)

As u and v are simultaneously privileged in γi, we have by definition that dK(riu, r
i
v) >

diam(g). This implies that γi /∈ Γ1 and then γ0 /∈ Γ1 (otherwise, we obtain a contradiction
with the closure of specAU).

By Lemma 4, for any vertex w, r
diam(g)
w ∈ initX ∪ {(2.n − 2)(diam(g) + 1) +

3, . . . , 0, . . . , 2.diam(g) − 1}. As w may execute at most i − diam(g) < 2.n actions between
γdiam(g) and γi, we can deduce that riw ∈ initX ∪{(2.n− 2)(diam(g) + 1) + 3, . . . , 0, . . . , 2.n+
2.diam(g)− 1} for any vertex w.

By construction of the clock and the definition of the predicate privileged, we can conclude
that there is at most one privileged vertex (the one with identity 0) in γi, that is contradictory.

Case 3: i ≥ 2.n+ diam(g)

By [3], we know that SSME stabilizes to specAU in at most α+ lcp(g)+diam(g) steps under
the synchronous daemon where lcp(g) denotes the length of the longest elementary chordless
path of g. As we have α = n by construction and lcp(g) ≤ n by definition, we can deduce that
SSME stabilizes to specAU in at most 2.n+ diam(g) steps under the synchronous daemon.

In particular, this implies that γi ∈ Γ1. Then, using proof of Theorem 1, we obtain a
contradiction with the fact that u and v are simultaneously privileged in γi.

We thus obtain that conv time(SSME , sd) ≤
⌈
diam(g)

2

⌉
.

Unfair distributed daemon. We now interested in the stabilization time of our mutual exclu-
sion protocol under the unfair distributed daemon. Using a previous result from [7], we have the
following upper bound:

Theorem 3. conv time(SSME , ufd) ∈ O(diam(g).n3)

Proof. Remind that the stabilization time of SSME for specAU is an upper bound for the one for
specME whatever the daemon is. The step complexity of this protocol is tricky to exactly compute.
As the best of our knowledge, [7] provides the best known upper bound on this step complexity.

The main result of [7] is to prove that SSME stabilizes in at most 2.diam(g).n3 + (α+ 1).n2 +
(α− 2.diam(g)).n steps under ufd. Since we chose α = n, we have the result.

5 Synchronous Lower Bound

We prove here a lower bound on the stabilization time of mutual exclusion under a synchronous
daemon, showing hereby that our speculatively stabilizing protocol presented in Section 4.1 is in
this sense optimal. We introduce some definitions and a lemma.

Definition 7 (Local state). Given a configuration γ, a vertex v and an integer 0 ≤ k ≤ diam(g),
the k-local state of v in γ (denoted by γv,k) is the configuration of the communication subgraph
g′ = (V ′, E′) induced by V ′ = {v′ ∈ V |dist(g, v, v′) ≤ k} defined by ∀v′ ∈ V ′, γv,k(v′) = γ(v′).

12

Note that γv,0 = γ(v) by definition.

Definition 8 (Restriction of an execution). Given an execution e = (γ0, γ1)(γ1, γ2) . . . and a vertex
v, the restriction of e to v (denoted by ev) is defined by ev = (γ0(v), γ1(v))(γ1(v), γ2(v))

Lemma 5. For any self-stabilizing distributed protocol π for specME under the synchronous daemon
and any pair of configuration (γ, γ′) such that there exists a vertex v and an integer 1 ≤ k ≤ diam(g)
satisfying γv,k = γ′v,k, the restrictions to v of the prefixes of length k of executions of π starting
respectively from γ and γ′ are equals.

Proof. Let π be a self-stabilizing distributed protocol for specME under the synchronous daemon
and (γ, γ′) two configurations such that there exists a vertex v and an integer 1 ≤ k ≤ diam(g)
satisfying γv,k = γ′v,k. We denote by e = (γ, γ1)(γ1, γ2) . . . (respectively e′ = (γ′, γ′1)(γ

′
1, γ
′
2) . . .) the

synchronous execution of π starting from γ (respectively γ′). We are going to prove the lemma by
induction on k.

For k = 1, we have γv,1 = γ′v,1, that is the state of v and of its neighbors are identical in γ and
γ′. As the daemon is synchronous, we have (e1)v = (e′1)v, that implies the result.

For k > 1, assume that the lemma is true for k−1. The induction assumption and the synchrony
of the daemon allows us to deduce that (ek−1)v = (e′k−1)v and ∀u ∈ neig(v), (ek−1)u = (e′k−1)u.
Hence, we have (γk−1)v,1 = (γ′k−1)v,1. Then, by the same argument than in the case k = 1, we
deduce that (γk)v,0 = (γ′k)v,0, that implies the result.

Theorem 4. Any self-stabilizing distributed protocol π for specME satisfies conv time(π, sd) ≥⌈
diam(g)

2

⌉
.

Proof. By contradiction, assume that there exists a self-stabilizing distributed protocol π for

specME such that conv time(π, sd) <
⌈
diam(g)

2

⌉
. For the sake of notation, let us denote t =

conv time(π, sd).
Given an arbitrary communication graph g, choose two vertices u and v such that dist(g, u, v) =

diam(g) and an arbitrary configuration γ0. Denote by e = (γ0, γ1)(γ1, γ2) . . . the synchronous
execution of π starting from γ0.

By definition, e contains an infinite suffix in which u (respectively v) executes infinitely often
its critical section. Hence, there exists a configuration γi (respectively γj) such that u (respectively
v) is privileged in γi (respectively γj) and i > t (respectively j > t).

As t <
⌈
diam(g)

2

⌉
and dist(g, u, v) = diam(g), there exists at least one configuration γ′0 such that

(γ′0)u,t = (γi−t)u,t and (γ′0)v,t = (γj−t)v,t. Let e′ = (γ′0, γ
′
1)(γ

′
1, γ
′
2) . . . be the synchronous execution

of π starting from γ′0.
By Lemma 5, we can deduce that the restriction to u of the prefix of length t of e′ is the same

as the one of the suffix of e starting from γi−t. In particular, u is privileged in γ′t. By the same
way, we know that v is privileged in γ′t. This contradiction leads to the result.

6 Conclusion

This paper studies for the first time the notion of speculation in self-stabilization. As the main
measure in this context is the stabilization time, we naturally consider that a speculatively stabi-
lizing protocol is a self-stabilizing protocol for a given adversary that exhibits moreover a better

13

stabilization time under another (and weaker) adversary. This weaker adversary captures a subset
of most probable executions for which the protocol is optimized.

To illustrate this approach, we consider the seminal problem of Dijkstra on self-stabilization:
mutual exclusion. We provide a new self-stabilizing mutual exclusion protocol. We prove then that
this protocol has an optimal stabilization time in synchronous executions.

Our paper opens a new path of research in self-stabilization by considering the stabilization
time of a protocol as a function of the adversary and not as a single value. As a continuation,
one could naturally apply our new notion of speculative stabilization to other classical problems of
distributed computing and provide speculative protocols for other adversaries than the synchronous
one. It may also be interesting to study a composition tool that automatically ensures speculative
stabilization.

References

[1] Joffroy Beauquier and Janna Burman. Self-stabilizing mutual exclusion and group mutual
exclusion for population protocols with covering. In OPODIS, pages 235–250, 2011.

[2] Christian Boulinier, Franck Petit, and Vincent Villain. When graph theory helps self-
stabilization. In PODC, pages 150–159, 2004.

[3] Christian Boulinier, Franck Petit, and Vincent Villain. Synchronous vs. asynchronous unison.
Algorithmica, 51(1):61–80, 2008.

[4] James E. Burns and Jan K. Pachl. Uniform self-stabilizing rings. ACM Trans. Program. Lang.
Syst., 11(2):330–344, 1989.

[5] Viacheslav Chernoy, Mordechai Shalom, and Shmuel Zaks. A self-stabilizing algorithm with
tight bounds for mutual exclusion on a ring. In DISC, pages 63–77, 2008.

[6] Jean-Michel Couvreur, Nissim Francez, and Mohamed G. Gouda. Asynchronous unison. In
ICDCS, pages 486–493, 1992.

[7] Stéphane Devismes and Franck Petit. On efficiency of unison. In TADDS, pages 20–25, 2012.

[8] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communication of
ACM, 17(11):643–644, 1974.

[9] Shlomi Dolev. Self-stabilization. MIT Press, 2000.

[10] Swan Dubois and Sébastien Tixeuil. A taxonomy of daemons in self-stabilization. CoRR,
abs/1110.0334, 2011.

[11] Philippe Duchon, Nicolas Hanusse, and Sébastien Tixeuil. Optimal randomized self-stabilizing
mutual exclusion on synchronous rings. In DISC, pages 216–229, 2004.

[12] Mohamed G. Gouda and Ted Herman. Stabilizing unison. Information Processing Letters,
35(4):171–175, 1990.

[13] Rachid Guerraoui, Nikola Knezevic, Vivien Quéma, and Marko Vukolic. The next 700 bft
protocols. In EuroSys, pages 363–376, 2010.

14

[14] Rachid Guerraoui, Viktor Kuncak, and Giuliano Losa. Speculative linearizability. In PLDI,
pages 55–66, 2012.

[15] Ted Herman. Probabilistic self-stabilization. Information Processing Letters, 35(2):63–67,
1990.

[16] Ted Herman. A comprehensive bibliography on self-stabilization.
http://www.cs.uiowa.edu/ftp/selfstab/bibliography/, 2002.

[17] Shing-Tsaan Huang and Nian-Shing Chen. A self-stabilizing algorithm for constructing
breadth-first trees. Information Processing Letters, 41(2):109–117, 1992.

[18] Prasad Jayanti. Adaptive and efficient abortable mutual exclusion. In PODC, pages 295–304,
2003.

[19] Hirotsugu Kakugawa and Masafumi Yamashita. Uniform and self-stabilizing token rings al-
lowing unfair daemon. IEEE Transactions on Parallel and Distributed Systems, 8(2):154–162,
1997.

[20] Hirotsugu Kakugawa and Masafumi Yamashita. Uniform and self-stabilizing fair mutual ex-
clusion on unidirectional rings under unfair distributed daemon. J. Parallel Distrib. Comput.,
62(5):885–898, 2002.

[21] Butler W. Lampson. Lazy and speculative execution in computer systems. In ICFP, pages
1–2, 2008.

[22] Fredrik Manne, Morten Mjelde, Laurence Pilard, and Sébastien Tixeuil. A new self-stabilizing
maximal matching algorithm. Theoretical Computer Science, 410(14):1336–1345, 2009.

[23] Fernando Pedone. Boosting system performance with optimistic distributed protocols. IEEE
Computer, 34(12):80–86, 2001.

[24] Sébastien Tixeuil. Algorithms and Theory of Computation Handbook, Second Edition, chapter
Self-stabilizing Algorithms, pages 26.1–26.45. Chapman & Hall/CRC Applied Algorithms and
Data Structures. CRC Press, Taylor & Francis Group, November 2009.

15

	1 Introduction
	2 Model, Definitions, and Notations
	3 Speculative Stabilization
	4 A new Mutual Exclusion Protocol
	4.1 Speculatively Stabilizing Mutual Exclusion
	4.2 Correctness
	4.3 Time Complexities

	5 Synchronous Lower Bound
	6 Conclusion

