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Two snap-stabilizing point-to-point communication

protocols in message-switched networks

Alain Cournier∗ Swan Dubois† Vincent Villain‡

Abstract

A snap-stabilizing protocol, starting from any configuration, always behaves according to
its specification. In this paper, we present a snap-stabilizing protocol to solve the message
forwarding problem in a message-switched network. In this problem, we must manage resources
of the system to deliver messages to any processor of the network. In this purpose, we use
information given by a routing algorithm. By the context of stabilization (in particular, the
system starts in an arbitrary configuration), this information can be corrupted. So, the existence
of a snap-stabilizing protocol for the message forwarding problem implies that we can ask the
system to begin forwarding messages even if routing information are initially corrupted.

In this paper, we propose two snap-stabilizing algorithms (in the state model) for the follow-
ing specification of the problem:

• Any message can be generated in a finite time.

• Any emitted message is delivered to its destination once and only once in a finite time.

This implies that our protocol can deliver any emitted message regardless of the state of routing
tables in the initial configuration.

These two algorithms are based on the previous work of [21]. Each algorithm needs a
particular method to be transform into a snap-stabilizing one but both of them do not introduce
a significant overcost in memory or in time with respect to algorithms of [21].
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1 Introduction

The quality of a distributed system depends on its fault-tolerance. Many fault-tolerant schemes have
been proposed. For instance, self-stabilization ([8]) allows to design a system tolerating arbitrary
transient faults. A self-stabilizing system, regardless of the initial state of the system, is guaranteed
to converge into the intended behavior in a finite time. An other paradigm called snap-stabilization
has been introduced in [3, 2]. A snap-stabilizing protocol guarantees that, starting from any
configuration, it always behaves according to its specification. In other words, a snap-stabilizing
protocol is a self-stabilizing protocol which stabilizes in 0 time unit.

In a distributed system, it is commonly assumed that each processor can exchange messages
only with its neighbors (i.e. processors with which it shares a communication link) but processors
may need to exchange messages with any processor of the network. To perform this goal, processors
have to solve two problems: the determination of the path which messages have to follow in the
network to reach their destinations (it is the routing problem) and the management of network
resources in order to forward messages (it is the message forwarding problem).

These two problems received a great attention in literature. The routing problem is studied for
example in [1, 4, 13, 14, 15, 29, 30, 20, 23, 25] and self-stabilizing approach can be found (directly or
not) in [16, 18, 9, 17]. The forwarding problem has also been well studied, see [12, 21, 22, 26, 27, 28]
for example. As far we know, the message forwarding problem was never directly studied with a
snap-stabilizing approach (note that the protocol proposed by [17] can be used to perform a self-
stabilizing forwarding protocol for dynamic networks since it is guaranteed that routing tables
remain loop-free even if topological changes are allowed).

Informally, a message forwarding protocol allows any processor of the network to send messages
to any destination of the network knowing that a routing algorithm computes the path that messages
have to follow to reach their destinations. Problems come of the following fact: messages traveling
through a message-switched network ([24]) must be stored in each processor of their path before
being forwarded to the next processor on this path. This temporary storage of messages is performed
with reserved memory spaces called buffers. Obviously, each processor of the network reserves only
a finite number of buffers for the message forwarding. So, it is a problem of bounded resources
management which exposes the network to deadlocks and livelocks if no control is performed.

In this paper, we focus on message forwarding protocols which deal the problem with a snap-
stabilizing approach. The goal is to allow the system to forward messages (without looses) regardless
of the state of the routing tables. Obviously, we need that theses routing tables repair themselves
in a finite time. So, we assume the existence of a self-stabilizing protocol to compute routing tables
(see [16, 18, 9]).

In the following, a valid message is a message which has been generated by a processor. As a
consequence, an invalid message is a message which is present in the initial configuration. We can
now specify the problem. We propose a specification of the problem where message duplications
(i.e. the same message reaches its destination many time while it has been generated only once)
are forbidden:

Specification 1 (SP) Specification of message forwarding problem forbidding duplication.

• Any message can be generated in a finite time.

• Any valid message is deliver to its destination once and only once in a finite time.

In this paper, we investigate the possibility to transform two known message forwarding pro-
tocols ([21]) into snap-stabilizing ones. We use a different scheme for both of them but we prove
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that these two schemes do not significantly modify time and space complexities of these protocols.
Consequently, the main contribution of this paper is to show that it is possible to provide stronger
safety properties without significant overcost.

The sequel of this paper is organized as follows: we present first our model (section 2). We
quickly survey the seminal work of [21] in section 3. Then we give, prove, and analyze our two
solutions (sections 4 and 5). Finally, we conclude by some remarks and open problems (section 6).

2 Model and definitions

We consider a network as an undirected connected graph G = (V,E) where V is a set of processors
and E is the set of bidirectional asynchronous communication links. In the network, a communi-
cation link (p, q) exists if and only if p and q are neighbors. Every processor p can distinguish all
its links. To simplify the presentation, we refer to a link (p, q) of a processor p by the label q. We
assume that the labels of p are stored in the set Np.

We also use the following notations: respectively, n is the number of processors, ∆ the maximal
degree, and D the diameter of the network. If p and q are two processors of the network, we denote
by dist(p, q) the length of the shortest path between p and q (i.e. the distance between p and q). In
the following, we assume that the network is identified, i.e. each processor have an identity which
is unique on the network. Moreover, we assume that all processors know the set I of all identities
of the network.

2.1 State model

We consider the classical local shared memory model of computation (see [24]) in which commu-
nications between neighbors are modeled by direct reading of variables instead of exchange of
messages.

In this model, the program of every processor consists in a set of shared variables (henceforth,
referred to as variables) and a finite set of actions. A processor can write to its own variables
only, and read its own variables and those of its neighbors. Each action is constituted as follows:
< label >::< guard >−→< statement >. The label is a name to refer to the rule in the discussion.
The guard of an action in the program of p is a Boolean expression involving variables of p and its
neighbors. The statement of an action of p updates one or more variables of p. An action can be
executed only if its guard is satisfied.

The state of a processor is defined by the value of its variables. The state of a system is the
product of the states of all processors. We refer to the state of a processor and the system as a
(local) state and (global) configuration, respectively. We note C the set of all configurations of the
system.

Let γ ∈ C and A an action of p (p ∈ V ). A is enabled for p in γ if and only if the guard of A is
satisfied by p in γ. Processor p is enabled in γ if and only if at least one action is enabled at p in
γ. Let a distributed protocol P be a collection of actions denoted by →, on C. An execution of a
protocol P is a maximal sequence of configurations Γ = γ0γ1...γiγi+1... such that, ∀i ≥ 0, γi → γi+1

(called a step) if γi+1 exists, else γi is a terminal configuration. Maximality means that the sequence
is either finite (and no action of P is enabled in the terminal configuration) or infinite. All executions
considered here are assumed to be maximal. E is the set of all executions of P.

As we already said, each execution is decomposed into steps. Each atomic step is composed
of three sequential phases: (i) every processor evaluates its guards, (ii) a daemon chooses some
enabled processors, (iii) each chosen processor executes one of its enabled actions. When the
three phases are done, the next step begins. A daemon can be defined in terms of fairness and
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distribution. There exists several kinds of fairness assumption. Here, we present the strong fairness,
weak fairness, and unfairness assumptions. Under a strongly fair daemon, every processor that
is enabled infinitely often is chosen by the daemon infinitely often to execute an action. When a
daemon is weakly fair, every continuously enabled processor is eventually chosen by the daemon.
Finally, the unfair daemon is the weakest scheduling assumption: it can forever prevent a processor
to execute an action except if it is the only enabled processor. Concerning the distribution, we
assume that the daemon is distributed meaning that, at each step, if one or several processors are
enabled, then the daemon chooses at least one of these processors to execute an action.

We consider that any processor p is neutralized in the step γi → γi+1 if p was enabled in γi and
not enabled in γi+1, but did not execute any action in γi → γi+1. To compute the time complexity,
we use the definition of round (introduced in [10] and modified by [3]). This definition captures the
execution rate of the slowest processor in any execution. The first round of Γ ∈ E , noted Γ′, is the
minimal prefix of Γ containing the execution of one action or the neutralization of every enabled
processor from the initial configuration. Let Γ′′ be the suffix of Γ such that Γ = Γ′Γ′′. The second
round of Γ is the first round of Γ′′, and so on.

2.2 Message-switched networks

Today, most of computer networks use a variant of the message-switching method (also called
store-and-forward method). It is why we have choose to work with this switching model. In this
section, we are going to present this method (see [24] for a detailed presentation).

Each processor has B buffers for temporarily storing messages. The model assumes that each
buffer can store a whole message and that each message needs only one buffer to be stored. The
switching method is modeled by four types of moves:

1. Generation: when a processor sends a new message, it “creates” a new message in one of
its empty buffers. We assume that the network may allow this move as soon as at least one
buffer of the processor is empty.

2. Forwarding: a message m is forwarded (copied) from a processor p to an empty buffer in
the next processor q on its route (determined by the routing algorithm). We assume that the
network may allow this move as soon as at least one buffer buffer of the processor is empty.

3. Consumption: A message m occupying a buffer in its destination is and delivered to this
processor. We assume that the network may always allow this move.

4. Erasing: a message m is erased from a buffer. We assume that the network may allow this
move as soon as the message is forwarded at least one time or delivered to its destination.

2.3 Stabilization

In this section, we give formal definitions of self- and snap-stabilization using notations introduced
in 2.1.

Definition 1 (Self-Stabilization [8]) Let T be a task, and ST a specification of T . A protocol
P is self-stabilizing for ST if and only if ∀Γ ∈ E, there exists a finite prefix Γ′ = (γ0, γ1, ..., γl) of Γ
such that any executions starting from γl satisfies ST .

Definition 2 (Snap-Stabilization [2, 3]) Let T be a task, and ST a specification of T . A pro-
tocol P is snap-stabilizing for ST if and only if ∀Γ ∈ E, Γ satisfies ST .
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This definition has the two following consequences. We can see that a snap-stabilizing protocol
for ST is a self-stabilizing protocol for ST with a stabilization time of 0 time unit. A common
method used to prove that a protocol is snap-stabilizing is to distinguish an action as a “starting
action” (i.e. an action which initiates a computation) and to prove the following property for every
execution of the protocol: if a processor requests it, the computation is initiated by a starting action
in a finite time and every computation initiated by a starting action satisfies the specification of
the task. We use these two remarks to prove snap-stabilization of our protocol in the following of
this paper.

3 Fault-free protocols

In this section, we survey the seminal work of [21]1. Remind that this work assume that routing
tables are correct in the initial configuration. To simplify the presentation, we assume that the
routing algorithm induces only minimal paths in number of edges.

We have seen in section 2.2 that, by default, the network always allows message moves between
buffers. But, if we do no control on these moves, the network can reach unacceptable situations
such as deadlocks, livelocks or message losses. If such situations appear, specifications of message
forwarding are not respected.

In order to avoid deadlocks, we must define an algorithm which permits or forbids various moves
in the network (functions of the current occupation of buffers). A such algorithm is a controller. If
a controller C ensure the following property: in any execution, C prevents the network to reach a
deadlock, then C is a deadlock-free controller.

Livelocks can be avoided by fairness assumptions on the controller for the generation and the
forwarding of messages. Message losses are avoided by the using of identifier on messages. For
example, one can use the concatenation of the identity of the source and a two-value flag in order
to distinguish two consecutive identical messages generated by the same processor for a Destination
d (since all messages follow the same path).

Then, a deadlock-free controller which prevents also livelocks and message losses satisfies the
specification of the message forwarding problem.

In the case where routing table are initially correct, [21] introduced a generic method to design
deadlock-free controllers. It consists to restrict moves of messages along edges of an oriented graph
BG (called buffer graph) defined on the network buffers. Then, it is easy to see that cycles on
BG can lead to deadlocks. So, authors show that, if BG is acyclic, they can define a deadlock-free
controller on this buffer graph. In the sequel of this section, we present the two buffer graph which
we use in our snap-stabilizing protocols.

”Destination-based” buffer graph. In this scheme, we assume that the routing algorithm
forwards all packets of Destination d via a directed tree Td rooted in d. Each processor p of the
network has a buffer bp(d) for each possible Destination d (called the target of bp(d)). The buffer
graph has n connected components, each of them containing all the buffers which shared their
target. The connected component associated to the target d is isomorphic to Td. The reader can
find an example of a such graph in Figure 1.

Since each connected component of this graph is a tree, this oriented graph is acyclic. Conse-
quently, [21] allows us to define a deadlock-free controller on this graph. Note that this scheme use
n buffers per processor. So, we need n2 buffers on the whole network.

1The reader is referred to [24] to find a much detailed description of this work.
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Figure 1: Example of a ”destination-based” buffer graph (on the right) on the network of the left.
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Figure 2: Example of a ”distance-based” buffer graph (on the right) on the network of the left.

”Distance-based” buffer graph. In this scheme, each processor have D+1 buffers ranked from
1 to D + 1 (remind that D is the diameter of the network). New messages are always generated
in the buffer of rank 1 of the sending processor. When a message occupying a buffer of rank i is
forwarded to a neighbor q, it is always copied in the buffer of rank i+1 of q. We need D+1 buffers
per processor since, in the worst case, there are D forwarding of a message between its generation
and its consumption. The reader can find an example of such a graph in Figure 2.

Since messages always ”come upstairs” the buffer rank, this oriented graph is acyclic. Conse-
quently, [21] allows us to define a deadlock-free controller on this graph. Note that this scheme use
D + 1 buffers per processor. So, we need n(D + 1) buffers on the whole network.

4 First protocol

4.1 Informal description

The main idea of this section is to adapt the ”destination-based” scheme (see Section 3) in order to
tolerate the corruption of routing tables in the initial configuration. To perform this goal, we assume
the existence of a self-stabilizing silent (i.e. no actions are enabled after convergence) algorithm A to
compute routing tables which runs simultaneously to our message forwarding protocol. Moreover,
we assume that A has priority over our protocol (i.e. a processor which has enabled actions for
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Figure 3: Example of our buffer graph (on the right) for Destination b on the network (on the left).

both algorithms always chooses the action of A). This guarantees us that routing tables are correct
and constant in a finite time. To simplify the presentation, we assume that A induces only minimal
paths in number of edges. We assume that our protocol can have access to the routing table via
a function, called nextHopp(d). This function returns the identity of the neighbor of p to which p

must forward messages of Destination d.
We now describe our buffer graph adapted from the ”destination-based” one. Our buffer graph is

composed of n connected components, each associated to a destination d and based on the oriented
tree Td (remind that Td is the tree induced by routing table for Destination d). Consequently, we
can present only one connected component, associated to a destination noted d (others are similar).
We use two buffers per processor for Destination d. The first one, noted bufRp(d) (for processor
p), is reserved to the reception of messages whereas the second one, noted bufEp(d), is used to
emit messages (see Figure 3). This scheme allows us to control the advance of messages. Indeed,
we allow a message to be forwarded from bufRp(d) to bufEp(d) if and only if the message is only
present in bufRp(d) and we erase it simultaneously. In this way, we can control the consequences
of routing tables moves on messages (duplication or merge which can involve message losses).

To avoid livelocks, we use a fair scheme of selection of processors allowed to forward or to emit a
message for each reception buffer. We can manage this fairness by a queue of requesting processors.
Finally, we use a specific flag to prevent message losses. It is composed of the identity of the last
processor cross over by the message and a color which is dynamically given to the message when it
reaches an emission buffer. In order to distinguish a such incoming message of these contained in
reception buffers of neighbors of the considered processor, we give to this incoming message a color

which is not carried by a such message. It is why a message is considered as a triplet (m, p, c) in our
algorithm where m is the useful information of the message, p is the identity of the last processor
crossed over by the message, and c is a color (a natural integer between 0 and ∆).

We must manage a communication between our algorithm and processors in order to know
when a processor have a message to send. We have chosen to create a Boolean shared variable
requestp (for any processor p). Processor p can set it at true when it is at false and when p has a
message to send. Otherwise, p must wait that our algorithm sets the shared variable to false (that
is done when a message is generated).

The reader can find a complete example of the execution of our algorithm in Figure 4. Diagram
(N) shows the network and diagram (0) shows the initial configuration for the connected component
associated to b of the buffer graph. We observe that ∆ = 3, so we need 4 different values for the
variable color, we have chosen to represent them by a natural integer in {0, 1, 2, 3}. Remark that
routing tables are incorrect (in particular there exists a cycle involving buffers of a and c) and that
there exists an invalid message m′ in the reception buffer of b (its color is 0). Then, Processor c

emits a message m (its color is 0) in the reception buffer of c to obtain configuration (1). When the
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message m is forwarded to the emission buffer of c, we associate it the color 1 (since 0 is forbidden,
see configuration (2)). During the next step, message m is forwarded to the reception buffer of
a (remark that it keeps its color) and c emits (in its reception buffer) a new message m′ which
has the same useful information as the invalid message present on b. So, we obtain configuration
(3). Message m can now be erased from the emission buffer of c and m′ can be forwarded into
this buffer (we associate it the color 2). These two steps lead to configuration (4). Assume that
routing tables are repaired during the next step. Simultaneously, processor a is allowed to forward
m into its emission buffer. We obtain configuration (5). Remark that the use of color forbids the
merge between the two messages which have m′ for useful information. Then, the system is able
to deliver these three messages by the repetition of moves that we have described:

• forwarding from reception buffer to emission buffer of the same processor.

• forwarding from emission buffer to reception buffer of two processors.

• erasing from emission buffer or delivering.

The sequence of configuration (6) to (12) shows an example of the end of our execution.

4.2 Algorithm

We now present formally our protocol in Algorithm 1. We call it SSMFP1 for Snap-Stabilizing
Message Forwarding Protocol 1. In order to simplify the presentation, we write the algorithm for
Destination d only. Obviously, each destination of the network needs a similar algorithm. Moreover,
we assume that all these algorithms run simultaneously (as they are mutually independent, this
assumption has no effect on the provided proof).

4.3 Proof of correctness

In order to simplify the proof, we introduce a second specification of the problem. This specification
allows message duplications.

Specification 2 (SP ′) Specification of message forwarding problem allowing duplication.

• Any message can be generated in a finite time.

• Any valid message is deliver to its destination in a finite time.

In this section, we prove that SSMFP1 is a snap-stabilizing message forwarding protocol for
specification SP . For that, we are going to prove successively that:

1. SSMFP1 is a snap-stabilizing message forwarding protocol for specification SP ′ if routing
tables are correct in the initial configuration (Lemmas 1, 2, 3 and Proposition 1).

2. SSMFP1 is a self-stabilizing message forwarding protocol for specification SP ′ even if routing
tables are corrupted in the initial configuration (Proposition 2).

3. SSMFP1 is a snap-stabilizing message forwarding protocol for specification SP even if rout-
ing tables are corrupted in the initial configuration (Lemmas 4, 5 and Theorem 1).
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Algorithm 1 (SSMFP1 ): Message forwarding protocol for Processor p with Destination d.

Data:
- n: natural integer equals to the number of processors of the network.
- I = {0, ..., n − 1}: set of processor identities of the network.
- Np: set of neighbors of p.
- ∆: natural integer equals to the maximal degree of the network.

Message:
- (m, q, c) with m useful information of the message, q ∈ Np∪{p} identity of the last processor crossed
over by the message, and c ∈ {0, ..., ∆} a color. The message destination is the buffer index.

Variables:
- bufRp(d), bufEp(d): buffers which can contain a message or be empty (denoted by ε).

Input/Output:
- requestp: Boolean. The higher layer can set it to true when its value is false and when there is a
waiting message. We consider that this waiting is blocking.

Macros:
- nextMessagep: gives the message waiting in the higher layer.
- nextDestinationp: gives the destination of nextMessagep if it exists, null otherwise.

Procedures:
- nextHopp(d): neighbor of p given by the routing algorithm for Destination d.
- choicep(d): fairly chooses one of the processors which can forward or generate a message in
bufRp(d), i.e. choicep(d) satisfies predicate (choicep(d) ∈ Np ∧ bufEchoicep(d)(d) = (m, q, c)∧
nextHopchoicep(d)(d) = p)∨ (choicep(d) = p∧ requestp). We can manage this fairness with a queue of
length ∆ + 1 of processors which satisfies the predicate.
- deliverp(m): delivers the message m to the higher layer of p.
- colorp(d): gives a natural integer c between 0 and ∆ such as ∀q ∈ Np, bufRq(d) does not contain a
message with c as color.

Rules:
/* Rule for the generation of a message */
(R1) :: requestp ∧ (nextDestinationp = d) ∧ (bufRp(d) = ε) ∧ (choicep(d) = p) −→ bufRp(d) :=
(nextMessagep, p, 0); requestp := false

/* Rule for the internal forwarding of a message */
(R2) :: (bufEp(d) = ε)∧ (bufRp(d) = (m, q, c))∧ ((q = p)∨ (bufEq(d) 6= (m, q′, c))) −→ bufEp(d) :=
(m, p, colorp(d)); bufRp(d) := ε

/* Rule for the forwarding of a message */
(R3) :: (bufRp(d) = ε)∧(choicep(d) = s)∧(s 6= p)∧(bufEs(d) = (m, q, c)) −→ bufRp(d) := (m, s, c)1

/* Rule for the erasing of a message after its forwarding */
(R4) :: (bufEp(d) = (m, q, c)) ∧ (p 6= d) ∧ (bufRnextHopp(d)(d) = (m, p, c)) ∧ (∀r ∈
Np\{nextHopp(d)}, bufRr(d) 6= (m, p, c)) −→ bufEp(d) := ε

/* Rule for the erasing of a message after its duplication */
(R5) :: (bufRp(d) = (m, q, c)) ∧ (bufEq(d) = (m, q′, c)) ∧ (nextHopq(d) 6= p) −→ bufRp(d) := ε

/* Rule for the consumption of a message */
(R6) :: (bufEp(p) = (m, q, c)) −→ deliverp(m); bufEp(p) := ε

1 The fact that q may be different of s implies that the message was in the system at the initial configuration.
We could locally delete this message but this does not improve the performance of SSMFP1 .
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Figure 5: Examples of caterpillar associated to m on p (from left to right: two of type 1, one of
type 2 and one of type 3).

In this proof, we consider that the notion of message is different from the notion of useful
information. This implies that two messages with the same useful information generated by the
same processor are considered as two different messages. We must prove that the algorithm does
not lose one of them thanks to the use of the flag. Let γ be a configuration of the network. We say
that a message m is existing in γ if at least one buffer contains m in γ. We say that m is existing
on p in γ if at least one buffer of p contains m in γ.

Definition 3 (Caterpillar of a message m) Let m be a message of Destination d existing on a
processor p in a configuration γ. We define a caterpillar associated to m as the longest sequence of
buffers that satisfies one of the three definitions below:

1. Caterpillar of type 1: (bufRp(d) = (m, q, c)) ∧ ((bufEq(d) 6= (m, q′, c)) ∨ (q = p)).

2. Caterpillar of type 2: (bufEp(d) = (m, q, c)) ∧ (bufRnextHopp(d)(d) 6= (m, p, c)).

3. Caterpillar of type 3: (bufEp(d) = (m, q′, c)) ∧ ∃q ∈ Np, (bufRq(d) = (m, p, c)).

The reader can find in Figure 5 an example for each type of caterpillar. Remark that an emission
buffer can belong to several caterpillars of type 3.

Lemma 1 Let γ be a configuration in which routing tables are correct. Let m be a message existing
on p in γ. Under a weakly fair daemon, the execution of SSMFP1 products in a finite time one
of the following effects for any caterpillar of type 1 associated to m:

• m is delivered to its destination.

• the caterpillar disappeared on p and there exists a caterpillar of type 1 associated to the same
message on nextHopp(d).

Proof. Let γ be a configuration in which routing tables are correct. Let m (of Destination d)
be a message existing in γ. Let C = bufRp(d) be a caterpillar of type 1 associated to m. Denote
by δ the distance between p and d (δ = dist(p, d)). We are going to prove the result by induction
on δ. We define the following predicate:

(Pδ): if C = bufRp(d) is a caterpillar of type 1 associated to m such that dist(p, d) = δ, then,
under a weakly fair daemon, the execution of SSMFP1 products one of the following effect in a
finite time:

• m is delivered to d.

11



• C disappeared on p and there exists a caterpillar of type 1 associated to the same message
on nextHopp(d).

Initialization: We are going to prove that (P0) is true.
Let C = bufRp(d) be a caterpillar of type 1 associated to m such that dist(p, d) = 0. This
implies that p = d. Let be bufRp(d) = (m, q, id). We must distinguish two cases :

Case 1: bufEp(d) 6= ε.
The rule (R6) is enabled for the processor p. We can observe that this rule can not be
neutralized. Since we assumed a weakly fair daemon, we obtain that p executes (R6)
in a finite time. We can then consider the case 2 since this rule erases the content of
bufEp(d).

Case 2: bufEp(d) = ε.
By the definition of a caterpillar of type 1, (R2) is enabled for p. This rule can be
neutralized if and only if bufEq(d) is occupied by (m, q′, id). This is impossible by the
construction of colorq(d). Since we assume a weakly fair daemon, we obtain that p

executes (R2) in a finite time. C disappears and a new caterpillar of type 2 appears in
bufEp(d). By the same reasoning of the case 1, we can say that p executes (R6) in a
finite time. This implies that m is delivered to d.

We proved that (P0) is true.

Induction: Let δ ≥ 1. We assume that (Pδ−1) is true. We are going to prove that then (Pδ) is
true.
Let C = bufRp(d) be a caterpillar of type 1 associated to m such that dist(p, d) = δ. Let be
bufRp(d) = (m, q, id). We must distinguish two cases:

Case 1: bufEp(d) 6= ε.
Let be r = nextHopp(d).

Case 1.1: bufEp(d) is occupied by a caterpillar C ′ of type 2.
By the definition of a caterpillar of type 2, either (R3) or (R1) is enabled on r if
and only if bufRr(d) = ε.

Case 1.1.a: If bufRr(d) = ε, then r executes (R3) or (R1) (since we assumed a
weakly fair daemon and these rules cannot be neutralized). The result of this
execution depends on the value of choicer(d):

• If choicer(d) = p, then C ′ becomes a caterpillar of type 3. We are now in the
case 1.2.

• If choicer(d) 6= p, then a message (m′, choicer(d), id′) is forwarded in bufRr(d).
So, C ′ remains a caterpillar of type 2 and we are in the case 1.1.b. It is im-
portant to remark that the fairness of choicer(d) guarantees us that this case
cannot appear infinitely.

Case 1.1.b: If bufRr(d) = (m′, q′, id′), then we can distinguish two cases:

• If bufRr(d) belongs to at least one caterpillar of type 3, we can apply the
reasoning of the case 1.2 to bufEq′(d) and conclude that bufRr(d) belongs to
a caterpillar of type 1 in a finite time.

• If bufRr(d) belongs to a caterpillar of type 1, we can say that bufRr(d) be-
comes empty in a finite time by application of (Pδ−1) (dist(r, d) = dist(p, d)−
1 = δ − 1 since routing tables are correct). Then, we are on the case 1.1.a.
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We can conclude that bufEp(d) belongs to a caterpillar of type 3 associated to m

in a finite time. So, we are on the case 1.2.

Case 1.2: bufEp(d) belongs to at least one caterpillar of type 3.

Case 1.2.a: bufEp(d) belongs to at least two caterpillars of type 3.
This implies that there exists x ∈ Np\{r}, bufRx(d) = (m, p, id). The processor
x is enabled by (R5) infinitely (since routing tables are correct and p cannot
erase bufEp(d) by the construction of (R4)). Since we assumed a weakly fair
daemon, (m, p, id) is erased from bufRx(d) in a finite time. We can repeat
this reasoning until bufEp(d) belongs to only one caterpillar of type 3 since
the construction of (R3) guarantees us that it is impossible to create a new
caterpillar of type 3 involving bufEp(d). So, we are on the case 1.2.b.

Case 1.2.b: bufEp(d) belongs to only one caterpillar of type 3.
By the definition of a caterpillar of type 3, we can say that p is enabled for
(R4). The construction of (R3) guarantees us that it is impossible to create
a new caterpillar of type 3 involving bufEp(d), also (R3) is not neutralized.
As we assumed a weakly fair daemon, p executes (R4) in a finite time. Then,
bufEp(d) is empty in a finite time, we are in the case 2.

We can conclude the case 1 by the following affirmation : we are in the case 2 in a finite
time.

Case 2: bufEp(d) = ε.
By the definition of a caterpillar of type 1, p is enabled by (R2). By the construction
of colorq(d) and of (R2) (for q), (R2) cannot neutralized for p. Since we assumed a
weakly fair daemon, we can say that p executes (R2) in a finite time. This implies that
C disappears and a new caterpillar C ′ of type 2 associated to m appears. We can now
apply the reasoning of the case 1 to deduce that C ′ becomes a caterpillar of type 1 on r

in a finite time.

We have proved that (Pδ) is true, that ended this proof. �

Lemma 2 If routing tables are correct, every processor can generate a first message ( i.e. it can
execute (R1)) in a finite time under a weakly fair daemon.

Proof. Let p be a processor which has a message m (of Destination d) to send. As p has a
waiting message, we have requestp = true whatever its value in the initial configuration. We must
now study two cases:

Case 1: bufRp(d) = ε.
The processor p executes either (R3) or (R1) in a finite time (since we assumed a weakly
fair daemon and these rules cannot be neutralized). The result of this execution depends on
the value of choicep(d):

• If choicep(d) = p, then p executes (R1) in a finite time, we obtain the result.

• If choicep(d) 6= p, then p executes (R3) in a finite time. Consequently, bufRp(d) is
occupied by a caterpillar of type 3. So, we are in the case 2.1. Note that the fairness of
choicep(d) guarantees us that this case cannot appear infinitely.

Case 2: bufRp(d) = (m′, q, id).
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Case 2.1: bufRp(d) belongs to a caterpillar C of type 3.
We can apply the reasoning of the case 1.2 of the proof of Lemma 1 to bufEq(d) and
conclude that C becomes a caterpillar of type 1 in a finite time. We are now in the case
2.2.

Case 2.2: bufRp(d) belongs to a caterpillar C of type 1.
We can apply Lemma 1 to C and say that bufRp(d) becomes empty in a finite time.
We are now in the case 1.

By the remark of the case 1, this reasoning is finite, that proves the result. �

Lemma 3 If a message m is generated by SSMFP1 in a configuration in which routing tables
are correct, SSMFP1 delivers m to its destination in a finite time under a weakly fair daemon.

Proof. Assume that routing tables are correct when SSMFP1 accepts a message m (of
Destination d) on Processor p. This implies that p generated m executing rule (R1). This rule
leads to the creation of a caterpillar of type 1 associated to m in bufRp(d). Since routing tables
are assumed correct and constant, the result follows from dist(p, d) + 1 applications of Lemma 1.
�

Proposition 1 SSMFP1 is a snap-stabilizing message forwarding protocol for SP ′ if routing
tables are correct in the initial configuration.

Proof. Assume that routing tables are correct in the initial configuration. To prove that
SSMFP1 is a snap-stabilizing message forwarding protocol for specification SP ′, we must prove
that :

1. If a processor p requests to send a message, then the protocol is initiated by at least one
starting action on p in a finite time. In our case, the starting action is the execution of (R1).
Lemma 2 proves this property.

2. After a starting action, the protocol is executed according to SP ′. If we consider that (R1)
have been executed at least one time, we can prove that:

• The first property of SP ′ is always satisfied (following Lemma 2 and the fact that the
waiting for the sending of new messages is blocking).

• The second property of SP ′ is always satisfied (following Lemma 3).

Consequently, we deduce the proposition. �

Proposition 2 SSMFP1 is a self-stabilizing message forwarding protocol for SP ′ (even if routing
tables are corrupted in the initial configuration) when A runs simultaneously.

Proof. Remind that A is a self-stabilizing silent algorithm for computing routing tables running
simultaneously to SSMFP1 . Moreover, we assumed that A has priority over SSMFP1 (i.e. a
processor which have enabled actions for both algorithms always chooses the action of A). This
guarantees us that routing tables are correct and constant in a finite time regardless of the initial
state.

By Proposition 1, SSMFP1 is a snap-stabilizing message forwarding protocol for specification
SP ′ when it starts from a such configuration. Consequently, we obtain the proposition. �
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Lemma 4 Under a weakly fair daemon, SSMFP1 does not delete a valid message without deliver
it to its destination even if A runs simultaneously.

Proof. By contradiction, let m be a valid message which is deleted without being delivered to
its destination.

By the construction of the rule (R2), this cannot be the result of an internal forwarding since
the message is sequentially copied in bufEp(d) and erased from bufRp(d).

By the construction of rules (R5) and (R4), this cannot be the result of the execution of (R5)
(since we are guaranteed that m is in bufEq(d) and cannot be erased from this buffer simultane-
ously).

By the construction of rules (R4) and (R2), m cannot be erased from bufRnextHopp(d)(d) in
the step in which it is erased from bufEp(d).

Since we have seen that a simultaneous erasing is impossible, the hypothesis implies that m is
erased from a buffer bufEp(d) without being copied in another buffer.

The only rule which erases a message from bufEp(d) and does not deliver m is (R4). If a pro-
cessor p executes this rule, then we have bufEp(d) = (m, q, id) and bufRnextHopp(d)(d) = (m, p, id).
Assume that the message contained by bufRnextHopp(d)(d) is not the result of the application of
rule (R3) on bufEp(d). If this message was in bufRnextHopp(d)(d) before m came in bufEp(d),
we obtain a contradiction with the definition of colorp(d). This implies that this message came
in bufRnextHopp(d)(d) after m came in bufEp(d). Then, the construction of (R3) allows us to say
that bufRnextHopp(d)(d) contains a message (m, q′, id) with q′ 6= p (since we have supposed that the
message does not come from bufEp(d)). We obtain a contradiction. We can conclude that, when
we have bufEp(d) = (m, q, id) and bufRnextHopp(d)(d) = (m, p, id), the message m has been copied
at least one time. This result contradicts the existence of m. �

Lemma 5 Under a weakly fair daemon, SSMFP1 never duplicates a valid message even if A
runs simultaneously.

Proof. Since the emission of a message creates one caterpillar of type 1 by the construction of
the rule (R1), it remains to prove the following property : if a caterpillar of type 1 associated to
a message m is present on a processor p and this message is erased from all buffers of p, then only
one neighbor of p contains a caterpillar of type 1 associated to m or m have been delivered to its
destination.

Let C be a caterpillar of type 1 associated to a message m (of Destination d) on a processor p.
Since (R5) is not enabled for p (by definition of a caterpillar of type 1), m is erased from bufRp(d)
by (R2). So, m is still present on p (since it has been copied in bufEp(d)). Then, we have two
cases to observe:

Case 1: p = d.
The only rule for erasing m which can be enabled is (R6). This rule delivers m to its
destination.

Case 2: p 6= d.
The only rule for erasing m which can be enabled is (R4). The construction of this rule
implies the announced property.

We can conclude that m is delivered at most once to its destination, that proves the result. �

Theorem 1 SSMFP1 is a snap-stabilizing message forwarding protocol for SP (even if routing
tables are corrupted in the initial configuration) when A run simultaneously.
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Proof. Proposition 2 and Lemma 4 allows us to conclude that SSMFP1 is a snap-stabilizing
message forwarding protocol for specification SP ′ even if routing tables are corrupted in the initial
configuration on condition that A runs simultaneously.

Then, using this remark and Lemma 5, we obtain the result. �

4.4 Time complexities

Since our algorithm needs a weakly fair daemon, there is no points to do an analysis in terms
of steps. It is why all the following complexities analysis are given in rounds. Let RA be the
stabilization time of A in terms of rounds.

In order to lighten this paper, we present only key ideas of this section proofs.

Proposition 3 For any Processor d, SSMFP1 delivers 2n invalid messages to d in the worst
case.

Sketch of proof. In the initial configuration, the system has at most 2n distinct invalid
messages of Destination d (since the connected component of the buffer graph associated to d has
2n buffers). In the worst case, all these invalid messages are delivered to their destination, that
allows us to reach the announced bound. �

Proposition 4 In the worst case, a message m (of Destination d) needs O(max(RA,∆D)) rounds
to be delivered to d once it has been generated by its source.

Sketch of proof. In a first time, we show by induction the following result: if γ is a configuration
in which routing tables are correct and C is a caterpillar of type 1 associated to a message m (of
Destination d) on a processor p such as dist(p, d) = δ, then m is delivered to d or there exists a
caterpillar of type 1 associated to m on nextHopp(d) in at most O(∆δ) rounds. This result is due
to the fairness of choicep(d) which can allow at most ∆ messages to “pass” m (see the proof of
Lemma 1).

Then, consider that s is the source of a message m of Destination d. We have dist(s, d) ≤ D by

definition. We can conclude that m is delivered in at most
0
∑

δ=D

O(∆δ) ∈ O(∆D) rounds if routing

tables are correct when m is emitted.
Finally, we can deduce the result when m is emitted in a configuration in which routing tables are

not correct since the message is delivered in at most O(∆D) rounds after routing tables computation
(which takes at most O(RA) rounds if m is not delivered during the routing tables computation
since we have assumed the priority of A over SSMFP1 ). �

Proposition 5 The delay (waiting time before the first emission) and the waiting time (between
two consecutive emissions) of SSMFP1 is O(max(RA,∆D)) rounds in the worst case.

Sketch of proof. Let p be a processor which has a message of Destination d to emit. By the
fairness of choicep(d), we can say that m is generated after at most (∆ − 1) releases of bufRp(d)
(see proof of Lemma 1). The result of Proposition 4 allows us to say that bufRp(d) is released in
O(max(RA,∆D)) rounds at worst. Indeed, we can deduce the result. �

The complexity obtained in Proposition 4 is due to the fact that the system delivers a huge
quantity of messages during the forwarding of the considered message. It’s why we interest now in
the amortized complexity (in rounds) of our algorithm. For an execution Γ, this measure is equal
to the number of rounds of Γ divided by the number of delivered messages during Γ (see [5] for a
formal definition).
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Proposition 6 The amortized complexity (to forward a message) of SSMFP1 is O(max (RA,D))
rounds.

Sketch of proof. In a first time, we must prove the following property: if γ is a configuration
in which at least one message of Destination d is present and in which routing tables are correct,
then SSMFP1 delivers at least one message to d in the 3D rounds following γ.

The proof of this property is done as follows. Let δ be the smallest number such that there
exists a message of Destination d on a processor p which satisfy dist(p, d) = δ. Then, we prove
that, after at most three rounds, there exists a message (not necessarily m) on a processor p′ which
satisfies dist(p′, d) = δ − 1. Since δ ≤ D in γ, we obtain the announced property.

Assume now an initial configuration in which routing tables are correct. Let Γ be one execution
leads to the worst amortized complexity. Let RΓ be the number of rounds of Γ. By the previous
property, we can say that SSMFP1 delivers at least RΓ

3D
messages during Γ. So, we have an

amortized complexity of RΓ
RΓ
3D

∈ Θ(D). Then, the announced result is obvious. �

4.5 Conclusion

In this section, we prove that we can adapt the “destination-based” deadlock-free controller defined
in [21] to obtain a snap-stabilizing message forwarding algorithm. Our algorithm is mainly based
on the control of effects of routing tables moves on message. This control is performed in two ways.
Firstly, we “slow down” messages by using two buffers per processor in order to control the number
of copy of a same message in the network at a given time. Secondly, we use a specific flag to avoid
message merge or duplication.

The initial fault-free protocol uses n2 buffers for the whole network and our protocol uses 2n2

buffers. Consequently, our protocol ensures a stronger safety and fault-tolerance with respect the
initial one without a significant overcost in space. Our time analysis (see Section 4.4) shows that
this stronger safety does not leads to an overcost in time.

5 Second protocol

5.1 Informal description

In this section, we give a second snap-stabilizing message forwarding protocol adapted to the
“distance-based” deadlock-free controller (see Section 3). Our idea is to adapt this scheme in order
to tolerate transient faults. To perform this goal, we assume the existence of a self-stabilizing
silent (i.e. no actions are enabled after convergence) algorithm A to compute routing tables which
runs simultaneously to our message forwarding protocol. Moreover, we assume that A has priority
over our protocol (i.e. a processor which has enabled actions for both algorithms always chooses
the action of A). This guarantees us that routing tables are correct and constant in a finite
time. To simplify the presentation, we assume that A induces only minimal paths in number of
edges. We assume that our protocol can have access to the routing table via a function, called
nextHopp(d). This function returns the identity of the neighbor of p to which p must forward
messages of Destination d.

Our idea is as follows. We choose exactly the same graph buffer as [21] and we allow the erasing
of a message only if we are assured that the message has been delivered to its destination. In this
goal, we use an acknowledgment scheme which guarantees the reception of the message.

More precisely, we associate to each copy of the message a type which has 3 values: S (Sending),
A (Acknowledgment) and F (Fail). Forwarding of a valid message follows the above scheme:
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1. Generation with type S in a buffer of rank 1.

2. Forwarding (with copy in buffers of increasing rank) with type S without any erasing.

3. If the message reaches its destination :

(a) It is delivered and the copy of the message takes type A.

(b) Type A is propagated to the sink of the message following the income path.

(c) Buffers are allowed to free themselves once the type A is propagated to the previous
buffer on the path.

(d) The sink erases its copy, that performs the erasing of the message.

4. Otherwise, (the message reaches a buffer of rank D + 1 without cross its destination) :

(a) The copy of the message takes type F .

(b) Type F is propagated to the sink of the message following the income path.

(c) Buffers are allowed to free themselves once the type F is propagated to the previous
buffer on the path.

(d) Then, the sink of the message gives the type S to its copy, that begin a new cycle (the
message is sending once again).

Obviously, it is necessary to take in account invalid messages: we have chosen to let them follow
the forwarding scheme and to erase them if they reach step 4.d.

The key idea of the snap-stabilization of our algorithm is the following: since a valid message
is never erased, it is sent again after the stabilization of routing tables (if it never reached its
destination before) and it is then normally forwarded.

To avoid livelocks, we use a fair scheme of selection of processors allowed to forward a message
for each buffer. We can manage this fairness by a queue of requesting processors. Finally, we use a
specific flag to prevent message losses. It is composed of the identity of the next processor on the
path of the message, the identity of the last processor cross over by the message, the identity of
the destination of the message and the type of the message (S, A or F ).

We must manage a communication between our algorithm and processors in order to know when
a processor has a message to send. We have chosen to create a Boolean shared variable requestp
(for any processor p). Processor p can set it at true when it is at false and when p has a message to
send. Otherwise, p must wait that our algorithm sets the shared variable to false (when a message
is sent out).

5.2 Algorithm

We now present formally our protocol in Algorithm 2. We call it SSMFP2 for Snap-Stabilizing
Message Forwarding Protocol 2.

5.3 Proof of correctness

In order to simplify the proof, we introduce a second specification of the problem. This specification
allows message duplications.

Specification 3 (SP ′) Specification of message forwarding problem allowing duplication.
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Algorithm 2 SSMFP2 : Message forwarding protocol for processor p.
Data:
- n, D : natural numbers equal resp. to the number of processors and to the diameter of the network.
- I = {0, ..., n− 1} : set of processor identities of the network.
- Np : set of neighbors of p.
Message:
- (m, r, q, d, c) with m useful information of the message, r ∈ Np identity of the next processor to cross for
the message (when it reaches the node), q ∈ Np identity of the last processor cross over by the message,
d ∈ I identity of the destination of the message, c ∈ {S, A, F} type of the message.
Variables:
- ∀i ∈ {1, ..., D + 1}, bufp(i) : buffer which can contain a message or be empty (denoted by ε)
Input/Output:
- requestp : Boolean. The higher layer can set it to ”true” when its value is ”false” and when there is a
waiting message. We consider that this waiting is blocking.
- nextMesp: gives the message waiting in the higher layer.
- nextDestp: gives the destination of nextMesp if it exists, null otherwise.
Procedures:
- nextHopp(d): neighbor of p given by the routing for Destination d (if d = p, we choose arbitrarily r ∈ Np).
- ∀i ∈ {2, ..., D+1}, choicep(i): fairly chooses one of the processors which can send a message in bufp(i), i.e.
choicep(d) satisfies predicate ((choicep(i) ∈ Np) ∧ (bufchoicep(i)(i − 1) = (m, p, q, d, S)) ∧ (choicep(i) 6= d)).
We can manage this fairness with a queue of length ∆ + 1 of processors which satisfies the predicate.
- deliverp(m): delivers the message m to the higher layer of p.
Rules:

/* Rules for the buffer of rank 1 */
/* Generation of messages */
(R1) :: requestp ∧ (bufp(1) = ε) ∧ (nextDestp = d) ∧ (nextMesp = m) ∧ (bufnextHopp(d)(2) 6=
(m, r′, p, d, c)) −→ bufp(1) := (m, nextHopp(d), r, d, S) with r ∈ Np; requestp := false

/* Processing of acknowledgment */
(R2) :: (bufp(1) = (m, r, q, d, F )) ∧ (d 6= p) ∧ (bufr(2) 6= (m, r′, p, d, F )) −→ bufp(1) :=
(m, nextHopp(d), q, d, S)
(R3) :: (bufp(1) = (m, r, q, d, A)) ∧ (d 6= p) ∧ (bufr(2) 6= (m, r′, p, d, A)) −→ bufp(1) := ε

/* Management of messages which reach their destinations */
(R4) :: bufp(1) = (m, r, q, p, S) −→ deliverp(m); bufp(1) := (m, r, q, p, A)
(R5) :: bufp(1) = (m, r, q, p, A) −→ bufp(1) := ε

(R6) :: bufp(1) = (m, r, q, p, F ) −→ bufp(1) := (m, r, q, p, S)

/* Rule for buffers of rank 1 to D : propagation of acknowledgment */
(R7) :: ∃i ∈ {1, ..., D}, ((bufp(i) = (m, r, q, d, S)) ∧ (p 6= d) ∧ (bufr(i + 1) = (m, r′, p, d, c))∧ (c ∈
{R, A})) −→ bufp(i) := (m, r, q, d, c)

/* Rules for buffers of rank 2 to D */
/* Forwarding of messages */
(R8) :: ∃i ∈ {2, ..., D}, ((bufp(i) = ε) ∧ (choicep(i) = s) ∧ (bufs(i − 1) = (m, p, q, d, S))∧
(bufnextHopp(d)(i + 1) 6= (m, r, p, d, c))) −→ bufp(i) := (m, nextHopp(d), s, d, S)
/* Erasing of messages of which the acknowledgment has been forwarded */
(R9) :: ∃i ∈ {2, ..., D}, ((bufp(i) = (m, r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (d 6= p) ∧ (bufq(i − 1) =
(m, p, q′, d, c)) ∧ (bufr(i + 1) 6= (m, r′, p, d, c)) −→ bufp(i) := ε

/* Rules for buffers of rank 2 to D + 1 */
/* Consumption of a message and generation of the acknowledgment A */
(R10) :: ∃i ∈ {2, ..., D + 1}, bufp(i) = (m, r, q, p, S) −→ deliverp(m); bufp(i) := (m, r, q, p, A)
/* Erasing of messages of destination p of which the acknowledgment has been forwarded */
(R11) :: ∃i ∈ {2, ..., D+1}, ((bufp(i) = (m, r, q, p, c))∧(c ∈ {F, A})∧(bufq(i−1) = (m, p, q′, p, c))) −→
bufp(i) := ε
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End of Algorithm 2:

/* Rules for the buffer of rank D + 1 */
/* Forwarding of messages */
(R12) :: (bufp(D + 1) = ε) ∧ (choicep(D + 1) = s) ∧ (bufs(D) = (m, p, q, d, S)) −→ bufp(D + 1) :=
(m, nextHopp(d), s, d, S) /* Generation of the acknowledgment F */
(R13) :: (bufp(D + 1) = (m, r, q, d, S)) ∧ (d 6= p) −→ bufp(D + 1) := (m, r, q, d, F )
/* Erasing of messages of which the acknowledgment has been forwarded */
(R14) :: (bufp(D + 1) = (m, r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (d 6= p) ∧ (bufq(D) = (m, p, q′, d, c)) −→
bufp(D + 1) := ε

/* Correction rules: erasing of tail of abnormal caterpillars of type F, A (cf. definitions below) */
(R15) :: ∃i ∈ {2, ..., D}, ((bufp(i) = (m, r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (bufr(i + 1) 6= (m, r′, p, d, c)) ∧
(bufq(i − 1) 6= (m, p, q′, d, c′))) −→ bufp(i) := ε

(R16) :: ∃i ∈ {2, ..., D}, ((bufp(i) = (m, r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (bufr(i + 1) 6= (m, r′, p, d, c)) ∧
(bufq(i − 1) = (m, p, q′, d, c′)) ∧ (c′ ∈ {F, A}\{c} ∨ q = d)) −→ bufp(i) := ε

(R17) :: (bufp(D+1) = (m, r, q, d, c))∧(c ∈ {F, A})∧(bufq(D) 6= (m, p, q′, d, c′)) −→ bufp(D+1) := ε

(R18) :: (bufp(D +1) = (m, r, q, d, c))∧ (c ∈ {F, A})∧ (bufq(D) = (m, p, q′, d, c′))∧ (c′ ∈ {F, A}\{c}∨
q = d) −→ bufp(D + 1) := ε

• Any message can be send out in a finite time.

• Any valid message is delivered to its destination in a finite time.

In this section, we prove that SSMFP2 is a snap-stabilizing message forwarding protocol for
specification SP . For that, we are going to prove successively that:

1. Copies of a same message have a particular structure. Then, we prove some properties on the
behavior of these structures under SSMFP2 (Lemmas 6, 7, 8, and 9).

2. SSMFP2 is a snap-stabilizing message forwarding protocol for specification SP ′ if routing
tables are correct in the initial configuration (Lemmas 10, 11, 12 and Proposition 7).

3. SSMFP2 is a self-stabilizing message forwarding protocol for specification SP ′ even if routing
tables are corrupted in the initial configuration (Proposition 8).

4. SSMFP2 is a snap-stabilizing message forwarding protocol for specification SP even if rout-
ing tables are corrupted in the initial configuration (Lemmas 13, 14 and Theorem 2).

In this proof, we consider that the notion of message is different from the notion of useful
information. This implies that two messages with the same useful information sent by the same
processor are considered as two different messages. We must prove that the algorithm does not
loose one of them thanks to the use of the flag.

Preliminaries. In a first time, we define a particular structure of messages and we study the
behavior of these structure under SSMFP2 . Let γ be a configuration of the network. We say
that a message m is existing in γ if at least one buffer contains m in γ.

Definition 4 (Caterpillar of a message m) Let m be a message of Destination d existing in a
configuration γ. We define a caterpillar associated to m (noted Cm) as the longest sequence of
buffers Cm = bufp1

(i)...bufpt(i + t − 1) (with t ≥ 1) which satisfies:
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Figure 6: Examples of caterpillar (at left: abnormal of type A, at right: normal of type E).

• ∀j ∈ {1, ..., t − 1}, pj 6= d and pj+1 6= pj.

• ∀j ∈ {1, ..., t}, bufpj
(i + j − 1) = (m, rj , qj , d, cj).

• ∀j ∈ {1, ..., t − 1}, rj = pj+1.

• ∀j ∈ {2, ..., t}, qj = pj−1.

• ∃k ∈ {1, ..., t + 1},

{

∀j ∈ {1, ..., k − 1}, cj = S and

(∀j ∈ {k, ..., t}, cj = A) ∨ (∀j ∈ {k, ..., t}, cj = F )

We call respectively bufp1
(i), bufpt(i+ t−1), and lgCm = t the tail, the head, and the length of Cm.

We give now some characterization for caterpillars.

Definition 5 (Characterization of caterpillar of a message m) Let m be a message of Des-
tination d in a configuration γ and Cm = bufp1

(i)...bufpt(i + t− 1) (t ≥ 1) a caterpillar associated
to m. Then,

• Cm is a normal caterpillar if i = 1. It is abnormal otherwise (i ≥ 2).

• Cm is a caterpillar of type S if ∀j ∈ {1, ..., t}, cj = S ( i.e. k = t + 1).

• Cm is a caterpillar of type A if ∃j ∈ {1, ..., t}, cj = A ( i.e. k < t + 1).

• Cm is a caterpillar of type F if ∃j ∈ {1, ..., t}, cj = F ( i.e. k < t + 1).

It is obvious that, for each caterpillar Cm, either Cm is normal or abnormal. In the same way,
Cm is only of type S, A or F . The reader can find in Figure 6 an example for some type of
caterpillar.

Lemma 6 Let γ be a configuration and m be a message of Destination d existing in γ. Under a
weakly fair daemon, every abnormal caterpillar of type F (resp. A) associated to m disappears in
a finite time or become a normal caterpillar of type F (resp. A).

Proof. Let γ be a configuration of the network. Let m be an existing message (of Destination
d) in γ. Let Cm = bufp1

(i)...bufpt(i + t − 1) (t ≥ 1 and i > 1) be a normal caterpillar of type F or
A associated to m. Let c be the type of Cm.
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1. By definition of caterpillar of type c, we have 1 ≤ k ≤ t. We can deduce that i + k − 2 <

i + t − 1 ≤ D + 1 and then (R7) is enabled for pk−1. This rule can not be neutralized since
Processor pk is not enabled by a rule affecting its buffer of rank i + k. As the daemon is
weakly fair, pk−1 executes these rule in a finite time. We can repeat this reasoning k−1 times
on Processors pk−1, ..., p1. Then, we obtain a caterpillar which all buffers are on type c in a
finite time.

2. If t = 1, we can directly go to case 4. Otherwise (t ≥ 2), we must distinguish the following
cases:

Case 1: pt = d.
Processor pt is the enabled for rule (R11) by definition of a caterpillar and the fact that
all buffers of Cm are of type c. Note that Processor pt−1 is not enabled. Consequently,
this rule remains infinitely enabled for pt. Since the daemon is weakly fair, pt executes
this rule in a finite time. Then, bufpt(i + t − 1) is empty in a finite time.

Case 2: pt 6= d.

Case 2.1: i + t − 1 = D + 1.
Then, Processor pt is enabled for rule (R14) by definition of a caterpillar and the
fact that all buffers of Cm are of type c. Note that Processor pt−1 is not enabled.
Consequently, this rule remains infinitely enabled for pt. Since the daemon is weakly
fair, pt executes this rule in a finite time. Then, bufpt(i + t− 1) is empty in a finite
time.

Case 2.2: i + t − 1 ≤ D.
Assume that bufpt(i + t − 1) = (m, r, q, d, c). Then, Processor pt is enabled for rule
(R9) by definition of a caterpillar and the fact that all buffers of Cm are of type
c. Note that Processor pt−1 is not enabled and that Processor r cannot forward a
message (m, r′, pt, d, c) in its buffer of rank i + t (since bufpt(i + t − 1) is of type
c 6= S). Consequently, this rule remains infinitely enabled for pt. Since the daemon
is weakly fair, pt executes this rule in a finite time. Then, bufpt(i + t − 1) is empty
in a finite time.

3. By following a reasoning similar to the one of case 2.2, we can prove that pt−1, ..., p2 executes
(R9) sequentially in a finite time

4. Then, we obtain a caterpillar of type c of length 1 satisfying i > 1. Assume that bufp1
(i) =

(m, r, q, d, c). We can distinguish the following cases:

Case 1: bufq(i − 1) = (m, p1, q
′, d, c′).

Case 1.1: q = d.
By the definition of a caterpillar of type c of length 1 and the hypothesis, p1 is
enabled for rule (R16) (if i ≤ D) or (R18) (if i = D + 1). By a reasoning similar to
the one of case 2.2 above, these rule remains infinitely enabled. Since the daemon
is weakly fair, p1 executes this rule in a finite time. Consequently, bufp1

(i) becomes
empty in a finite time. Then, Cm disappears.

Case 1.2: q 6= d.
Assume that c′ = S. Then, bufq(i − 1) belongs to Cm. This contradicts the fact
that Cm is of type c. Consequently, c′ ∈ {F,A}.
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If c′ = c, then the execution of rule (R7) by p1 leads to the merge of two caterpillars
of type c. Then, consider the new caterpillar C ′

m = bufp′
1
(i′)...bufp′

t′
(i′+ t′−1) (with

bufp′
t′
(i′ + t′ − 1) = bufp1

(i)). If i′ = 1, then we have a normal caterpillar of type c.

Otherwise, we can restart the reasoning (we are ensured that this reasoning is finite
since we have 1 ≤ i′ < i at each step).
Consider now the case c′ 6= c. By definition of a caterpillar of type c of length 1 and
the hypothesis, p1 is enabled by rule (R16) (if i ≤ D) or (R18) (if i = D + 1). By a
reasoning similar to the one of case 2.2 above, these rule remains infinitely enabled.
Since the daemon is weakly fair, p1 executes this rule in a finite time. Consequently,
bufp1

(i) becomes empty in a finite time. Then, Cm disappears.

Case 2: bufq(i − 1) 6= (m, p1, q
′, d, c′).

By definition of a caterpillar of type c of length 1 and the hypothesis, p1 is enabled by
rule (R15) (if i ≤ D) or (R17) (if i = D + 1). By a reasoning similar to the one of
case 2.2 above, these rule remains infinitely enabled. Since the daemon is weakly fair,
p1 executes this rule in a finite time. Consequently, bufp1

(i) becomes empty in a finite
time. Then, Cm disappears.

In all cases, Cm disappears or becomes a normal caterpillar of type c in a finite time, that leads
us to the lemma. �

Lemma 7 Let γ be a configuration and m be a message of Destination d existing in γ. Under a
weakly fair daemon, every normal caterpillar of type A associated to m disappears in a finite time.

Proof. Let γ be a configuration and m be a message of Destination d existing in γ. Let
Cm = bufp1

(1)...bufpt(t) (t ≥ 1) be a normal caterpillar of type A associated to m. We must
distinguish the following cases:

Case 1: t = 1.

Case 1.1: p1 = d.
Then, rule (R5) is enabled for p1. Since the guard of this rule involves only local
variables, it remains infinitely enabled. Since the daemon is weakly fair, p1 executes this
rule in a finite time. Consequently, Cm disappears.

Case 1.2: p1 6= d.
By the definition of a caterpillar and the hypothesis, p1 is enabled by rule (R3). By
a reasoning similar to the one of the case 2.2.2 of the proof of Lemma 6, we can prove
that this rule remains infinitely enabled. Since the daemon is weakly fair, p1 executes
this rule in a finite time. Consequently, Cm disappears.

Case 2: t ≥ 2.
We can apply the reasoning of points 1,2, and 3 of the proof of Lemma 6. That leads us to
case 1.2.

In all the cases, Cm disappears in a finite time, that leads us to the lemma. �

Lemma 8 Let γ be a configuration and m be a message of Destination d existing in γ. Under a
weakly fair daemon, every normal caterpillar of type F associated to m becomes a normal caterpillar
of type S of length 1 in a finite time.
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Proof. Let γ be a configuration and m be a message of Destination d existing in γ. Let
Cm = bufp1

(1)...bufpt(t) (t ≥ 1) be a normal caterpillar of type F associated to m. We must
distinguish the following cases:

Case 1: t = 1.

Case 1.1: p1 = d.
Then, rule (R6) is enabled for p1. Since the guard of this rule involves only local
variables, it remains infinitely enabled. Since the daemon is weakly fair, p1 executes this
rule in a finite time. Consequently, Cm becomes a caterpillar of type S of length 1.

Case 1.2: p1 6= d.
By the definition of a caterpillar and the hypothesis, p1 is enabled by rule (R2). By
a reasoning similar to the one of the case 2.2.2 of the proof of Lemma 6, we can prove
that this rule remains infinitely enabled. Since the daemon is weakly fair, p1 executes
this rule in a finite time. Consequently, Cm becomes a caterpillar of type S of length 1.

Case 2: t ≥ 2.
We can apply the reasoning of points 1,2, and 3 of the proof of Lemma 6. That leads us to
case 1.2.

In all cases, we proved that Cm becomes a caterpillar of type S of length 1 in a finite time, that
leads us to the lemma. �

Lemma 9 Let γ be a configuration and m be a message of Destination d existing in γ. Under a
weakly fair daemon, every caterpillar of type S associated to m becomes a caterpillar of type A or
F in a finite time.

Proof. Let γ be a configuration of the network and m be a message (of Destination d) existing
in γ. Let Cm = bufp1

(i)...bufpt(i + t − 1) (t ≥ 1) be a caterpillar of type S associated to m.
We prove this result by a decreasing induction on the rank of the buffer occupied by the head

of Cm in γ. Let us define the following property:
(Pl) : If Cm satisfies i + t− 1 = l, then it becomes a caterpillar of type A or F in a finite time.

Initialization: We want to prove that (PD+1) is true.
Let Cm = bufp1

(i)...bufpt(i + t − 1) (t ≥ 1) be a caterpillar of type S associated to m such
that i + t − 1 = D + 1. We must distinguish the following cases:

Case 1: pt = d.
By hypothesis, Processor pt is enabled for rule (R10). Since the guard of this rule
involves only local variables, it remains infinitely enabled. Since the daemon is weakly
fair, pt executes this rule in a finite time. Consequently, bufpt(i+ t−1) becomes a buffer
of type A and Cm becomes a caterpillar of type A in a finite time. Then, Property
(PD+1) is satisfied.

Case 2: pt 6= d.
By hypothesis, Processor pt is enabled for rule (R13). Since the guard of this rule
involves only local variables, it remains infinitely enabled. Since the daemon is weakly
fair, pt executes this rule in a finite time. Consequently, bufpt(i+ t−1) becomes a buffer
of type F and Cm becomes a caterpillar of type F in a finite time. Then, Property
(PD+1) is satisfied.
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Induction: Let be l ≤ D. Assume that (Pl+1)...(PD+1) are satisfied. We want to prove that
(Pl) is then satisfied.
Let Cm = bufp1

(i)...bufpt(i + t − 1) (t ≥ 1) be a caterpillar of type S associated to m such
that i + t − 1 = l < D + 1. We must distinguish the following cases:

Case 1: pt = d.

Case 1.1: i + t − 1 = 1.
By hypothesis, Processor pt is enabled for rule (R4). Since the guard of this rule
involves only local variables, it remains infinitely enabled. Since the daemon is
weakly fair, pt executes this rule in a finite time. Consequently, bufpt(i + t − 1)
becomes a buffer of type A and Cm becomes a caterpillar of type A in a finite time.
Then, Property (Pl) is satisfied.

Case 1.2: 2 ≤ i + t − 1 ≤ D.
These case is similar to the case 1 of initialization. Consequently, Cm becomes a
caterpillar of type A in a finite time. Then, Property (Pl) is satisfied.

Case 2: pt 6= d.

Assume w.l.g. that bufpt(i + t − 1) = (m, r, q, d,E). We want to prove that the head of
Cm goes up of one buffer in a finite time. We must study the following cases:

Case 2.1: i + t = D + 1.

1. If bufr(i + t) = ε, then Processor r is enabled by rule (R12). Since Processor
choicer(i+ t) is not enabled, this rule remains infinitely enabled for r. Processor
r executes this rule in a finite time because the daemon is weakly fair. The
result of this execution depends on the value of choicer(i + t):

(a) If choicer(i + t) = pt, then the head of Cm goes up of one buffer when r

executes rule (R12).

(b) If choicer(i+ t) = s 6= pt, then bufr(i+ t) takes the value (m′, r′, s, d′, c) when
r executes rule (R12). This leads us to case 2.b. Note that the fairness of
choicer(i + t) ensures us that these case can appear only a finite number of
times.

2. Consider now that bufr(i + t) = (m′, r′, q′, d′, c′).
Assume that q′ = pt and m′ = m, then bufr(i+t) belongs to Cm (the type of Cm

is then identical to the one of bufr(i+t)). Consequently, we have a contradiction
with the definition of Cm. This implies that q′ 6= pt or m′ 6= m. Let Cm′ be the
caterpillar whose bufr(i + t) belongs. Consider the three possible cases:

(a) Cm′ is of type S: we can apply the induction hypothesis to Cm′ since its head
stays in a buffer of rank greater or equals to i+ t. Consequently, Cm′ becomes
a caterpillar of type F or A in a finite time. That leads us to one of the
following cases.

(b) Cm′ is of type A: following Lemmas 6 and 7, Cm′ disappears in a finite time.
Then, bufr(i + t) becomes empty. That leads us to point 1.

(c) Cm′ is of type F : following Lemmas 6 and 8, Cm′ disappears or becomes a
caterpillar of type S and length 1 in a finite time. In all cases, bufr(i + t)
becomes empty (since i + t = D + 1 ≥ 2). That leads us to point 1.
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Case 2.2: 2 ≤ i + t ≤ D.
Consider the following cases:

1. bufr(i + t) = ε.
Assume w.l.g. that s = choicer(i + t) and bufs(i + t − 1) = (m′, r, q′, d′, c′). By
the construction of rule (R8) and the definition of a caterpillar, r is enabled if
and only if bufnextHopr(d′)(i + t + 1) is not the tail of an abnormal caterpillar
Cm′ associated to m′. Let us study the following cases:

(a) Cm′ is of type S: we can apply the induction hypothesis to Cm′ since its head
stays in a buffer of rank greater or equals to i + t + 1. Consequently, Cm′

becomes a caterpillar of type F or A in a finite time. That leads us to one of
the following cases.

(b) Cm′ is of type A: following Lemma 6, Cm′ disappears in a finite time. Then,
bufnextHopr(d′)(i + t + 1) becomes empty.

(c) Cm′ is of type F : following Lemma 6, Cm′ disappears in a finite time (it
cannot become a caterpillar of type S and length 1 since bufr(i + t) = ε).
Consequently, bufnextHopr(d′)(i + t + 1) becomes empty in a finite time.

Then, Rule (R8) is enabled for r in a finite time. This rule remains in-
finitely enabled since no message of type (m′′, r′, r, d′′, c′′) can be copied in
bufnextHopr(d′)(i + t + 1) (indeed, the contrary implies that nextHopr(d

′) ex-
ecutes rule (R8) whereas bufr(i + t) = ε). Since the daemon is weakly fair, r

executes rule (R8) in a finite time. The result of this execution is one of the
following:

(a) If choicer(i + t) = pt, then the head of Cm goes up of one buffer when r

executes rule (R8).

(b) If choicer(i+ t) = s 6= pt, then bufr(i+ t) takes the value (m′, r′, s, d′, c) when
r executes rule (R8). This situation is similar to the one of point 2 below.
Note that the fairness of choicer(i + t) ensures us that these case can appear
only a finite number of times.

2. If bufr(i + t) = (m′, r′, q′, d′, c′), the reasoning is similar to the one of point 2 of
case 2.1. Consequently, that leads us to point 1 in a finite time.

In conclusion of case 2 (pt 6= d), the head of Cm goes up of one buffer in a finite time.
Then, the induction hypothesis allows us to state that Cm becomes a caterpillar of
type F or A in a finite time. Consequently, (Pl) is satisfied.

�

Snap-stabilization when routing tables are correct in the initial configuration. Now, we
assume that routing tables are correct in the initial configurations and we prove that SSMFP2 is
a snap-stabilizing algorithm for specification SP ′.

Lemma 10 Let γ be a configuration in which routing tables are correct and m be a message of
Destination d existing in γ. Under a weakly fair daemon, every normal caterpillar of type S

associated to m becomes a caterpillar of type A in a finite time.

Proof. Let γ be a configuration of the network in which routing tables are correct and m

be a message (of Destination d) existing in γ. Let Cm = bufp1
(1)...bufpt(t) (t ≥ 1) be a normal

caterpillar of type S associated to m.
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By Lemma 9, Cm becomes a caterpillar of type A or F in a finite time. In the first case, the
proof ends here. In the second case (which is possible if D + 1 − t ≤ d(pt, d) in γ), it follows by
Lemma 8 that Cm becomes a caterpillar of type S of length 1 in a finite time. Then, we have:
Cm = bufp1

(1).
Following Lemma 9, Cm becomes a caterpillar of type F or A in a finite time. Assume that

Cm becomes a caterpillar of type F . This implies that m have been forwarded D times without
reach its destination. This result is absurd since we have by definition that dist(p1, d) ≤ D and we
assumed that routing tables are correct and constant. Consequently, Cm becomes a caterpillar of
type A in a finite time. �

Lemma 11 If routing tables are correct, every processor can generate a first message ( i.e. it can
execute (R1)) in a finite time under a weakly fair daemon .

Proof. Let p be a processor of the network which have a message m (of Destination d) to
forward. As p have a waiting message, the higher layer put requestp = true whatever its value in
the initial configuration.

Assume that bufp(1) already contains a message. Let Cm be the caterpillar which contains this
buffer. We must distinguish the following cases:

Case 1: Cm is of type F . Following Lemma 8, Cm becomes a caterpillar of type S in a finite time.
That leads us to case 2.

Case 2: Cm is of type S. Following Lemma 10, Cm becomes a caterpillar of type A in a finite
time. That leads us to case 3.

Case 3: Cm is of type A. Following Lemma 7, Cm disappears in a finite time.

In all cases, we obtain that bufp(1) becomes empty in a finite time. It remains empty while p

does not execute rule (R1) (since it is the only rule which can put a message in this buffer). In
these case, (R1) is enabled for p if and only if bufnextHopp(d)(2) 6= (m, r′, p, d, c).

Assume that this condition is not satisfied. This implies (by definition of a caterpillar) that
bufnextHopp(d)(2) is the tail of an abnormal caterpillar C ′

m. Following sequentially Lemmas 9 and
6, C ′

m disappear in a finite time (note that the merge with bufp(1) is impossible since this buffer
is empty). Moreover, bufnextHopp(d)(2) can not be fill by a message of type (m, r′, p, d, c) (since
bufp(1) is empty). Consequently, rule (R1) is infinitely enabled for Processor p. As the daemon is
weakly fair, p executes this rule in a finite time, that leads to the lemma. �

Lemma 12 If a message m is generated by SSMFP2 in a configuration in which routing tables
are correct, SSMFP2 delivers m to its destination in a finite time under a weakly fair daemon.

Proof. The generation of a message m (of Destination d) by SSMFP2 results from the
execution of rule (R1) by the processor which sends m. This rule creates a normal caterpillar of
type S associated to m. Following Lemma 10, this caterpillar becomes a caterpillar of type A in a
finite time. It is due to the execution of rule (R4) or (R10) by d. These rules delivers the message
to the higher layer of d, that ends the proof. �

Proposition 7 SSMFP2 is a snap-stabilizing message forwarding protocol for SP ′ if routing
tables are correct in the initial configuration.
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Proof. Assume that routing tables are correct in the initial configuration. To prove that
SSMFP2 is a snap-stabilizing message forwarding protocol for specification SP ′, we must prove
that :

1. If a processor p requests to send a message, then the protocol is initiated by at least one
starting action on p in a finite time. In our case, the starting action is the execution of (R1).
Lemma 11 proves this property.

2. After a starting action, the protocol is executed according to SP ′. If we consider that (R1)
have been executed at least one time, we can prove that:

• The first property of SP ′ is always satisfied (following Lemma 11 and the fact that the
waiting for the sending of new messages is blocking).

• The second property of SP ′ is always satisfied (following Lemma 12).

Consequently, we deduce the proposition. �

Self-stabilization. Now, we assume that routing tables are corrupted in the initial configurations
and we prove that SSMFP2 is a self-stabilizing algorithm for specification SP ′.

Proposition 8 SSMFP2 is a self-stabilizing message forwarding protocol for SP ′ even if routing
tables are corrupted in the initial configuration when A runs simultaneously.

Proof. Remind that A is a self-stabilizing silent algorithm for computing routing tables running
simultaneously to SSMFP2 . Moreover, we assumed that A has priority over SSMFP2 (i.e. a
processor which have enabled actions for both algorithms always chooses the action of A). This
guarantees us that routing tables are correct and constant in a finite time regardless of their initial
states.

By Proposition 7, SSMFP2 is a snap-stabilizing message forwarding protocol for specification
SP ′ when it starts from a such configuration. Consequently, we can conclude on the proposition.
�

Snap-stabilization. We still assume that routing tables are corrupted in the initial configuration
and we prove that SSMFP2 is a snap-stabilizing algorithm for specification SP.

Lemma 13 Under a weakly fair daemon, SSMFP2 does not delete a valid message without de-
livering it to its destination even if A runs simultaneously.

Proof. When SSMFP2 accepts a new valid message m, the processor which sends m executes
rule (R1). By construction of the rule, this execution creates a normal caterpillar Cm of type S

associated to m.
While m is not delivered to its destination, we know, by Lemmas 9 and 8, that Cm follows

infinitely often the above cycle:

• Cm is of type S and becomes of type F (type A is impossible since m is not delivered).

• Cm is of type F and becomes of type S.

This implies that there always exists at least one copy of m in bufp(1) (if p is the sending
processor of m). Then, this message is not deleted without being delivered to its destination. �
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Lemma 14 Under a weakly fair daemon, SSMFP2 never duplicates a valid message even if A
works simultaneously.

Proof. It is obvious that the emission of a message m by rule (R1) only creates one caterpillar
of type S associated to m.

Then, observe that all rules are designed to obtain the following property: if a caterpillar has
one head in a configuration, it also has one head in the following configuration whatever rules have
been applied. Indeed, this property is ensured by the fact that the next processor on the path of a
message m is computed (and put in the second field on the message) when m is copied into a buffer
bufp(i) (not when it is forwarded to a neighbor). Consequently, if there is a routing table move
after the copy of m in bufp(i), the caterpillar does not fork. The head of the caterpillar remains
unique.

We can conclude that, for any valid message m, there always exists a unique caterpillar Cm

associated to m. Assume that m is delivered. By construction of rules (R4) and (R10), Cm

becomes of type A. Following Lemma 7, Cm disappears in a finite time. Consequently, m cannot
be delivered several times. �

Theorem 2 SSMFP2 is a snap-stabilizing message forwarding protocol for SP even if routing
tables are corrupted in the initial configuration when A runs simultaneously.

Proof. Proposition 8 and Lemma 13 allows us to conclude that SSMFP2 is a snap-stabilizing
message forwarding protocol for specification SP ′ even if routing tables are corrupted in the initial
configuration on condition that A runs simultaneously.

Then, using this remark and Lemma 14, we obtain the result. �

5.4 Time complexities

Since our algorithm needs a weakly fair daemon, there is no points to do an analysis in terms
of steps. It is why all the following complexities analysis are given in rounds. Let RA be the
stabilization time of A in terms of rounds.

In order to lighten this paper, we present only key ideas of this section proofs.

Proposition 9 In the worst case, Θ(nD) invalid messages are delivered to Processor d.

Sketch of proof. In the initial configuration, the system has at most n(D + 1) distinct invalid
messages of Destination d. Then, the number of invalid messages deliver to d is in O(nD).

We can obtain the lower boundwith a chain of n = 2q + 1 processors labeled p1, p2, ..., pn.
Assume that all buffers of rank least or equals to q + 1 initially contain a message of destination
pq+1 and other buffers are empty. Moreover, assume that routing tables are initially correct. Then,
SSMFP2 delivers all invalid messages of this initial configuration to pq+1. This initial configuration
contains n(q + 1) = n(D

2 + 1) ∈ Θ(nD) invalid messages. The result follows. �

Proposition 10 In the worst case, a message m (of Destination d) needs O(max(RA, nD∆D))
rounds to be delivered to d once it has been sent out by its source.

Sketch of proof. In a first time, one must prove by induction the following fact: if γ is a
configuration in which routing tables are correct and in which a message of Destination d exists
and Cm is a caterpillar of type S associated to m which head is a buffer of rank 1 ≤ i+t−1 < D+1
on p 6= d, then the head of Cm goes up of one buffer in at most O(∆D+1−(i+t−1)) round if there
exists no abnormal caterpillar whose tail is a buffer of rank greater than i + t.
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In a second time, it is possible to show that C, the set of abnormal caterpillars in γ looses at
least one element during the O(∆D) rounds which follow γ. Then, we can say that, when routing
tables are correct, an accepted message is forwarded in at most O(nD∆D) rounds.

Finally, we can deduce the result when m is emitted in a configuration in which routing tables
are not correct since the message is delivered in at most O(nD∆D) rounds after routing tables
computation (which takes at most O(RA) rounds if m is not delivered during the routing tables
computation since we have assumed the priority of A). �

Proposition 11 The delay (waiting time before the first emission) and the waiting time (between
two consecutive emissions) of SSMFP2 is O(max(RA, nD∆D)) rounds in the worst case.

Sketch of proof. Let p be a processor which has a message of Destination d to emit. By the
fairness of choicep(d), we can say that m is sent after at most (∆ − 1) releases of bufp(1). The
result of Proposition 10 allows us to say that bufp(1) is released in O(max(RA, nD∆D)) rounds at
worst. Indeed, we can deduce the result. �

The complexity obtained in Proposition 10 is due to the fact that the system delivers a huge
quantity of messages during the forwarding of the considered message. It’s why we interest now in
the amortized complexity (in rounds) of our algorithm. For an execution Γ, this measure is equal
to the number of rounds of Γ divided by the number of delivered messages during Γ (see [5] for a
formal definition).

Proposition 12 The amortized complexity (to forward a message) of SSMFP2 is in O(max

(RA,D)) rounds when there exists no invalid messages.

Sketch of proof. In a first time, we must prove the following property: if γ is a configuration
in which at least one caterpillar of type S is present, routing tables are correct, and there exists no
invalid messages, then SSMFP2 delivers at least one message to a processor in the 3D + 1 rounds
following γ.

Assume now an initial configuration in which routing tables are correct and in which there
exists no invalid messages. Let Γ be one execution which leads to the worst amortized complexity.
Let RΓ be the number of rounds of Γ. By the last remark, we can say that SSMFP2 delivers at
least RΓ

3D+1 messages during Γ. So, we have an amortized complexity of RΓ
RΓ

3D+1

∈ Θ(D). Then, the

announced result is obvious. �

5.5 Conclusion

In this section, we prove that we can adapt the “distance-based” deadlock-free controller defined in
[21] to obtain a snap-stabilizing message forwarding algorithm. Our algorithm is mainly based on
an acknowledgement scheme. Each message is re-emitted until it reaches its destination. As routing
tables stabilize in a finite time, we are ensured that, in the worst case, the message is re-emitted
after the end of computation of routing tables. Hence, it can reach its destination normally.

The initial fault-free protocol uses n(D + 1) buffers for the whole network and our protocol
uses exactly the same number of buffers. Consequently, our protocol ensures a stronger safety and
fault-tolerance with respect the initial one without overcost in space. Our time analysis (see Section
5.4) shows that this stronger safety does not leads to an overcost in time.
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6 Conclusion

In this paper, we provide the first algorithms (at our knowledge) to solve the message forwarding
problem in a snap-stabilizing way (when a self-stabilizing algorithm for computing routing tables
runs simultaneously) for a specification which forbids message losses and duplication. This property
implies the following fact: our protocol can forward any emitted message to its destination regardless
of the state of routing tables in the initial configuration. Such an algorithm allows the processors of
the network to send messages to other without waiting for the routing table computation. We use a
tool called “buffer graph” which has been introduced in [21]. This paper proposed an adaptation of
two ”buffer graphs” in order to control the effect of routing table moves on messages. Our analysis
shows that we ensure snap-stabilization without significant overcost in space or in time with respect
to the fault-free algorithm.

[21] also proposed other buffer graphs. So, it is natural to wonder if they could be adapted to
tolerate transient faults. In particular, one of them (based on the acyclic covering of the network,
see also [24]) is very interesting since it needs less buffers per processor in general (3 for a ring,
2 for a tree...). But, authors of [19] show that it is NP-hard to compute the size of the acyclic
covering of any graph. So, this buffer graph cannot be easily applied to any network. A very
important open problem is the following: what is the minimal number of buffers per processor to
allow snap-stabilization on the message forwarding problem ?

Another way to improve our protocol is to speed up the message forwarding in the worst case
(without increasing amortized complexity). In this goal, we believe that we can keep our protocol
and modify the fair scheme of selection of messages choicep(d). In fact, the complexity of our
algorithm depends on the number of messages which can “pass” a specific message at each hop.

Our protocol has the following drawback: when a message m is delivered to a processor p, p

cannot determine if m is valid or not. This can bring some problems for applications which use
these messages. So, an interesting way of future researches could be to design a protocol which
solves this problem. In [6] the authors propose an efficient solution for the PIF problem that deals
with a similar problem, unfortunately their approach does not seem suitable for our problem.

Finally, it would be interesting to carry our protocol in the message passing model (a more
realistic model of distributed system) in order to enable snap-stabilizing message forwarding in a
real network. To our knowledge, in this model, only two snap-stabilizing protocols exist in the
literature ([7, 11]). The problem to carry automatically a protocol from the state model to the
message passing model is still open.
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