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Abstract

Let G be a graph, a split in G is a bi-partition (X, Y ) of its vertex
set V (G) such that | X |, | Y |≥ 2 and there are all possible edges be-
tween X+ = X ∩N(Y ) and Y + = Y ∩N(X) where N(X) and N(Y ) are
respectively neighborhood of X and Y in G. Let X− and Y − be respec-
tively the sets X \X+ and Y \ Y +. Whenever X− = ∅ (resp. Y − = ∅)
the set X (resp. Y ) is a non-trivial module of G. Let H be a graph
without split containing G as induced subgraph. We show that in the
graph induced by V (H)\V (G) and for any split (X, Y ) of G there exists
a particular kind of graph the (X, Y ) -split-pseudopath. The structure
of the split-pseudopath generalizes that of the W -pseudopath introduced
by I. Zverovich in [8] where W is a non trivial module of G.

AMS Subject Classification : 05C75
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tion, split-prime extension, prime extension, split-pseudopath.

1 Motivation and previous results

For terms not defined here the reader is referred to [2]. All considered graphs are
finite, without loops nor multiple edges. Let G be a graph, the set of its vertices
will be noted by V (G) while the set of its edges will be noted by E(G). The
neighborhood of a vertex v ∈ V (G) is denoted by N(v) and the neighborhood
of a set S ⊆ V (G) is the set N(S) = ∪v∈SN(v) \ S while the subgraph of G
induced by S will be denoted [S]. A vertex a will be total, indifferent or partial
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with respect to a set A if a is respectively adjacent to all, to none or to some but
not all of the vertices of A. A split in G is a bi-partition (X, Y ) of its vertex
set V (G) such that | X |, | Y |≥ 2 and there are all possible edges between
X+ = X ∩ N(Y ) and Y + = Y ∩ N(X) . Let X− and Y − be respectively
the sets X \ X+ and Y \ Y +. Whenever X− = ∅ (resp. Y − = ∅) the set X
(resp. Y ) is a non-trivial module or a homogeneous set of G. Singletons, the
empty set and V (G) are trivial modules and whenever a graph G contains only
trivial modules it is called prime otherwise G is called decomposable. Whenever
a graph G does not contain any split is called split-prime otherwise is called
split-decomposable.

Let (X, Y ) be a split of G then we can decompose G in two graphs G1 and
G2 such that V (G1) = X ∪{m1} and V (G2) = Y ∪{m2} where m1 and m2 are
two new vertices (markers) such that the neighborhood of m1 (respectively m2)
in G1 (resp. G2) is the set X+ (resp. Y +). The split-composition of two dis-
joint graphs G1 and G2 which is the inverse operation of split-decomposition is
obtained by first removed two vertices m1 of G1 and m2 of G2 and then making
every neighbor of m1 in G1 adjacent to any neighbor of m2 in G2. Whenever
X (resp. Y ) is an homogeneous set of G we can decompose G in two graphs
[X] and G2 (resp. [Y ] and G1). The substitution composition of two disjoint
graphs G1 and G2 is obtained by first removing a vertex m2 from G2 and then
making every vertex of G1 adjacent to all neighbors of m2 in G2. Applying
recursively the decomposition of G following its splits or its non-trivial modules
we obtain a set Π of graphs that are split-prime or respectively prime. The
set Π is unique up to isomorphism but the corresponding decomposition trees
are not necessarily unique except if we consider maximal splits with respect to
set-inclusion. We recall that the split decomposition has been originally intro-
duced in [4] and in [5] it is proposed a linear time algorithm for it. Concerning
the decomposition of G following its modules we obtain a unique modular de-
composition by decomposing recursively G following its strong modules (M is
a strong module if for any other module M ′ of G either M ∩M ′ = ∅ or one
module is included into the other). There are three linear time algorithms for
modular decomposition (see [2] for references). Split decomposition and modu-
lar decomposition are of basic importance for the design of efficient algorithms
and an impressive amount of researching works uses as framework both forms
of these decompositions. This is certainly due to the fact that split-composition
and substitution-composition preserve many of the properties of the composed
graphs as for example perfection (see [2] for references).

Let H be a split-prime (resp. prime) graph containing a split-decomposable
(resp. decomposable) graph G, then H will be called a split-prime (resp. prime)
extension of G. The graph H will be a minimal split-prime (resp. prime)
extension if there is no proper subgraph of H which is split-prime (resp. prime)
and contains a subgraph isomorphic to G.

Let Z be a set of graphs, a graph G will be called Z-free if G does not
contain any induced subgraph isomorphic to a graph of Z. A set of graphs F



will be called Z-free if every graph of F is Z-free. Let F be a family of graphs
defined by a set Z of induced subgraphs and let F∗ be the closure of F under
substitution composition. Let Ext(Z) be the set of minimal prime extensions
of Z.

Problem 1 : Forbidden induced subgraph characterization of F∗

In [6] it is proved:

1. The closure under substitution F∗ of F is defined by the union of the
sets Ext(Z) where Z is a graph of Z.

2. Ext(Z) is not necessarily a finite set

Problem 2 : Find necessary and sufficient conditions for Z∗ to be
finite

Various researchers investigated the solution of the problem 2 and many
sufficient conditions have been presented. It is worth noting that such charac-
terizations are likely to lead to efficient solutions for graph optimization prob-
lems including the weighted stability number and the domination problem (see
for example [1] ). In a recent paper [7] it is presented a complete answer to
Problem 2 by characterizing all classes of graphs whose minimal prime exten-
sions is a finite set and by giving a simple method for generating an infinite
number of extensions for all the other classes of graphs.

A powerful tool for the solution of Problem 2 below as well as for the
study of several classes of graphs is the notion of reducing W -pseudopath (or
W -pseudopath for shortly) introduced by I. Zverovich in [8].

Definition 1. Let G be an induced subgraph of a graph H and let W be a
homogeneous set of G. We define a reducing W -pseudopath in H as a sequence
R = (u1, u2, ..., ut), with t ≥ 1, of pairwise distinct vertices of V (H) \ V (G)
satisfying the following conditions :

1. u1 is partial with respect to W ;

2. ∀ i = 2, ..., t, either ui is adjacent to ui−1 and indifferent with respect to
W ∪ {u1, ..., ui−2} or ui is total with respect to W ∪ {u1, ..., ui−2} and
non-adjacent to ui−1 (when i = 2, {u1, u2, ..., ui−2} = ∅);

3. ∀ i = 1, ..., t − 1, vertex ui is total with respect to N(W ) in G and
indifferent with respect to V (G) \ {N(W ) ∪ W} and either ut is non-
adjacent to a vertex of N(W ) or ut is adjacent to a vertex of V (G) \
NG(W ).
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Figure 1: Two illustrations of the structure of a W -pseudopath.

We refer the reader to Figure 1 below for an illustration of a reducing W -
pseudopath.

Theorem 2. [8] Let H be an extension of its induced subgraph G and let
W be a homogeneous set of G. Then there exists a reducing W -pseudopath
with respect to any induced copy of G in H.

In this paper we show that whenever H is a split-prime extension of a
graph G there exists a special structure in H, the (X, Y )-split-pseudopath
which generalize the structure of the W -pseudopath . In Section 2 we describe
this new structure while in Section 3 we prove the existence of a (X,Y )-split-
pseudopath in H by a constructional proof that makes in evidence how this
new structure is formed in H. Finally in Section 4 we conclude by giving
some problems for which we believe that the (X,Y )-split-pseudopath will play
a crucial role for their solution.

2 (X,Y)-pseudopath: a generalization of the re-
ducing W-pseudopath

Let G be a graph, for X,Y ⊆ V (G) the notation X ∼ Y (respectively X � Y )
means that every vertex of X is adjacent (respectively non-adjacent) to every
vertex of Y . When X = {x} we shall write x ∼ Y and x � Y instead of
{x} ∼ Y and {x} � Y respectively. Finally x ∼ y (respectively x � y) means
that the vertex x is adjacent (respectively non-adjacent) to the vertex y. Let
G be a graph and (X,Y ) be a split of G. Let G∗ be a split-prime extension
of G. For A ⊆ V (G∗) \ V (G) and Z ∈ {X, Y } we define the following sets :
TotZ(A) = {x ∈ A/x is adjacent to every vertex of Z+ and indifferent with
respect to Z−} , IndZ(A) = {x ∈ A/x is indifferent with respect to Z} and
ParZ(A) = {x ∈ A/x is either adjacent to a vertex of Z−or is partial with
respect to Z+}.



2.1 The structure of X-split-pseudopath and Y-split-pseudopath

As we shall see in the next section, a (X, Y )-split-pseudopath is formed by a
couple of two sequences of vertices of V (G∗) \ V (G), the X-split-speudopath
and the Y -split-pseudopath. Let us then first describe below their structure
and then give in Figure 2 below an illustration.

Definition 3. Let G be a graph and (X,Y ) be a split of G. Let G∗

be a split-prime extension of G. For Z ∈ {X, Y } let Z̄ ∈ {X, Y } such that
Z̄ 6= Z then a Z-split-pseudopath P = (z1, ..., zk) is a sequence of vertices of
V (G∗) \ V (G) satisfying the following conditions :

1. z1 ∈ ParZ(P ).

2. We have that:

(a) If k > 1 then, for all i = 1, ..., k, zi ∈ IndZ̄(P ) or zi ∈ TotZ̄(P ).

(b) If k = 1 then z1 verify (2.a) or z1 ∈ ParZ̄(P ).

3. If k > 1, then, for all i = 2, ..., k, zi ∈ V (G∗) \ V (G) and one of the
following holds :

(a) zi is of type 1, i.e. zi ∼ zi−1 and zi � Z ∪ {z1, ..., zi−2}.
(b) zi is of type 2, i.e. zi ∼ zi−1 , zi−1 ∈ IndZ̄(P ), zi ∼ Z+ ∪

TotZ̄({z1, ..., zi−2}) and zi � Z− ∪ IndZ̄({z1, ..., zi−2}).
(c) zi is of type 3, i.e. zi � zi−1 , zi−1 ∈ TotZ̄(P ), zi ∼ Z+ ∪

TotZ̄({z1, ..., zi−2}) and zi � Z− ∪ IndZ̄({z1, ..., zi−2}).

We give in Figure 2 below an illustration of the three types of a X-split
pseudopath
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Figure 2: Illustration of the three types of a X-split-pseudopath ( X+ = {b},
X− = {a}, Y + = {c},Y − = {d})



2.2 The structure of a (X,Y)-split-pseudopath

We are now in position to describe the structure of a (X, Y )-split-pseudopath.

Definition 4. Let G be a graph and (X,Y ) be a split of G. Let G∗ be a
split-prime extension of G. A (X, Y )-split-pseudopath of G∗ is a couple (P, Q)
where P = (x1, ..., xk) and Q = (y1, ..., yk) satisfying the following conditions:

1. If k > 1, then, for all i = 1, ..., k − 1 and for all j = 1, ..., k − 1, we have
that xi 6= yj .

2. P is a X-split-pseudopath and Q is a Y -split-pseudopath.

3. The following conditions hold :

(a) If k > 1, we have TotY (P \ {xk}) ∼ TotX(Q \ {yk}), IndY (P \
{xk}) � Q \ {yk} and IndX(Q \ {yk}) � P \ {xk} .

(b) Either xk = yk or xk 6= yk and then :

i. If k > 1 and xk ∈ IndY (P ) (respectively yk ∈ IndX(Q)), then
xk � Q \ {yk} (respectively yk � P \ {xk}) .

ii. If k > 1 and if xk ∈ TotY (P ) (respectively yk ∈ TotX(Q)), then
xk ∼ TotX(Q) \ {yk} and xk � IndX(Q) \ {yk} (respectively
yk ∼ TotY (P ) \ {xk} and yk � IndY (P ) \ {xk}).

iii. If xk ∈ TotY (P ) and yk ∈ TotX(Q) then xk � yk, else (i.e.
xk ∈ IndY (P ) or yk ∈ IndX(Q)) xk ∼ yk.

We give in Figure 3 below an illustration of the structure of a (X,Y )-split-
pseudopath.
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Figure 3: The three kinds of a (X,Y )-split-pseudopath( X+ = {b}, X− =
{a},Y + = {c}, Y − = {d})



3 The main theorem

We shall prove now that in any split-prime extension of a graph G having a
split (X,Y ) there exists a (X,Y )-split-psuedopath.

Theorem 5. Let G be a graph and (X,Y ) be a split of G. Let G∗ be a
split-prime extension of G, then there exists an (X, Y )-split-pseudopath in G∗

for any induced copy of G.

Proof. Let us denote Ω = V (G∗) \V (G). Since the proof of this theorem is
quite technical, we present first the steps that we shall use for it:

• In a first time, we assume the existence of two sequences of sets of vertices
of Ω : (X1, ..., Xk) and (Y1, ..., Yk), k ≥ 1 that verify some conditions
Φ ( these sequences will be used for obtaining respectively a X-split-
pseudopath, a Y -split-pseudopath as well as a (X, Y )-split-pseudopath).

• Secondly, we construct the sets X1 and Y1 and we prove the truth of
conditions Φ for these sets .

• Then, we suppose that have construct two sequences of vertices (X1, ..., Xi)
and (Y1, ..., Yi), for some i ≥ 1 which satisfy conditions Φ and we prove
that we can construct Xi+1 and Yi+1 which satisfy also these conditions.

• We then prove that (X1, ..., Xk) and (Y1, ..., Yk), k ≥ 1 exist.

• Finally, we show that we can construct a (X, Y )-split-pseudopath from
these sets.

Definition of (X1, ..., Xk) and (Y1, ..., Yk), k ≥ 1

Let (X1, ..., Xk) and (Y1, ..., Yk), k ≥ 1 be two sequences of sets of vertices of
Ω which satisfy the following conditions :

1. [Sets are non empty and pairwise distinct ]

For 1 ≤ i ≤ k :

(a) ∅ 6= Xi ⊆ Ω \ ((X1 ∪ ... ∪Xi−1) ∪ (Y1 ∪ ... ∪ Yi−1)), and

(b) ∅ 6= Yi ⊆ Ω \ ((X1 ∪ ... ∪Xi−1) ∪ (Y1 ∪ ... ∪ Yi−1)).

2. [Existence of X- and Y -split-pseudopaths]

For 1 ≤ i ≤ k :

(a) for every vertex xi ∈ Xi, there exists a X-split-pseudopath Pi =
(x1, ..., xi) in X1 ∪ ...∪Xi such that xj ∈ Xj for every j ∈ {1, ..., i},
and



(b) for every vertex yi ∈ Yi, there exists a Y -split-pseudopath Qi =
(y1, ..., yi) in Y1 ∪ ... ∪ Yi such that yj ∈ Yj for every j ∈ {1, ..., i}.

3. [Neighborhood between X- and Y -split-pseudopaths]

The following conditions hold :

(a) When k > 1, for 1 ≤ i < k, we have : TotY (X1 ∪ ... ∪ Xi) ∼
TotX(Y1∪ ...∪Yi), IndY (X1∪ ...∪Xi) � Y1∪ ...∪Yi, and IndX(Y1∪
... ∪ Yi) � X1 ∪ ... ∪Xi.

(b) Either Xk ∩ Yk 6= ∅ or Xk ∩ Yk = ∅ and then :

i. If k > 1, then IndY (Xk) � Y1 ∪ ... ∪ Yk−1 and IndX(Yk) �
X1 ∪ ... ∪Xk−1.

ii. If k > 1, then TotY (Xk) ∼ TotX(Y1 ∪ ... ∪ Yk−1), TotY (Xk) �
IndX(Y1 ∪ ... ∪ Yk−1) and TotX(Yk) ∼ TotY (X1 ∪ ... ∪Xk−1) ,
TotX(Yk) � IndY (X1 ∪ ... ∪Xk−1).

iii. There exists xk ∈ Xk and yk ∈ Yk such that one of the following
holds :
xk ∈ TotY (Xk) and yk ∈ TotX(Yk) ⇒ xk � yk

xk ∈ IndY (Xk) or yk ∈ IndX(Yk) ⇒ xk ∼ yk.

We will prove that these two sequences exist by a constructional proof. We
shall first construct X1 and Y1.

Construction of X1 and Y1

We define these two sets in the following manner :

X1 = Ω \ (TotX(Ω) ∪ IndX(Ω)) ⇔ X1 = ParX(Ω)

Y1 = Ω \ (TotY (Ω) ∪ IndY (Ω)) ⇔ Y1 = ParY (Ω)

We denote :

X+
1 = X1 ∩ TotY (Ω) Y +

1 = Y1 ∩ TotX(Ω)
X−

1 = X1 ∩ IndY (Ω) Y −
1 = Y1 ∩ IndX(Ω)

To verify the condition 1, we must prove that ∅ 6= X1 ⊆ Ω and ∅ 6= Y1 ⊆ Ω.
We first prove that X1, Y1 6= ∅. If X1 ∩Y1 6= ∅ this is obvious. On the contrary
case, assume that X1 = ∅. Then, we have ∀x ∈ Ω, x ∈ IndY (Ω) or x ∈
TotY (Ω). This implies that (X, Y ∪ Ω) is a split of G∗ contradicting the fact
that G∗ is a split-prime graph. By a similar way, we can prove that Y1 6= ∅.
By the construction, we have X1 ⊆ Ω and Y1 ⊆ Ω. The condition 1 is then
verified. In order to check the other conditions, we must study two cases.



Case 1 : X1 ∩ Y1 6= ∅.
In this case, we can put k = 1 and consider a vertex x1 such that x1 ∈ X1∩Y1.
As x1 ∈ ParX(Ω) and x1 ∈ ParY (Ω), we can deduce that (x1) is a X- and a
Y -split-pseudopath (condition 2). Since X1 ∩ Y1 6= ∅ and k = 1, the condition
3 is obvious. Then, the construction is ended (see at the end of the proof for
the construction of the (X, Y )-split-pseudopath).

Case 2 : X1 ∩ Y1 = ∅.
If x1 ∈ X+

1 , we have that x1 ∈ TotY (Ω) and if x1 ∈ X−
1 , we have that

x1 ∈ IndY (Ω). Consequently for each x1 ∈ X1, P1 = (x1) is an X-split-
pseudopath (since x1 ∈ ParX(Ω) by construction). In the same way we can
prove that for each y1 ∈ Y1, Q1 = (y1) is an Y -split-pseudopath, and hence the
condition 2 above is verified.
If there exists x1 ∈ X1 and y1 ∈ Y1 which satisfies the condition 3.b.iii, we can
put k = 1 since the condition 3 is verified. Then, our construction is finished
(see at the end of the proof for the construction of the (X, Y )-split-pseudopath).
In the contrary case, we must have:

(R) ∀(x1, y1) ∈ TotY (X1)× TotX(Y1), x1 ∼ y1

(S) ∀(x1, y1) ∈ IndY (X1)× Y1, x1 � y1

(T) ∀(x1, y1) ∈ X1 × IndX(Y1), x1 � y1

By (R), we can deduce that TotY (X1) ∼ TotX(Y1), by (S), we can deduce
that IndY (X1) � Y1 and by (T), we can deduce that X1 � IndX(Y1). The
condition 3 is then verified with k > 1 and we can continue our construction.

Construction of Xi+1 and Yi+1

Assume now we have construct the sets (X1, ..., Xi) and (Y1, ..., Yi) which satisfy
the conditions 1, 2 and 3.a for i ≥ 1. Then, we denote Xi = X ∪X1 ∪ ... ∪Xi

and Yi = Y ∪ Y1 ∪ ... ∪ Yi. Clearly (Xi,Yi) is a split in the subgraph of G∗

induced by the vertices of Xi ∪ Yi.
We define Xi+1 and Yi+1 as follows:

Xi+1 = Ω \ (Xi ∪ Yi ∪ TotXi(Ω) ∪ IndXi(Ω))

Yi+1 = Ω \ (Xi ∪ Yi ∪ TotYi(Ω) ∪ IndYi(Ω))

We denote :

X+
i+1 = Xi+1 ∩ TotYi(Ω) Y +

i+1 = Yi+1 ∩ TotXi(Ω)
X−

i+1 = Xi+1 ∩ IndYi(Ω) Y −
i+1 = Yi+1 ∩ IndXi(Ω)



In a first time, we are going to check the condition 1.
We shall prove that Xi+1, Yi+1 6= ∅. If Xi+1 ∩ Yi+1 6= ∅ this is obvious. In

the contrary case, assume that Xi+1 = ∅. Then ∀x ∈ Ω\ ((X1∪ ...∪Xi)∪ (Y1∪
... ∪ Yi)), x ∈ TotXi

(Ω) or x ∈ IndXi
(Ω)). Consequently (X ∪ Xi, Y ∪ (Ω \ Xi)

is a split of G∗, contradicting the fact that G∗ is a split-prime graph. Hence
Xi+1 6= ∅ and in a similar way we prove that Yi+1 6= ∅. By construction, we
have that Xi+1, Yi+1 ⊆ Ω \ (Xi ∪ Yi), which implies that Xi+1 ⊆ Ω \ ((X1 ∪
... ∪Xi) ∪ (Y1 ∪ ... ∪ Yi)) and that Yi+1 ⊆ Ω \ ((X1 ∪ ... ∪Xi) ∪ (Y1 ∪ ... ∪ Yi)).
Thus, the condition 1 is true.

We now must verify the condition 2. We are going to prove only 2.a, since
2.b has a similar proof. We show now that every vertex xi+1 belongs to TotY (Ω)
or to IndY (Ω). Indeed, if we assume that there exists xi+1 ∈ Xi+1 such that
xi+1 is partial with respect to Y + or adjacent to at least one vertex of Y −

then xi+1 ∈ Y1 and we obtain a contradiction with the fact that Xi+1 ⊆
Ω \ ((X1 ∪ ... ∪Xi) ∪ (Y1 ∪ ... ∪ Yi)) with i ≥ 1.

Remember that, by condition 2 at the rank i, there exists a X-split-pseudopath
P (xi) = (x1, ..., xi) (with xj ∈ Xj for 1 ≤ j ≤ i) for every vertex xi ∈ Xi.
It remains to prove that every xi+1 ∈ Xi+1 is of type 1, 2 , ou 3 for a
P (xi) = x1, ..., xi.

Note that Xi+1 ⊆ TotXi−1(Ω) ∪ IndXi−1(Ω).
Let xi+1 ∈ Xi+1, then either

(I) xi+1 ∈ TotXi−1(Ω), or

(II) xi+1 ∈ IndXi−1(Ω) .

Furthermore xi+1 ∈ Xi+1 if and only if one of the following holds :

(A) xi+1 is partial with respect to X+
i and is indifferent with respect to X−

i

(B) xi+1 is indifferent with respect to X+
i and is adjacent to at least one vertex

of X−
i

(C) xi+1 is total with respect to X+
i and is adjacent to at least one vertex of

X−
i

(D) xi+1 is partial with respect to X+
i and is adjacent to at least one vertex

of X−
i

We have to study 8 different cases which are the combination of the conditions
(I), (II) and (A), (B), (C), (D) above.

(A)(I) We have xi+1 ∈ TotXi−1(Ω) ⇒ xi+1 ∼ X+ ∪ X+
1 ∪ ... ∪ X+

i−1. Now,
xi+1 is partial with respect to X+

i = X+ ∪X+
1 ∪ ... ∪X+

i−1 ∪X+
i . Thus,

there exists xi ∈ X+
i such that xi+1 � xi.



Then, we can verify that xi+1 is of type 3 with respect to P (xi) because :
xi ∈ TotY (Ω) (since xi ∈ X+

i ) and xi+1 ∈ TotXi−1(Ω) allow us to deduce
that xi+1 ∼ X+∪X+

1 ∪ ...∪X+
i−1, xi+1 � X−∪X−

1 ∪ ...∪X−
i−1 and hence

xi+1 ∼ X+ ∪ TotY ({x1, ..., xi−1}) and xi+1 � X− ∪ IndY ({x1, ..., xi−1})
.

(A)(II) Since we have xi+1 ∈ IndXi−1(Ω), we can say that xi+1 � Xi−1 =
X ∪X1 ∪ ... ∪Xi−1 and hence xi+1 � X+ ∪X+

1 ∪ ... ∪X+
i−1. Now, xi+1

is partial with respect to X+
i = X+ ∪X+

1 ∪ ...∪X+
i−1 ∪X+

i . Thus, there
exists xi ∈ X+

i such that xi+1 ∼ xi.

Then, we can verify that xi+1 is of type 1 with respect to P (xi) because
: xi+1 ∈ IndXi−1(Ω) then xi+1 � X ∪ {x1, ..., xi−1}.

(B)(I) This case contains a contradiction since X+
i−1 ⊆ X+

i and xi+1 ∈ TotXi−1(Ω)
implies that xi+1 ∼ X+

i−1.

(B)(II) Since we have xi+1 ∈ IndXi−1(Ω), we can deduce that xi+1 � X ∪
X1 ∪ ... ∪ Xi−1 and hence xi+1 � X− ∪ X−

1 ∪ ... ∪ X−
i−1. Now, xi+1 is

adjacent at at least one vertex of X−i = X ∪X−
1 ∪ ...∪X−

i−1 ∪X−
i . Then,

we can deduce that there exists x ∈ X−
i ⊆ Xi such that xi+1 ∼ xi.

Then, we can verify that xi+1 is of type 1 with respect to P (xi) because
xi+1 ∈ IndXi−1(Ω) implies that xi+1 � X ∪ {x1, ..., xi−1}.

(C)(I) By the fact that xi+1 ∈ TotXi−1(Ω), we have xi+1 � X− ∪X−
1 ∪ ... ∪

X−
i−1. Now, xi+1 is adjacent at at least one vertex of X−i = X ∪ X−

1 ∪
... ∪ X−

i−1 ∪ X−
i . Then, we can deduce that there exists xi ∈ X−

i ⊆ Xi

such that xi+1 ∼ xi.

Then, we can verify that xi+1 is of type 2 with respect to P (xi) because :
xi ∈ IndY (Ω) (since xi ∈ X−

i ) and xi+1 ∈ TotXi−1(Ω) allow us to deduce
xi+1 ∼ X+ ∪ X+

1 ∪ ... ∪ X+
i−1, xi+1 � X− ∪ X−

1 ∪ ... ∪ X−
i−1 and hence

xi+1 ∼ X+ ∪TotY ({x1, ..., xi−1}) and xi+1 � X− ∪ IndY ({x1, ..., xi−1}).
(C)(II) This case contains a contradiction since Xi−1 ⊆ Xi and xi+1 ∈ IndXi−1(Ω)

implies that xi+1 � Xi−1.

(D)(I) The proofs of (AI) or (CI) can be applied to this case.

(D)(II) The proofs of (AII) or (BII) can be applied to this case.

In each case, we proved that xi+1 is of type 1, 2 ou 3 with respect to a X-
split-pseudopath P (xi). So, we can deduce that P (xi) ∪ {xi+1} is a X-split-
pseudopath and hence we proved the condition 2.



It remains to prove the condition (3). We need to distinguish two cases.
Case 1 : Xi+1 ∩ Yi+1 6= ∅.
If we put k = i+1, the condition 3 becomes true and the construction is ended
(see at the end of the proof for the construction of the (X, Y )-split-pseudopath).

Case 2 : Xi+1 ∩ Yi+1 = ∅.
Assume first that there exists xi+1 ∈ Xi+1 and yi+1 ∈ Yi+1 which satisfies one
of the conditions of 3.b.iii. Then we put k = i + 1 and since k > 1 we must
check the conditions 3.b.i and 3.b.ii (note that we have not to verify 3.a since
i + 1 = k and by assumption Xi and Yi verify this condition).

By construction, we have that (Yk, T otYk−1(Ω), IndYk−1(Ω)) is a partition of
Ω \ ((X1 ∪ ...∪Xk−1)∪ (Y1 ∪ ...∪Yk−1)). Then ∀xk ∈ Xk, xk ∈ Xk ∩Yk = ∅ or
xk ∈ Xk ∩ TotYk−1(Ω) = X+

k or xk ∈ Xk ∩ IndYk−1(Ω) = X−
k . If xk ∈ X+

k , we
have by definition xk ∈ TotYk−1(Ω) and hence xk ∼ TotX(Y1 ∪ ... ∪ Yk−1) and
xk � IndX(Y1∪...∪Yk−1). If xk ∈ X−

k , we have by definition xk ∈ IndYk−1(Ω),
so xk � Y1 ∪ ... ∪ Yk−1 . Thus, conditions 3.b.i and 3.b.ii are verified for Xk

(we can prove these results for Yk by a similar way).
Then, the construction is ended (see at the end of the proof for the construction
of the (X,Y )-split-pseudopath).

Assume now that the condition 3.b.iii is not verified, we want to prove
that k > i + 1 (i.e. that the construction process is not ended). We shall
prove then the truth of condition 3.a for Xi+1 and Yi+1. We can easily obtain
that : TotY (Xi+1) ∼ TotX(Y1 ∪ ... ∪ Yi) , TotY (Xi+1) � IndX(Y1 ∪ ... ∪ Yi)
and IndY (Xi+1) � Y1 ∪ ... ∪ Yi. Hence for Yi+1, we have that TotX(Yi+1) ∼
TotY (X1 ∪ ... ∪ Xi), TotX(Yi+1) � IndY (X1 ∪ ... ∪ Xi) and IndX(Yi+1) �
X1 ∪ ... ∪Xi.
Since 3.b.iii is not verified the following conditions hold:

(a) ∀(xi+1, yi+1) ∈ TotY (Xi+1)× TotX(Yi+1), xi+1 ∼ yi+1

(b) ∀(xi+1, yi+1) ∈ IndY (Xi+1)× Yi+1, xi+1 � yi+1

(c) ∀(xi+1, yi+1) ∈ Xi+1 × IndX(Yi+1), xi+1 � yi+1

By (a), we can deduce that TotY (Xi+1) ∼ TotX(Yi+1). By (b), we can deduce
that IndY (Xi+1) � Yi+1. By (c), we can deduce that Xi+1 � IndX(Yi+1).
Since Xi and Yi verify the condition 3.a, we have that TotY (X1 ∪ ... ∪Xi) ∼
TotX(Y1 ∪ ...∪Yi), IndY (X1 ∪ ...∪Xi) � Y1 ∪ ...∪Yi and IndX(Y1 ∪ ...∪Yi) �
X1 ∪ ... ∪ Xi. It follows that TotY (X1 ∪ ... ∪ Xi+1) ∼ TotX(Y1 ∪ ... ∪ Yi+1),
IndY (X1∪ ...∪Xi+1) � Y1∪ ...∪Yi+1 and IndX(Y1∪ ...∪Yi+1) � X1∪ ...∪Xi+1

which allows us to conclude that the condition 3.a holds for Xi+1 and Yi+1 as
claimed.



(X1, ..., Xk) and (Y1, ..., Yk), k ≥ 1 exist

Observe that if Xi+1 ∩ Yi+1 = ∅ and the condition 3.b.iii is not verified, then
(Xi+1,Yi+1) is a split in the subgraph of G∗ induced by the vertices of Xi+1 ∪
Yi+1. But if Xi+1 ∩ Yi+1 6= ∅ or respectively Xi+1 ∩ Yi+1 = ∅ and there exists
xi+1 ∈ Xi+1 and yi+1 ∈ Yi+1 which satisfy the condition of 3.b then a vertex
x ∈ Xi+1 ∩ Yi+1 or respectively (xi+1, yi+1) “breaks” the split in the subgraph
of G∗ induced by the vertices of Xi ∪ Yi. Since all sets of Xi+1 ∪ Yi+1 are
non empty and pairwise disjoint and G∗ is finite and split-prime we can easily
deduce that the two sequences (X1, ..., Xk) and (Y1, ..., Yk) exist and verify the
conditions 1, 2 and 3 defined at the beginning of this proof.

Existence of a (X, Y )-split-pseudopath

It remains to determine a (X,Y )-split-pseudopath (P,Q) where P = (x1, ..., xk)
and Q = (y1, ..., yk) which satisfy all the properties of the Definition 4. For this,
we take for xk and yk the two vertices which allow us to stop the construction
(either xk = yk or xk and yk are distinct and verify the condition 3.b ). Then,
the condition 2 allows us to choose xj ∈ Xj and yj ∈ Yj for every 1 ≤ j ≤ k−1
such as P and Q are respectively a X- and a Y -split-pseudopath. The fact
that xj ∈ Xj and yj ∈ Yj for every 1 ≤ j ≤ k allows us to deduce respectively
from the conditions 1 and 3 that P and Q satisfy the properties 1 and 3 of the
Definition 4. So, we can conclude that (P, Q) is a (X, Y )-split-pseudopath in
G∗, as claimed.

4 Conclusion

We believe that the structure of a split-pseudopath will play a crucial role for
the resolution of the problems presented in Section 1 as well as for studying the
structural properties of various classes of graphs. For example, we could apply
the ideas developed in [5] for the study of minimal prime extensions of graphs
in order to find classes of graphs having an infinite number of minimal split-
prime extensions. More precisely, given a split-decomposable graph G we could
first search how to add a minimal number of new vertices in order to ”break”
all splits of G except exactly one split (X, Y ). Then, in the resulting graph
G′ we could try to obtain an infinite number of split-prime graphs containing
G′ by adding to G′ an (X,Y )-split-pseudopath of arbitrary length. We could
also study which kind of (X, Y )-split-speudopath produces a finite number
of minimal prime extensions for a given class of graphs. It would be also
interesting to study the relations of minimal split-prime extensions of a graph
with the monadic second-order logic formulas introduced in [3] for different
decomposition of graphs included split decomposition . All these directions are
for us an exciting area for further work.
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