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A challenging application in robotics

Jacv2,...,v5
(K) for a puma-type robot with a non-zero offset in the wrist

(v3 + v2)(1 − v2v3) 0 A(v) d3A(v) a2(v
2
3 + 1)(v2
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0 v2
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2
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5)(v
2
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4) −2d5v5(v

2
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where A(v) = (v2

3 − 1)(v2
2 − 1) − 4v2v3

A puma 560 [Unimation, 1984]

Fix generic parameters (a2, a3, d3, d4, d5) ∈ (Q>0)
5

v2, v3, v4, v5: half-angle tangents of rotations

Robotic problem

Count the number of aspects of this robot.

⇕
Semi-algebraic problem

Compute the number of connected components

of S =
{
v ∈ R4 | det(M(v)) ̸= 0

}
⇕

Algebraic problem

Compute the number of connected components

of VR =
{
(v, t) ∈ R5 | det(M(v)) · t = 1

}
where t is a new variable.
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Computing connectivity properties: Roadmaps

[Canny, 1988] Compute R ⊂ S one-dimensional, sharing its connectivity

Roadmap of (S,P)

A semi-algebraic curve R ⊂ S, containing query points (q1, . . . , qN ) s.t.

for all connected components C of S: C ∩ R is non-empty and connected

Proposition

qi and qj are path-connected in S ⇐⇒ they are in R

⇐⇒ they are in G

Problem reduction

Arbitrary dimension =⇒
Roadmap

Dimension 1

=⇒
Topology

Finite graph G

q3
q2

q1
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Roadmap algorithms for

unbounded algebraic sets

joint work with M. Safey El Din and É. Schost



Canny’s strategy

x

z

V

Projection through:

π2 : (x1, . . . , xn) 7→ (x1, x2)

W (π2, V ) critical locus of π2.

Intersects all the

connected components of V

Theorem [Canny, 1988]

If V is bounded, W (π2, V )
⋃

F has dimension dim(V )− 1

and satisfies the Roadmap property

Roadmap property

∀C connected component,

C ∩ R is non-empty and connected
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On the complexity of computing roadmaps

S ⊂ Rn semi alg. set of dimension d and defined by s polynomials of degree ⩽ D

Connectivity result [Canny, 1988]

If V is bounded, W (π2, V ) ∪ F has dimension d− 1

and satisfies the Roadmap property.

Author·s Complexity Assumptions

[Schwartz & Sharir, 1983] (sD)2
O(n)

[Canny, 1993] (sD)O(n2)

[Basu & Pollack & Roy, 2000] sd+1DO(n2)

[Safey El Din & Schost, 2011] (nD)O(n
√

n) Smooth, bounded algebraic sets

[Basu & Roy & Safey El Din

& Schost, 2014]
(nD)O(n

√
n) Algebraic sets

[Basu & Roy, 2014] (nD)O(n log2 n) Algebraic sets

[Safey El Din & Schost, 2017] (n2D)6n log2(d)+O(n) Smooth, bounded algebraic sets

[P. & Safey El Din & Schost, 2024] (n2D)6n log2(d)+O(n) Smooth, bounded algebraic sets
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S ⊂ Rn semi alg. set of dimension d and defined by s polynomials of degree ⩽ D

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, W (πi, V ) ∪ Fi has dimension max(i− 1, d− i+ 1)

and satisfies the Roadmap property

Author·s Complexity Assumptions

[Schwartz & Sharir, 1983] (sD)2
O(n)

[Canny, 1993] (sD)O(n2)

[Basu & Pollack & Roy, 2000] sd+1DO(n2)

[Safey El Din & Schost, 2011] (nD)O(n
√

n) Smooth, bounded algebraic sets

[Basu & Roy & Safey El Din

& Schost, 2014]
(nD)O(n

√
n) Algebraic sets

[Basu & Roy, 2014] (nD)O(n log2 n) Algebraic sets

[Safey El Din & Schost, 2017] (n2D)6n log2(d)+O(n) Smooth, bounded algebraic sets

[P. & Safey El Din & Schost, 2024] (n2D)6n log2(d)+O(n) Smooth, bounded algebraic sets

Results based on a theorem in the bounded case

Remove the boundedness

assumption is a costly step

Not polynomial in the output size

Necessity of a new theorem

in the unbounded case!

6



On the extension of Canny’s result

Projection on 2 coordinates

π2 : Cn → C2

(x1, . . . ,xn) 7→ (x1,x2)

• W (π2, V ) polar variety

• F2 = π−1
1 (π1(K)) ∩ V critical fibers

• K = critical points of π1 on W (π2, V )

Connectivity result [Canny, 1988]

If V is bounded, W (π2, V ) ∪ F2 has dimension d− 1

and satisfies the Roadmap property

No critical point!

7
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On the extension of Canny’s result

Non-negative proper polynomial map

φi : Cn −→ Ci

x 7→ (ψ1(x), . . . , ψi(x))

• W (φi, V ) generalized polar variety

• Fi = φ−1
i−1(φi−1(K)) ∩ V critical fibers.

• K = critical points of φ1 on W (φi, V )

Connectivity result [P. & Safey El Din & Schost, 2024]

If V is bounded, W (φi, V ) ∪ Fi has dimension max(i− 1, d− i+ 1)

and satisfies the Roadmap property

Critical point!

⇝ Sard’s lemma

⇝ Thom’s isotopy lemma

⇝ Puiseux series

7



How to use it?

Assumptions to satisfy in the new result

(R) sing(V ) is finite

(P) φ1 is a proper map bounded from below

For all 1 ⩽ i ⩽ dim(V )/2,

(N) φi−1 has finite fibers on Wi

(W) dimWi = i− 1 and sing(Wi) ⊂ sing(V )

(F) dimFi = n− d+ 1 and sing(Fi) is finite

A successful candidate

Choose generic (a, b2, . . . , bn) ∈ Rn2
and:

φ =

(
n∑

i=1

(xi − ai)
2 , bT2

−→x , . . . , bTn
−→x
)

where ai ∈ R, bi ∈ Rn

It satisfies the assumptions!
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An algorithm for unbounded algebraic set

Consider an algebraic set V ⊂ Cn with dimension d

Depth of recursion tree : τ

⇒ complexity: (nD)O(nτ)

9



An algorithm for unbounded algebraic set

Consider an algebraic set V ⊂ Cn with dimension d

Depth of recursion tree : d

⇒ complexity: (nD)O(nd)
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An algorithm for unbounded algebraic set

Consider an algebraic set V ⊂ Cn with dimension d

Depth of recursion tree : log2(d)

⇒ complexity: (nD)O(n log2(d))
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An algorithm for unbounded algebraic set

Consider an algebraic set V ⊂ Cn with dimension d

algorithmic

structure

Quantitative estimate

Output size Complexity

RoadmapBounded(fib(φ1))

(n2D)4n log2 d+O(n) (n2D)6n log2 d+O(n)

Compute crit(φ2) & fib(φ1)
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Overall

(n2D)4n log2 d+O(n) (n2D)6n log2 d+O(n)
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Summary

Input

Polynomials in Q[x1, . . . xn] of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension Roadmap
=⇒

Dimension: 1

Size: (nD)O(n log(n))

Topology
=⇒ Finite graph G

↓ ↓

(nD)O(n log2(n)) (Size)O(1) = (nD)O(n log(n))

[Basu, Roy; 2014] [Safey El Din, Schost; 2011]

Connectivity reduction process - now

Arbitrary dimension Roadmap
=⇒

Dimension: 1

Size: (n2D)4n log2(d)+O(n)
Connectivity

=⇒ Finite graph G

↓ ↓

(n2D)6n log2(d)+O(n) (Size)3 = (n2D)12n log2(d)+O(n)

[P., Safey El Din, Schost; 2024] [Islam, Poteaux, P.; 2023]

Computing roadmaps in unbounded smooth real algebraic sets I: connectivity results, 2024

with M. Safey El Din and É. Schost

Computing roadmaps in unbounded smooth real algebraic sets II: algorithm and complexity, 2024

with M. Safey El Din and É. Schost

Algorithm for connectivity queries on real algebraic curves, 2023

with Md N. Islam and A. Poteaux
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Analysis of the kinematic

singularities of a PUMA robot

with J.Capco, M.Safey El Din and P.Wenger



Canny’s strategy

x

y

z

V

W (π2, V ) polar variety

F critical fibers

Genericity assumptions

1. W (π2, V ) has dimension 1

2. F has dimension dim(V )− 1

Theorem [Canny, 1988]

If V is bounded, W (π2, V )
⋃

F has dimension dim(V )− 1

and satisfies the Roadmap property

Roadmap property

∀C connected component,

C ∩ R is non-empty and connected

11
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x

y

z

V

W (π2, V ) polar variety

F regular fibers

Genericity assumptions

1. W (π2, V ) has dimension 1

2. F has dimension dim(V )− 1

Theorem [Mezzaroba & Safey El Din, 2006]

If V is bounded, W (π2, V )
⋃

F has dimension dim(V )− 1

and satisfies the Roadmap property

Roadmap property

∀C connected component,

C ∩ R is non-empty and connected
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Roadmap computation for robotics

Matrix M associated to a puma-type robot with a non-zero offset in the wrist

(v3 + v2)(1− v2v3) 0 A(v) d3A(v) a2(v23 + 1)(v22 − 1)− a3A(v) 2d3(v3 + v2)(v2v3 − 1)

0 v23 + 1 0 2a2v3 0 (a3 − a2)v23 + a2 + 2a3
0 1 0 0 0 2a3
0 0 1 0 0 0

v4 1− v24 0 d4(1− v24) −2d4v4 0

(v24 − 1)v5 4v4v5 (1− v25)(v
2
4 + 1) (1− v25)(v

2
4 − 1)d5 + 4d4v4v5 2d5v4(1− v25) + 2d4v5(1− v24) −2d5v5(v24 + 1)


https://msolve.lip6.fr

⇝ Multivariate system solving

⇝ Real roots isolation

A puma 560 [Unimation, 1984]

First step

Max. deg without splitting: 1858

Locus Degrees R-roots Tot. time

Critical points 400 & 934 96 & 182 9.7min

Critical curves 182 & 220 ∞ 3h46

Recursive step over 95 fibers

Data are for one fiber

Locus Degrees R-roots Total time

Critical points 38 14 6.4min

Critical curves 21 ∞ 9.6min

Roadmap computation

Output degree: 4847

Time: 4h10 (msolve)

12
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Critical curves 21 ∞ 9.6min

Roadmap computation

Output degree: 4847

Time: 4h10 (msolve)
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Perspectives

Algorithms

Roadmap algorithms:

| Adapt the algorithms to structured systems: quadratic case

(J.A.K.Elliott, M.Safey El Din, É.Schost)

| Generalize the connectivity result to semi-algebraic sets

↓ Design optimal roadmap algorithms with complexity exponential in O(n)

Connectivity of s.a. curves:

| Adapt to algebraic curves given as union (A.Poteaux)

↓ Generalize to semi-algebraic curves

Applications

| Analyze challenging class of robots (D.Salunkhe, P.Wenger)

↓ Obtain practical version of modern roadmap algorithms

Software

| Curves: subresultant/gcd computations deg ∼ 100 (now) → ∼ 200 (target)

| Build a Julia library for computational real algebraic geometry (C.Eder, R.Mohr)

↓ Implement a ready-to-use toolbox for roboticians
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Union of curves

q3
q2

q1

14



Reduce data size
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