KULEUVEN

Faster algorithms for connectivity queries in unbounded real algebraic sets

$5^{\text {th }}$ March 2024

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

$\square 2, \square 4, \square 6, \square 8, \square 10$
Physics
[Le, Safey El Din; '22]

Computational geometry
[Le, Manevich, Plaumann; '21]

Biology
$\left[\begin{array}{l}\text { Yabo, Safey El Din, } \\ \text { Caillau, Gouzé; '23 }\end{array}\right]$

Robotics
$\left[\begin{array}{c}\text { Chablat, P., Safey El Din, } \\ \text { Salunkhe, Wenger; '22 }\end{array}\right]$

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of connected components

$$
\begin{aligned}
& 4 y+x^{3}-4 x^{2}-2 x-8=0 \\
& -2 \leq x \leq 0
\end{aligned}
$$

$\square 2, \square 4, \square 6, \square 8, \square 10$
Physics
[Le, Safey El Din; '22]

Computational geometry
[Le, Manevich, Plaumann; '21]

Biology
$\left[\begin{array}{l}\text { Yabo, Safey El Din, } \\ \text { Caillau, Gouzé; '23 }\end{array}\right]$

Robotics
$\left[\begin{array}{c}\text { Chablat, P., Safey El Din, } \\ \text { Salunkhe, Wenger; '22 }\end{array}\right]$

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of connected components

Fundamental problems in computational real algebraic geometry
(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components

Computational real algebraic geometry

Semi-algebraic sets
Set of real solutions of systems of polynomial equations and inequalities

> Stability [Tarski-Seidenberg]
> The family of s.a. sets is stable by projection

Finiteness

Finite number of connected components

Fundamental problems in computational real algebraic geometry
(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components

2, ■4, ■6, ■ 8, ■10
Kuramoto oscillators

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of connected components

Fundamental problems in computational real algebraic geometry
(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components

Dynamical systems

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of

[^0]

Cuspidality decision

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of connected components

Fundamental problems in computational real algebraic geometry

(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components

Cuspidality decision

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of

Fundamental problems in computational real algebraic geometry
(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components

Cuspidality decision

A challenging application in robotics

$\mathrm{Jac}_{v_{2}, \ldots, v_{5}}(\mathcal{K})$ for a PUMA-type robot with a non-zero offset in the wrist

$$
\text { where } A(\boldsymbol{v})=\left(v_{3}^{2}-1\right)\left(v_{2}^{2}-1\right)-4 v_{2} v_{3}
$$

Fix generic parameters $\left(a_{2}, a_{3}, d_{3}, d_{4}, d_{5}\right) \in\left(\mathbb{Q}_{>0}\right)^{5}$ $v_{2}, v_{3}, v_{4}, v_{5}$: half-angle tangents of rotations

Robotic problem

Count the number of aspects of this robot.

I

Semi-algebraic problem

Compute the number of connected components of $\quad S=\left\{\boldsymbol{v} \in \mathbb{R}^{4} \mid \operatorname{det}(M(\boldsymbol{v})) \neq 0\right\}$

I

Algebraic problem

Compute the number of connected components of $\quad V_{\mathbb{R}}=\left\{(\boldsymbol{v}, t) \in \mathbb{R}^{5} \mid \operatorname{det}(M(\boldsymbol{v})) \cdot t=1\right\}$ where t is a new variable.

Computing connectivity properties: Roadmaps

[Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points $\left(q_{1}, \ldots, q_{N}\right)$ s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

q_{i} and q_{j} are path-connected in $S \Longleftrightarrow$ they are in \mathscr{R}

Problem reduction

Arbitrary dimension $\underset{\text { ROADMAP }}{\Longrightarrow}$ Dimension 1

Computing connectivity properties: Roadmaps

[Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points $\left(q_{1}, \ldots, q_{N}\right)$ s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

q_{i} and q_{j} are path-connected in $S \Longleftrightarrow$ they are in $\mathscr{R} \Longleftrightarrow$ they are in \mathscr{G}

Problem reduction

Arbitrary dimension $\underset{\text { ROADMAP }}{\Longrightarrow}$ Dimension $1 \underset{\text { Topology }}{\Longrightarrow}$ Finite graph \mathscr{G}

Roadmap algorithms for unbounded algebraic sets

joint work with M. Safey El Din and É. Schost

Canny's strategy

Canny's strategy

Projection through:

$$
\pi_{2}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, x_{2}\right)
$$

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Projection through:

$$
\pi_{2}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, x_{2}\right)
$$

$W\left(\pi_{2}, V\right)$ critical locus of π_{2}.

Intersects all the connected components of V

Canny's strategy

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Canny's strategy

Canny's strategy

Theorem [Canny, 1988]
If V is bounded, $\boldsymbol{W}\left(\pi_{2}, \boldsymbol{V}\right) \bigcup \boldsymbol{F}$ has dimension $\operatorname{dim}(V)-1$ and satisfies the Roadmap property

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]
If V is bounded, $W\left(\pi_{2}, V\right) \cup F$ has dimension $d-1$ and satisfies the Roadmap property.

Author•s	Complexity	Assumptions
$[$ Schwartz \& Sharir, 1983]	$(s D)^{2^{O(n)}}$	

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]
If V is bounded, $W\left(\pi_{2}, V\right) \cup F$ has dimension $d-1$ and satisfies the Roadmap property.

Author•s	Complexity	Assumptions
$[$ Schwartz \& Sharir, 1983]	$(s D)^{2(n)}$	
$[$ Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]
If V is bounded, $W\left(\pi_{2}, V\right) \cup F$ has dimension $d-1$ and satisfies the Roadmap property.

Author•s	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2(n)}$	
$[$ Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]

If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Author•s	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2^{O(n)}}$	
[Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	
[Safey El Din \& Schost, 2011]	$(n D)^{O(n \sqrt{n})}$	Smooth, bounded algebraic sets

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey EI Din \& Schost, 2011]

If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Author•s	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2^{O(n)}}$	
[Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	
[Safey El Din \& Schost, 2011]	$(n D)^{O(n \sqrt{n})}$	Smooth, bounded algebraic sets
[Basu \& Roy \& Safey El Din		
\& Schost, 2014]	$(n D)^{O(n \sqrt{n})}$	Algebraic sets

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Author•s	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2^{O(n)}}$	
[Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	
[Safey El Din \& Schost, 2011]	$(n D)^{O(n \sqrt{n})}$	Smooth, bounded algebraic sets
[Basu \& Roy \& Safey El Din		
\& Schost, 2014]	$(n D)^{O(n \sqrt{n})}$	Algebraic sets
[Basu \& Roy, 2014]	$(n D)^{O\left(n \log ^{2} n\right)}$	Algebraic sets

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Authors	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2 O(n)}$	
[Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	
[Safey El Din \& Schost, 2011]	$(n D)^{O(n \sqrt{n})}$	Smooth, bounded algebraic sets
[Basu \& Roy \& Safey El Din \& Schost, 2014]	$(n D)^{O(n \sqrt{n})}$	Algebraic sets
[Basu \& Roy, 2014]	$(n D)^{O\left(n \log ^{2} n\right)}$	Algebraic sets
[Safey El Din \& Schost, 2017]	$\left(n^{2} D\right)^{6 n \log _{2}(d)+O(n)}$	Smooth, bounded algebraic sets

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Author•s	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2^{O(n)}}$	
[Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	
[Safey El Din \& Schost, 2011]	$(n D)^{O(n \sqrt{n})}$	Smooth, bounded algebraic sets
[Basu \& Roy \& Safey El Din	$(n D)^{O(n \sqrt{n})}$	Algebraic sets
\& Schost, 2014]	$(n D)^{O\left(n \log ^{2} n\right)}$	Algebraic sets
[Basu \& Roy, 2014]	$\left(n^{2} D\right)^{6 n \log _{2}(d)+O(n)}$	Smooth, bounded algebraic sets
[P. \& Safey El Din \& Schost, 2024]	$\left(n^{2} D\right)^{6 n \log _{2}(d)+O(n)}$	Smooth,

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
\rightarrow If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
\rightarrow If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Results based on a theorem in the bounded case
Assumptions

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
\rightarrow If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Results based on a theorem in the bounded case Assumptions

Remove the boundedness assumption is a costly step

$(n D)^{O(n \sqrt{n})}$Remove the boundedness assumption is a costly step	
$(n D)^{O(n \sqrt{n})}$	Algebraic sets
$\left(n^{2} D\right)^{6 n} \log _{2}(d)+O(n)$	Smooth, bounded algebraic sets
$\left(n^{2} D\right)^{6 n \log _{2}(d)+O(n)}$	Smooth, betmed algebraic sets

[Safey El Din \& Schost, 2011]
[Basu \& Roy \& Safey El Din久 \& Schost, 2014] [Basu \& Roy, 2014]
[Safey El Din \& Schost, 2017]
[P. \& Safey El Din \& Schost, 2024]

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
\rightarrow If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Results based on a theorem in the bounded case Assumptions

[Schwartz \& Sharir, 1983]	Remove the boundednessassumption is a costly step				
[Canny, 1993] \longleftarrow assumption is a costly step					
[Basu \& Pollack \& Roy, 2000] $>s^{d+1} D^{O\left(n^{2}\right)}$					
[Safey El Din \& Schost, 2011]			$(n D)^{O(n \sqrt{n})}$ Not polynomial in the output size		
[Basu \& Roy \& Safey El Din久 \& Schost, 2014]	$(n D)^{O(n \sqrt{n})}$	Algek			
[Basu \& Roy, 2014]	$(n D)^{O\left(n \log ^{2} \eta\right.}$	Necessity of a new theorem in the unbounded case!			
[Safey El Din \& Schost, 2017]	$\left(n^{2} D\right)^{6 n} \log _{2}(d)+$				
[P. \& Safey El Din \& Schost, 2024]	$\left(n^{2} D\right)^{6 n \log _{2}(d)+}$				

On the extension of Canny's result

Projection on 2 coordinates

```
\mp@subsup{\pi}{2}{}:}\mp@subsup{\mathbb{C}}{}{n}\quad->\quad\mp@subsup{\mathbb{C}}{}{2
    (\mp@subsup{\boldsymbol{x}}{1}{},\ldots,\mp@subsup{\boldsymbol{x}}{n}{})\quad\mapsto}(\mp@subsup{\boldsymbol{x}}{1}{},\mp@subsup{\boldsymbol{x}}{2}{}
```

- $W\left(\pi_{2}, V\right)$ polar variety
- $F_{2}=\pi_{1}^{-1}\left(\pi_{1}(K)\right) \cap V$ critical fibers
- $K=$ critical points of π_{1} on $W\left(\pi_{2}, V\right)$

Connectivity result [Canny, 1988]

If V is bounded, $W\left(\pi_{2}, V\right) \cup F_{2}$ has dimension $d-1$ and satisfies the Roadmap property

On the extension of Canny's result

Projection on i coordinates

- $W\left(\pi_{i}, V\right)$ polar variety
- $F_{i}=\pi_{i-1}^{-1}\left(\pi_{i-1}(K)\right) \cap V$ critical fibers
- $K=$ critical points of π_{1} on $W\left(\pi_{i}, V\right)$

Connectivity result [Safey El Din \& Schost, 2011]
If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

On the extension of Canny's result

Projection on i coordinates

$$
\begin{array}{cccc}
\pi_{i}: & \mathbb{C}^{n} & \rightarrow & \mathbb{C}^{i} \\
& \left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) & \mapsto & \left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{i}\right)
\end{array}
$$

- $W\left(\pi_{i}, V\right)$ polar variety
- $F_{i}=\pi_{i-1}^{-1}\left(\pi_{i-1}(K)\right) \cap V$ critical fibers
- $K=$ critical points of π_{1} on $W\left(\pi_{i}, V\right)$

Connectivity result [Safey El Din \& Schost, 2011]

If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

No critical points...

On the extension of Canny's result

Non-negative proper polynomial map

$$
\begin{array}{cccc}
\boldsymbol{\varphi}_{i}: & \mathbb{C}^{n} & \longrightarrow & \mathbb{C}^{i} \\
& \boldsymbol{x} & \mapsto & \left(\psi_{1}(\boldsymbol{x}), \ldots, \psi_{i}(\boldsymbol{x})\right)
\end{array}
$$

- $W\left(\boldsymbol{\varphi}_{i}, V\right)$ generalized polar variety
- $F_{i}=\boldsymbol{\varphi}_{i-1}^{-1}\left(\boldsymbol{\varphi}_{i-1}(K)\right) \cap V$ critical fibers.
- $K=$ critical points of $\boldsymbol{\varphi}_{1}$ on $W\left(\boldsymbol{\varphi}_{i}, V\right)$

Connectivity result [P. \& Safey El Din \& Schost, 2024] NEWS
If V is bounded, $W\left(\boldsymbol{\varphi}_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

*

\rightsquigarrow Sard's lemma
\rightsquigarrow Thom's isotopy lemma
\rightsquigarrow Puiseux series

How to use it?

Assumptions to satisfy in the new result

$(\mathrm{R}) \operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below

For all $1 \leqslant i \leqslant \operatorname{dim}(V) / 2$,
(N) $\boldsymbol{\varphi}_{i-1}$ has finite fibers on W_{i}
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

How to use it?

Assumptions to satisfy in the new result

(R) $\operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below For all $1 \leqslant i \leqslant \operatorname{dim}(V) / 2$,
(N) $\boldsymbol{\varphi}_{i-1}$ has finite fibers on W_{i}
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

How to use it?

Assumptions to satisfy in the new result

$(\mathrm{R}) \operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below

For all $1 \leqslant i \leqslant \operatorname{dim}(V) / 2$,
(N) $\boldsymbol{\varphi}_{i-1}$ has finite fibers on W_{i}
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

A successful candidate

Choose generic $\left(\boldsymbol{a}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right) \in \mathbb{R}^{n^{2}}$ and:

$$
\boldsymbol{\varphi}=\left(\sum_{i=1}^{n}\left(x_{i}-a_{i}\right)^{2}, \boldsymbol{b}_{2}^{\top} \overrightarrow{\boldsymbol{x}}, \ldots, \boldsymbol{b}_{n}^{\top} \overrightarrow{\boldsymbol{x}}\right) \quad \text { where } \quad a_{i} \in \mathbb{R}, \quad \boldsymbol{b}_{i} \in \mathbb{R}^{n}
$$

It satisfies the assumptions! $\mathbb{N E W B}$

How to use it?

Assumptions to satisfy in the new result

$(\mathrm{R}) \operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below

For all $1 \leqslant i \leqslant \operatorname{dim}(V) / 2$,
(N) φ_{i-1} has finite fibers on W_{i}
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

*

Generalization of Noether position from
[Safey El Din \& Schost, 2003]

A successful candidate

Choose generic $\left(\boldsymbol{a}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right) \in \mathbb{R}^{n^{2}}$ and:

$$
\boldsymbol{\varphi}=\left(\sum_{i=1}^{n}\left(x_{i}-a_{i}\right)^{2}, \boldsymbol{b}_{2}^{\top} \overrightarrow{\boldsymbol{x}}, \ldots, \boldsymbol{b}_{n}^{\top} \overrightarrow{\boldsymbol{x}}\right) \quad \text { where } \quad a_{i} \in \mathbb{R}, \quad \boldsymbol{b}_{i} \in \mathbb{R}^{n}
$$

It satisfies the assumptions! $\mathbb{N E W B}$

How to use it?

Assumptions to satisfy in the new result

$(\mathrm{R}) \operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below

For all $1 \leqslant i \leqslant \operatorname{dim}(V) / 2$,
(N) φ_{i-1} has finite fibers on W_{i}
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$

*

Jacobian criterion
\oplus
Thom's transversality theorem
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

A successful candidate

Choose generic $\left(\boldsymbol{a}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right) \in \mathbb{R}^{n^{2}}$ and:

$$
\boldsymbol{\varphi}=\left(\sum_{i=1}^{n}\left(x_{i}-a_{i}\right)^{2}, \boldsymbol{b}_{2}^{\top} \overrightarrow{\boldsymbol{x}}, \ldots, \boldsymbol{b}_{n}^{\top} \overrightarrow{\boldsymbol{x}}\right) \quad \text { where } \quad a_{i} \in \mathbb{R}, \quad \boldsymbol{b}_{i} \in \mathbb{R}^{n}
$$

It satisfies the assumptions! $\mathbb{N E W B}$

How to use it?

Assumptions to satisfy in the new result

$(\mathrm{R}) \operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below \qquad

*

Jacobian criterion

Noether position
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

A successful candidate

Choose generic $\left(\boldsymbol{a}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right) \in \mathbb{R}^{n^{2}}$ and:

$$
\boldsymbol{\varphi}=\left(\sum_{i=1}^{n}\left(x_{i}-a_{i}\right)^{2}, \boldsymbol{b}_{2}^{\top} \overrightarrow{\boldsymbol{x}}, \ldots, \boldsymbol{b}_{n}^{\top} \overrightarrow{\boldsymbol{x}}\right) \quad \text { where } \quad a_{i} \in \mathbb{R}, \quad \boldsymbol{b}_{i} \in \mathbb{R}^{n}
$$

It satisfies the assumptions! NEWB

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Depth of recursion tree : τ
\Rightarrow complexity: $(n D)^{O(n \tau)}$

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Depth of recursion tree : d
\Rightarrow complexity: $(n D)^{O(n d)}$

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Depth of recursion tree : $\log _{2}(d)$
\Rightarrow complexity: $(n D)^{O\left(n \log _{2}(d)\right)}$

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Quantitative estimate

	Output size	Complexity
RoadmapBounded(fib $\left.\left(\boldsymbol{\varphi}_{1}\right)\right)$		
Compute $\operatorname{crit}\left(\boldsymbol{\varphi}_{2}\right) \& \operatorname{fib}\left(\boldsymbol{\varphi}_{1}\right)$		
Overall		

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Quantitative estimate

	Output size	Complexity
RoadmapBounded(fib $\left.\left(\boldsymbol{\varphi}_{1}\right)\right)$ Compute crit $\left(\boldsymbol{\varphi}_{2}\right) \& \operatorname{fib}\left(\boldsymbol{\varphi}_{1}\right)$	$\left(n^{2} D\right)^{4 n \log _{2} d+O(n)}$	$\left(n^{2} D\right)^{6 n \log _{2} d+O(n)}$
Overall		

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Quantitative estimate

	Output size	Complexity
RoadmapBounded $\left(\mathrm{fib}\left(\boldsymbol{\varphi}_{1}\right)\right)$	$\left(n^{2} D\right)^{4 n \log _{2} d+O(n)}$	$\left(n^{2} D\right)^{6 n \log _{2} d+O(n)}$
Compute $\operatorname{crit}\left(\boldsymbol{\varphi}_{2}\right) \& \operatorname{fib}\left(\boldsymbol{\varphi}_{1}\right)$	$(n D)^{O(n)}$	$(n D)^{O(n)}$
Overall		

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Quantitative estimate

	Output size	Complexity
RoadmapBounded $\left(\operatorname{fib}\left(\varphi_{1}\right)\right)$	$\left(n^{2} D\right)^{4 n \log _{2} d+O(n)}$	$\left(n^{2} D\right)^{6 n} \log _{2} d+O(n)$
Compute crit $\left(\varphi_{2}\right) \& \operatorname{fib}\left(\varphi_{1}\right)$	$(n D)^{O(n)}$	$(n D)^{O(n)}$
Overall	$\left(n^{2} D\right)^{4 n \log _{2} d+O(n)}$	$\left(n^{2} D\right)^{6 n} \log _{2} d+O(n)$

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension	$\xrightarrow{\text { ROADMAP }}$	Dimension: 1	$\xrightarrow{\text { Topology }}$ \downarrow	Finite graph \mathscr{G}

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension	$\stackrel{\text { RoADMAP }}{\Longrightarrow}$
	\downarrow $(n D)^{O\left(n \log ^{2}(n)\right)}$ Size: Roy; 2014] $(n D)^{O(n \log (n))}$
Dimension: 1 Topology	Finite graph \mathscr{G}

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension	$\xrightarrow[\substack{\text { ROADMAP }}]{\Longrightarrow}$	Dimension: 1 Size: $(n D)^{O(n \log (n))}$		$\xrightarrow{\text { Topology }}$ \downarrow	Finite graph \mathscr{G}
	$(n D)^{O\left(n \log ^{2}(n)\right)}$		$(\text { Size })^{O(1)}=(n D)^{O(n \log (n))}$		
	[Basu, Roy; 2014]		[Safey El Din, Schost; 2011]		

Connectivity reduction process - now

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension	$\xrightarrow{\downarrow}$	Dimension: 1 Size: $(n D)^{O(n \log (n))}$		$\xrightarrow{\text { Topology }}$ \downarrow	Finite graph \mathscr{G}
	$(n D)^{O\left(n \log ^{2}(n)\right)}$		$(\text { Size })^{O(1)}=(n D)^{O(n \log (n))}$		
	[Basu, Roy; 2014]		[Safey El Din, Schost; 2011]		

Connectivity reduction process - now

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension	$\xrightarrow{\downarrow}$	Dimension: 1 Size: $(n D)^{O(n \log (n))}$		$\xrightarrow{\text { Topology }}$ \downarrow	Finite graph \mathscr{G}
	$(n D)^{O\left(n \log ^{2}(n)\right)}$		$(\text { Size })^{O(1)}=(n D)^{O(n \log (n))}$		
	[Basu, Roy; 2014]		[Safey El Din, Schost; 2011]		

Connectivity reduction process - now

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Connectivity reduction process - now

Computing roadmaps in unbounded smooth real algebraic sets I: connectivity results, 2024 with M. Safey El Din and É. Schost

Computing roadmaps in unbounded smooth real algebraic sets II: algorithm and complexity, 2024 with M. Safey El Din and É. Schost
䁃 Algorithm for connectivity queries on real algebraic curves, 2023 with Md N. Islam and A. Poteaux

Analysis of the kinematic singularities of a PUMA robot

with J.Capco, M.Safey El Din and P.Wenger

Canny's strategy

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected
$W\left(\pi_{2}, V\right)$ polar variety
\boldsymbol{F} regular fibers

Genericity assumptions

1. $W\left(\pi_{2}, V\right)$ has dimension 1
2. \boldsymbol{F} has dimension $\operatorname{dim}(V)-1$

If V is bounded, $W\left(\pi_{2}, V\right) \bigcup \boldsymbol{F}$ has dimension $\operatorname{dim}(V)-1$ and satisfies the Roadmap property

Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist

$$
\left[\begin{array}{cccccc}
\left(v_{3}+v_{2}\right)\left(1-v_{2} v_{3}\right) & 0 & A(\boldsymbol{v}) & d_{3} A(\boldsymbol{v}) & a_{2}\left(v_{3}^{2}+1\right)\left(v_{2}^{2}-1\right)-a_{3} A(\boldsymbol{v}) & 2 d_{3}\left(v_{3}+v_{2}\right)\left(v_{2} v_{3}-1\right) \\
0 & v_{3}^{2}+1 & 0 & 2 a_{2} v_{3} & 0 & \left(a_{3}-a_{2}\right) v_{3}^{2}+a_{2}+2 a_{3} \\
0 & 1 & 0 & 0 & 0 & 2 a_{3} \\
0 & 0 & 1 & 0 & 0 & 0 \\
v_{4} & 1-v_{4}^{2} & 0 & d_{4}\left(1-v_{4}^{2}\right) & -2 d_{4} v_{4} & 0 \\
\left(v_{4}^{2}-1\right) v_{5} & 4 v_{4} v_{5} & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}+1\right) & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}-1\right) d_{5}+4 d_{4} v_{4} v_{5} & 2 d_{5} v_{4}\left(1-v_{5}^{2}\right)+2 d_{4} v_{5}\left(1-v_{4}^{2}\right) & -2 d_{5} v_{5}\left(v_{4}^{2}+1\right)
\end{array}\right]
$$

https://msolve.lip6.fr
\rightsquigarrow Multivariate system solving
\rightsquigarrow Real roots isolation

A PUMA 560 [Unimation, 1984]

Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist

$$
\left[\begin{array}{cccccc}
\left(v_{3}+v_{2}\right)\left(1-v_{2} v_{3}\right) & 0 & A(\boldsymbol{v}) & d_{3} A(\boldsymbol{v}) & a_{2}\left(v_{3}^{2}+1\right)\left(v_{2}^{2}-1\right)-a_{3} A(\boldsymbol{v}) & 2 d_{3}\left(v_{3}+v_{2}\right)\left(v_{2} v_{3}-1\right) \\
0 & v_{3}^{2}+1 & 0 & 2 a_{2} v_{3} & 0 & \left(a_{3}-a_{2}\right) v_{3}^{2}+a_{2}+2 a_{3} \\
0 & 1 & 0 & 0 & 0 & 2 a_{3} \\
0 & 0 & 0 & 0 & 0 \\
v_{4} & 1-v_{4}^{2} & 0 & d_{4}\left(1-v_{4}^{2}\right) & -2 d_{4} v_{4} & 0 \\
\left(v_{4}^{2}-1\right) v_{5} & 4 v_{4} v_{5} & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}+1\right) & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}-1\right) d_{5}+4 d_{4} v_{4} v_{5} & 2 d_{5} v_{4}\left(1-v_{5}^{2}\right)+2 d_{4} v_{5}\left(1-v_{4}^{2}\right) & -2 d_{5} v_{5}\left(v_{4}^{2}+1\right)
\end{array}\right]
$$

https://msolve.lip6.fr
\rightsquigarrow Multivariate system solving
\rightsquigarrow Real roots isolation

WAIST ROTATION 320°

First step

Max. deg without splitting: 1858

Locus	Degrees	\mathbb{R}-roots	Tot. time
Critical points	$400 \& 934$	$96 \& 182$	9.7 min
Critical curves	$182 \& 220$	∞	3 h 46

Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist
$\left[\begin{array}{cccccc}\left(v_{3}+v_{2}\right)\left(1-v_{2} v_{3}\right) & 0 & A(\boldsymbol{v}) & d_{3} A(\boldsymbol{v}) & a_{2}\left(v_{3}^{2}+1\right)\left(v_{2}^{2}-1\right)-a_{3} A(\boldsymbol{v}) & 2 d_{3}\left(v_{3}+v_{2}\right)\left(v_{2} v_{3}-1\right) \\ 0 & v_{3}^{2}+1 & 0 & 2 a_{2} v_{3} & 0 & \left(a_{3}-a_{2}\right) v_{3}^{2}+a_{2}+2 a_{3} \\ 0 & 1 & 0 & 0 & 0 & 2 a_{3} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ v_{4} & 1-v_{4}^{2} & 0 & d_{4}\left(1-v_{4}^{2}\right) & -2 d_{4} v_{4} & 0 \\ \left(v_{4}^{2}-1\right) v_{5} & 4 v_{4} v_{5} & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}+1\right) & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}-1\right) d_{5}+4 d_{4} v_{4} v_{5} & 2 d_{5} v_{4}\left(1-v_{5}^{2}\right)+2 d_{4} v_{5}\left(1-v_{4}^{2}\right) & -2 d_{5} v_{5}\left(v_{4}^{2}+1\right)\end{array}\right]$
https://msolve.lip6.fr
\rightsquigarrow Multivariate system solving
\rightsquigarrow Real roots isolation

First step

Max. deg without splitting: $\mathbf{1 8 5 8}$

Locus	Degrees	\mathbb{R}-roots	Tot. time
Critical points	$400 \& 934$	$96 \& 182$	9.7 min
Critical curves	$182 \& 220$	∞	3 h 46

Recursive step over 95 fibers

Data are for one fiber

Locus	Degrees	\mathbb{R}-roots	Total time
Critical points	38	14	6.4 min
Critical curves	21	∞	9.6 min

A PUMA 560 [Unimation, 1984]

Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist
$\left[\begin{array}{cccccc}\left(v_{3}+v_{2}\right)\left(1-v_{2} v_{3}\right) & 0 & A(\boldsymbol{v}) & d_{3} A(\boldsymbol{v}) & a_{2}\left(v_{3}^{2}+1\right)\left(v_{2}^{2}-1\right)-a_{3} A(\boldsymbol{v}) & 2 d_{3}\left(v_{3}+v_{2}\right)\left(v_{2} v_{3}-1\right) \\ 0 & v_{3}^{2}+1 & 0 & 2 a_{2} v_{3} & 0 & \left(a_{3}-a_{2}\right) v_{3}^{2}+a_{2}+2 a_{3} \\ 0 & 1 & 0 & 0 & 0 & 2 a_{3} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ v_{4} & 1-v_{4}^{2} & 0 & d_{4}\left(1-v_{4}^{2}\right) & -2 d_{4} v_{4} & 0 \\ \left(v_{4}^{2}-1\right) v_{5} & 4 v_{4} v_{5} & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}+1\right) & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}-1\right) d_{5}+4 d_{4} v_{4} v_{5} & 2 d_{5} v_{4}\left(1-v_{5}^{2}\right)+2 d_{4} v_{5}\left(1-v_{4}^{2}\right) & -2 d_{5} v_{5}\left(v_{4}^{2}+1\right)\end{array}\right]$
https://msolve.lip6.fr
\rightsquigarrow Multivariate system solving
\rightsquigarrow Real roots isolation

First step

Max. deg without splitting: $\mathbf{1 8 5 8}$

Locus	Degrees	\mathbb{R}-roots	Tot. time
Critical points	$400 \& 934$	$96 \& 182$	9.7 min
Critical curves	$182 \& 220$	∞	3 h 46

Recursive step over 95 fibers

Data are for one fiber

Locus	Degrees	\mathbb{R}-roots	Total time
Critical points	38	14	6.4 min
Critical curves	21	∞	9.6 min

A PUMA 560 [Unimation, 1984]

Perspectives

Algorithms

Roadmap algorithms:

| Adapt the algorithms to structured systems: quadratic case (J.A.K.Elliott, M.Safey El Din, É.Schost)
| Generalize the connectivity result to semi-algebraic sets
\downarrow Design optimal roadmap algorithms with complexity exponential in $O(n)$
Connectivity of s.a. curves:
| Adapt to algebraic curves given as union
\downarrow Generalize to semi-algebraic curves

Applications

| Analyze challenging class of robots
(D.Salunkhe, P.Wenger)
\downarrow Obtain practical version of modern roadmap algorithms

Software

Curves: subresultant/GCD computations $\quad \operatorname{deg} \sim 100$ (now) $\rightarrow \sim 200$ (target)
| Build a Julia library for computational real algebraic geometry
(C.Eder, R.Mohr)
\downarrow Implement a ready-to-use toolbox for roboticians

Union of curves

Reduce data size

[^0]: Fundamental problems in computational real algebraic geometry
 (P) compute a projection: one block quantifier elimination
 (S) compute at least one point in each connected component
 (C) decide if two points lie in the same connected component
 (N) count the number of connected components

