

# Faster algorithms for connectivity queries in unbounded real algebraic sets



Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities





Physics [Le, Safey El Din; '22] Computational geometry [Le, Manevich, Plaumann; '21] Biology [Yabo, Safey El Din, Caillau, Gouzé; '23]



#### Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities



#### Fundamental problems in computational real algebraic geometry

(P) compute a projection: one block quantifier elimination

(S) compute at least one point in each connected component

(C) decide if two points lie in the same connected component

(N) count the number of connected components

Finite number of connected components

# Semi-algebraic sets Set of real solutions of systems of polynomial equations and inequalities Stability [Tarski-Seidenberg] The family of s.a. sets is stable by projection Finiteness

 $\overline{2}$ 

2

Fundamental problems in computational real algebraic geometry
(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components



#### Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

 Stability
 [Tarski-Seidenberg]

 The family of s.a. sets is stable by projection

#### Finiteness

Finite number of connected components







Dynamical systems

#### Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities



Finite number of connected components

#### Fundamental problems in computational real algebraic geometry

(P) compute a projection: one block quantifier elimination

(S) compute at least one point in each connected component

(C) decide if two points lie in the same connected component

(N) count the number of connected components



Cuspidality decision

#### Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities



#### Fundamental problems in computational real algebraic geometry

(P) compute a projection: one block quantifier elimination

(S) compute at least one point in each connected component

(C) decide if two points lie in the same connected component

(N) count the number of connected components



Cuspidality decision

#### Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities



connected components



#### Fundamental problems in computational real algebraic geometry

(P) compute a projection: one block quantifier elimination

(S) compute at least one point in each connected component

(C) decide if two points lie in the same connected component

(N) count the number of connected components



Cuspidality decision

# A challenging application in robotics



# Computing connectivity properties: Roadmaps

 $\mathcal{G}_{[Canny, 1988]}$  Compute  $\mathscr{R} \subset S$  one-dimensional, sharing its connectivity

Roadmap of  $(S, \mathcal{P})$ 

A semi-algebraic curve  $\mathscr{R} \subset S$ , containing query points  $(q_1, \ldots, q_N)$  s.t. for all connected components C of  $S: C \cap \mathscr{R}$  is non-empty and connected

#### Proposition

 $q_i$  and  $q_j$  are path-connected in  $S \iff$  they are in  $\mathscr{R}$ 



# Computing connectivity properties: Roadmaps

 $\mathcal{G}_{[Canny, 1988]}$  Compute  $\mathscr{R} \subset S$  one-dimensional, sharing its connectivity

Roadmap of  $(S, \mathcal{P})$ 

A semi-algebraic curve  $\mathscr{R} \subset S$ , containing query points  $(q_1, \ldots, q_N)$  s.t. for all connected components C of  $S: C \cap \mathscr{R}$  is non-empty and connected

#### Proposition

 $q_i$  and  $q_j$  are path-connected in  $S \iff$  they are in  $\mathscr{R} \iff$  they are in  $\mathscr{G}$ 

# Problem reductionArbitrary dimension $\underset{\text{ROADMAP}}{\Longrightarrow}$ Dimension 1 $\underset{\text{Topology}}{\longrightarrow}$



# Roadmap algorithms for unbounded algebraic sets

joint work with M. Safey El Din and É. Schost



#### Roadmap property

 $\forall \, C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 



#### Roadmap property

 $\forall \, C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 

Projection through:  $\pi_2: (x_1, \ldots, x_n) \mapsto (x_1, x_2)$ 



#### Roadmap property

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 

Projection through:  $\pi_2: (x_1, \ldots, x_n) \mapsto (x_1, x_2)$ 

#### $W(\pi_2, V)$ critical locus of $\pi_2$ .

Intersects all the connected components of V



#### Roadmap property

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 

Projection through:  $\pi_2: (x_1, \ldots, x_n) \mapsto (x_1, x_2)$ 

 $W(\pi_2, V)$  critical locus of  $\pi_2$ .

Intersects all the connected components of V



#### **Roadmap property**

 $\forall \, C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 

#### Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value



#### **Roadmap property**

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 

#### Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value



#### **Roadmap property**

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 

#### Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value



#### **Roadmap property**

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 

#### Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value



#### **Roadmap property**

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 

#### Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value



#### **Roadmap property**

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 

#### Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value



#### **Roadmap property**

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 

#### Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value



#### **Roadmap property**

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$ 

#### Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value







 $S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 

| Со | nnectivity result [Canny, 1988]                                                                  |
|----|--------------------------------------------------------------------------------------------------|
|    | If V is bounded, $W(\pi_2, V) \cup F$ has dimension $d-1$<br>and satisfies the Roadmap property. |

| Author                    | Complexity        | Assumptions |
|---------------------------|-------------------|-------------|
| [Schwartz & Sharir, 1983] | $(sD)^{2^{O(n)}}$ |             |

 $S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 

Connectivity result [Canny, 1988]

If V is bounded,  $W(\pi_2, V) \cup F$  has dimension d-1and satisfies the Roadmap property.

| Authors                   | Complexity        | Assumptions |
|---------------------------|-------------------|-------------|
| [Schwartz & Sharir, 1983] | $(sD)^{2^{O(n)}}$ |             |
| [Canny, 1993]             | $(sD)^{O(n^2)}$   |             |

 $S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 

Connectivity result [Canny, 1988]

If V is bounded,  $W(\pi_2, V) \cup F$  has dimension d-1and satisfies the Roadmap property.

| Author.s                     | Complexity          | Assumptions |
|------------------------------|---------------------|-------------|
| [Schwartz & Sharir, 1983]    | $(sD)^{2^{O(n)}}$   |             |
| [Canny, 1993]                | $(sD)^{O(n^2)}$     |             |
| [Basu & Pollack & Roy, 2000] | $s^{d+1}D^{O(n^2)}$ |             |

 $S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 

Connectivity result [Safey El Din & Schost, 2011]

| Author.s                      | Complexity            | Assumptions                    |
|-------------------------------|-----------------------|--------------------------------|
| [Schwartz & Sharir, 1983]     | $(sD)^{2^{O(n)}}$     |                                |
| [Canny, 1993]                 | $(sD)^{O(n^2)}$       |                                |
| [Basu & Pollack & Roy, 2000]  | $s^{d+1}D^{O(n^2)}$   |                                |
| [Safey El Din & Schost, 2011] | $(nD)^{O(n\sqrt{n})}$ | Smooth, bounded algebraic sets |

 $S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 

Connectivity result [Safey El Din & Schost, 2011]

| Author.s                                      | Complexity            | Assumptions                           |
|-----------------------------------------------|-----------------------|---------------------------------------|
| [Schwartz & Sharir, 1983]                     | $(sD)^{2^{O(n)}}$     |                                       |
| [Canny, 1993]                                 | $(sD)^{O(n^2)}$       |                                       |
| [Basu & Pollack & Roy, 2000]                  | $s^{d+1}D^{O(n^2)}$   |                                       |
| [Safey El Din & Schost, 2011]                 | $(nD)^{O(n\sqrt{n})}$ | Smooth, <b>bounded</b> algebraic sets |
| [Basu & Roy & Safey El Din<br>& Schost, 2014] | $(nD)^{O(n\sqrt{n})}$ | Algebraic sets                        |

 $S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 

Connectivity result [Safey El Din & Schost, 2011]

| Author.s                                      | Complexity            | Assumptions                           |
|-----------------------------------------------|-----------------------|---------------------------------------|
| [Schwartz & Sharir, 1983]                     | $(sD)^{2^{O(n)}}$     |                                       |
| [Canny, 1993]                                 | $(sD)^{O(n^2)}$       |                                       |
| [Basu & Pollack & Roy, 2000]                  | $s^{d+1}D^{O(n^2)}$   |                                       |
| [Safey El Din & Schost, 2011]                 | $(nD)^{O(n\sqrt{n})}$ | Smooth, <b>bounded</b> algebraic sets |
| [Basu & Roy & Safey El Din<br>& Schost, 2014] | $(nD)^{O(n\sqrt{n})}$ | Algebraic sets                        |
| [Basu & Roy, 2014]                            | $(nD)^{O(n\log^2 n)}$ | Algebraic sets                        |

 $S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 

Connectivity result [Safey El Din & Schost, 2011]

| Author.s                                      | Complexity                  | Assumptions                           |
|-----------------------------------------------|-----------------------------|---------------------------------------|
| [Schwartz & Sharir, 1983]                     | $(sD)^{2^{O(n)}}$           |                                       |
| [Canny, 1993]                                 | $(sD)^{O(n^2)}$             |                                       |
| [Basu & Pollack & Roy, 2000]                  | $s^{d+1}D^{O(n^2)}$         |                                       |
| [Safey El Din & Schost, 2011]                 | $(nD)^{O(n\sqrt{n})}$       | Smooth, <b>bounded</b> algebraic sets |
| [Basu & Roy & Safey El Din<br>& Schost, 2014] | $(nD)^{O(n\sqrt{n})}$       | Algebraic sets                        |
| [Basu & Roy, 2014]                            | $(nD)^{O(n\log^2 n)}$       | Algebraic sets                        |
| [Safey El Din & Schost, 2017]                 | $(n^2D)^{6n\log_2(d)+O(n)}$ | Smooth, <b>bounded</b> algebraic sets |

 $S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 

Connectivity result [Safey El Din & Schost, 2011]

| Author.s                                      | Complexity                      | Assumptions                                      |
|-----------------------------------------------|---------------------------------|--------------------------------------------------|
| [Schwartz & Sharir, 1983]                     | $(sD)^{2^{O(n)}}$               |                                                  |
| [Canny, 1993]                                 | $(sD)^{O(n^2)}$                 |                                                  |
| [Basu & Pollack & Roy, 2000]                  | $s^{d+1}D^{O(n^2)}$             |                                                  |
| [Safey El Din & Schost, 2011]                 | $(nD)^{O(n\sqrt{n})}$           | Smooth, <b>bounded</b> algebraic sets            |
| [Basu & Roy & Safey El Din<br>& Schost, 2014] | $(nD)^{O(n\sqrt{n})}$           | Algebraic sets                                   |
| [Basu & Roy, 2014]                            | $(nD)^{O(n\log^2 n)}$           | Algebraic sets                                   |
| [Safey El Din & Schost, 2017]                 | $(n^2D)^{6n\log_2(d)+O(n)}$     | Smooth, bounded algebraic sets                   |
| [P. & Safey El Din & Schost, 2024]            | $(n^2 D)^{6n \log_2(d) + O(n)}$ | Smooth, $\frac{bounded}{bounded}$ algebraic sets |
$S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 

Connectivity result [Safey El Din & Schost, 2011]

 $\rightarrow$  If V is bounded,  $W(\pi_i, V) \cup F_i$  has dimension  $\max(i - 1, d - i + 1)$ and satisfies the Roadmap property

| Results based on a theorem in the <b>bounded</b> case |                             | Assumptions                    |
|-------------------------------------------------------|-----------------------------|--------------------------------|
| [Schwartz & Sharir, 1983]                             | $(sD)^{2^{O(n)}}$           |                                |
| [Canny, 1993]                                         | $(sD)^{O(n^2)}$             |                                |
| [Basu & Pollack & Roy, 2000]                          | $s^{d+1}D^{O(n^2)}$         |                                |
| [Safey El Din & Schost, 2011]                         | $(nD)^{O(n\sqrt{n})}$       | Smooth, bounded algebraic sets |
| Basu & Roy & Safey El Din<br>& Schost, 2014           | $(nD)^{O(n\sqrt{n})}$       | Algebraic sets                 |
| [Basu & Roy, 2014]                                    | $(nD)^{O(n\log^2 n)}$       | Algebraic sets                 |
| [Safey El Din & Schost, 2017]                         | $(n^2D)^{6n\log_2(d)+O(n)}$ | Smooth, bounded algebraic sets |
| [P. & Safey El Din & Schost, 2024]                    | $(n^2D)^{6n\log_2(d)+O(n)}$ | Smooth, bounded algebraic sets |

 $S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 

| Connectivity result | [Safey | El Din | & Schost | , 2011] |  |
|---------------------|--------|--------|----------|---------|--|
|---------------------|--------|--------|----------|---------|--|

If V is bounded,  $W(\pi_i, V) \cup F_i$  has dimension  $\max(i - 1, d - i + 1)$ and satisfies the Roadmap property

| Results based on a theorem in the <b>bounded</b> case |                             | Assumptions                    |  |
|-------------------------------------------------------|-----------------------------|--------------------------------|--|
| [Schwartz & Sharir, 1983]                             | Remove the                  | boundedness                    |  |
| $[Canny, 1993] \leftarrow$                            | assumption                  | is a <i>costly</i> step        |  |
| [Basu & Pollack & Roy, 2000]↓                         | $s^{d+1}D^{O(n^2)}$         |                                |  |
| [Safey El Din & Schost, 2011]                         | $(nD)^{O(n\sqrt{n})}$       | Smooth, bounded algebraic sets |  |
| [Basu & Roy & Safey El Din⊄<br>& Schost, 2014]        | $(nD)^{O(n\sqrt{n})}$       | Algebraic sets                 |  |
| [Basu & Roy, 2014]                                    | $(nD)^{O(n\log^2 n)}$       | Algebraic sets                 |  |
| [Safey El Din & Schost, 2017]                         | $(n^2D)^{6n\log_2(d)+O(n)}$ | Smooth, bounded algebraic sets |  |
| [P. & Safey El Din & Schost, 2024]                    | $(n^2D)^{6n\log_2(d)+O(n)}$ | Smooth, bounded algebraic sets |  |

 $S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 





 $S \subset \mathbb{R}^n$  semi alg. set of dimension d and defined by s polynomials of degree  $\leqslant D$ 







- $W(\pi_2, V)$  polar variety
- $F_2 = \pi_1^{-1}(\pi_1(K)) \cap V$  critical fibers
- K =critical points of  $\pi_1$  on  $W(\pi_2, V)$

#### Connectivity result [Canny, 1988]

If V is bounded,  $W(\pi_2, V) \cup F_2$  has dimension d-1and satisfies the Roadmap property



- $W(\pi_i, V)$  polar variety
- $F_i = \pi_{i-1}^{-1}(\pi_{i-1}(K)) \cap V$  critical fibers
- K =critical points of  $\pi_1$  on  $W(\pi_i, V)$

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded,  $W(\pi_i,V) \cup F_i$  has dimension  $\max(i-1,d-i+1)$  and satisfies the Roadmap property



- $W(\pi_i, V)$  polar variety
- $F_i = \pi_{i-1}^{-1}(\pi_{i-1}(K)) \cap V$  critical fibers
- K =critical points of  $\pi_1$  on  $W(\pi_i, V)$

#### Connectivity result [Safey El Din & Schost, 2011]

If V is bounded,  $W(\pi_i, V) \cup F_i$  has dimension  $\max(i - 1, d - i + 1)$ and satisfies the Roadmap property





- $W(\boldsymbol{\varphi}_i, V)$  generalized polar variety
- $F_i = \varphi_{i-1}^{-1}(\varphi_{i-1}(K)) \cap V$  critical fibers.
- K =critical points of  $\varphi_1$  on  $W(\varphi_i, V)$

Connectivity result [P. & Safey El Din & Schost, 2024]

 $\frac{\text{If }V\text{ is bounded},}{\text{and satisfies the Roadmap property}} = K(i-1, d-i+1)$ 



#### Assumptions to satisfy in the new result

(**R**) sing(V) is finite

(P)  $\varphi_1$  is a proper map bounded from below

For all  $1 \leq i \leq \dim(V)/2$ ,

(N)  $\varphi_{i-1}$  has finite fibers on  $W_i$ 

(W) dim  $W_i = i - 1$  and sing $(W_i) \subset sing(V)$ 

(F) dim  $F_i = n - d + 1$  and sing $(F_i)$  is finite







#### A successful candidate

Choose generic  $(\boldsymbol{a}, \boldsymbol{b}_2, \dots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$  and:

$$\boldsymbol{\varphi} = \left(\sum_{i=1}^{n} (x_i - a_i)^2, \, \boldsymbol{b}_2^\mathsf{T} \overrightarrow{\boldsymbol{x}}, \, \dots, \, \boldsymbol{b}_n^\mathsf{T} \overrightarrow{\boldsymbol{x}}\right) \quad \text{where} \quad a_i \in \mathbb{R}, \quad \boldsymbol{b}_i \in \mathbb{R}^n$$



#### A successful candidate

Choose generic  $(\boldsymbol{a}, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$  and:

$$oldsymbol{arphi} = \left( \sum_{i=1}^n (x_i - a_i)^2 \,, \, oldsymbol{b}_2^\mathsf{T} \overrightarrow{oldsymbol{x}} \,, \, \dots \,, \, oldsymbol{b}_n^\mathsf{T} \overrightarrow{oldsymbol{x}} 
ight) \quad ext{where} \quad a_i \in \mathbb{R}, \quad oldsymbol{b}_i \in \mathbb{R}^n$$



#### A successful candidate

Choose generic  $(\boldsymbol{a}, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$  and:

$$oldsymbol{arphi} = \left(\sum_{i=1}^n (x_i - a_i)^2 \,, \, oldsymbol{b}_2^\mathsf{T} \overrightarrow{oldsymbol{x}} \,, \, \dots \,, \, oldsymbol{b}_n^\mathsf{T} \overrightarrow{oldsymbol{x}}
ight) \quad ext{where} \quad a_i \in \mathbb{R}, \quad oldsymbol{b}_i \in \mathbb{R}^n$$



#### A successful candidate

Choose generic  $(\boldsymbol{a}, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$  and:

$$oldsymbol{arphi} = \left(\sum_{i=1}^n (x_i - a_i)^2 \,, \, oldsymbol{b}_2^\mathsf{T} \overrightarrow{oldsymbol{x}} \,, \, \dots \,, \, oldsymbol{b}_n^\mathsf{T} \overrightarrow{oldsymbol{x}}
ight) \quad ext{where} \quad a_i \in \mathbb{R}, \quad oldsymbol{b}_i \in \mathbb{R}^n$$

Consider an algebraic set  $V \subset \mathbb{C}^n$  with dimension d





Depth of recursion tree : d $\Rightarrow$  complexity:  $(nD)^{O(nd)}$ 



Depth of recursion tree :  $\log_2(d)$  $\Rightarrow$  complexity:  $(nD)^{O(n \log_2(d))}$ 











| Quantitative estimate                                                                  |             |            |  |
|----------------------------------------------------------------------------------------|-------------|------------|--|
|                                                                                        | Output size | Complexity |  |
| RoadmapBounded(fib( $\varphi_1$ ))<br>Compute crit( $\varphi_2$ ) & fib( $\varphi_1$ ) |             |            |  |
| Overall                                                                                |             |            |  |



| Quantitative estimate                                                              |                              |                              |  |
|------------------------------------------------------------------------------------|------------------------------|------------------------------|--|
|                                                                                    | Output size                  | Complexity                   |  |
| RoadmapBounded(fib( $\varphi_1$ ))Compute crit( $\varphi_2$ ) & fib( $\varphi_1$ ) | $(n^2D)^{4n\log_2 d + O(n)}$ | $(n^2D)^{6n\log_2 d + O(n)}$ |  |
| Overall                                                                            |                              |                              |  |



| Quantitative estimate                                                              |                                               |                                               |  |
|------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--|
|                                                                                    | Output size                                   | Complexity                                    |  |
| RoadmapBounded(fib( $\varphi_1$ ))Compute crit( $\varphi_2$ ) & fib( $\varphi_1$ ) | $(n^2D)^{4n\log_2 d + O(n)}$<br>$(nD)^{O(n)}$ | $(n^2D)^{6n\log_2 d + O(n)}$<br>$(nD)^{O(n)}$ |  |
| Overall                                                                            |                                               |                                               |  |



| Quantitative estimate                                                              |                                                 |                                               |  |
|------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|--|
|                                                                                    | Output size                                     | Complexity                                    |  |
| RoadmapBounded(fib( $\varphi_1$ ))Compute crit( $\varphi_2$ ) & fib( $\varphi_1$ ) | $(n^2 D)^{4n \log_2 d + O(n)}$<br>$(nD)^{O(n)}$ | $(n^2D)^{6n\log_2 d + O(n)}$<br>$(nD)^{O(n)}$ |  |
| Overall                                                                            | $(n^2D)^{4n\log_2 d + O(n)}$                    | $(n^2D)^{6n\log_2 d + O(n)}$                  |  |

#### Input



#### Input



#### Input



#### Input





#### Input





#### Input

Polynomials in  $\mathbb{Q}[x_1, \ldots x_n]$  of max degree D defining a smooth algebraic set of dim. d

#### Connectivity reduction process - before



#### Connectivity reduction process - now



#### Input

Polynomials in  $\mathbb{Q}[x_1, \ldots x_n]$  of max degree D defining a smooth algebraic set of dim. d

# Connectivity reduction process - before Arbitrary dimension $\operatorname{RoadMap}$ $\operatorname{Dimension: 1}$ $\operatorname{Topology}$ Finite graph $\mathscr{G}$ $\downarrow$ $(nD)^{O(n \log^2(n))}$ $\downarrow$ $(\operatorname{Size})^{O(1)} = (nD)^{O(n \log(n))}$ [Basu, Roy; 2014] [Safey El Din, Schost; 2011]

#### Connectivity reduction process - now



Computing roadmaps in unbounded smooth real algebraic sets I: connectivity results, 2024 with M. Safey El Din and É. Schost

Computing roadmaps in unbounded smooth real algebraic sets II: algorithm and complexity, 2024 with M. Safey El Din and É. Schost

Algorithm for connectivity queries on real algebraic curves, 2023

with Md N. Islam and A. Poteaux

# Analysis of the kinematic singularities of a PUMA robot

with J.Capco, M.Safey El Din and P.Wenger

# **Canny's strategy**



# **Canny's strategy**



# Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist



https://msolve.lip6.fr

- → Multivariate system solving
- $\rightsquigarrow$  Real roots isolation





A PUMA 560 [Unimation, 1984]
# Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist



https://msolve.lip6.fr

- → Multivariate system solving
- $\rightsquigarrow$  Real roots isolation

WAIST ROTATION 320°



| First step      |                                  |           |          |                   |  |  |  |
|-----------------|----------------------------------|-----------|----------|-------------------|--|--|--|
|                 | Max. deg without splitting: 1858 |           |          |                   |  |  |  |
|                 | Locus                            | Degrees   | R-roots  | Tot. time         |  |  |  |
|                 | Critical points                  | 400 & 934 | 96 & 182 | $9.7\mathrm{min}$ |  |  |  |
| Critical curves |                                  | 182 & 220 | $\infty$ | 3h46              |  |  |  |
|                 |                                  |           | •        |                   |  |  |  |

# Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist



https://msolve.lip6.fr

- → Multivariate system solving
- $\rightsquigarrow$  Real roots isolation



| First step                       |           |                 |                   |  |  |  |
|----------------------------------|-----------|-----------------|-------------------|--|--|--|
| Max. deg without splitting: 1858 |           |                 |                   |  |  |  |
| Locus                            | Degrees   | <b>ℝ</b> -roots | Tot. time         |  |  |  |
| Critical points                  | 400 & 934 | 96 & 182        | $9.7\mathrm{min}$ |  |  |  |
| Critical curves                  | 182 & 220 | $\infty$        | 3h46              |  |  |  |
|                                  |           |                 |                   |  |  |  |

### **Recursive step over 95 fibers**

| Data | are | for | one | fiber |
|------|-----|-----|-----|-------|
|      |     |     |     |       |

| Locus           | Degrees | $\mathbb{R}$ -roots | Total time        |
|-----------------|---------|---------------------|-------------------|
| Critical points | 38      | 14                  | $6.4\mathrm{min}$ |
| Critical curves | 21      | $\infty$            | 9.6 min           |

# Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist



https://msolve.lip6.fr

- → Multivariate system solving
- $\rightsquigarrow$  Real roots isolation



| First step                       |           |                 |                   |  |  |  |
|----------------------------------|-----------|-----------------|-------------------|--|--|--|
| Max. deg without splitting: 1858 |           |                 |                   |  |  |  |
| Locus                            | Degrees   | <b>ℝ</b> -roots | Tot. time         |  |  |  |
| Critical points                  | 400 & 934 | 96 & 182        | $9.7\mathrm{min}$ |  |  |  |
| Critical curves                  | 182 & 220 | $\infty$        | 3h46              |  |  |  |

### **Recursive step over 95 fibers**

| Data | $\operatorname{are}$ | for | one | fiber |
|------|----------------------|-----|-----|-------|
|------|----------------------|-----|-----|-------|

| Locus           | Degrees | $\mathbb{R}$ -roots | Total time        |
|-----------------|---------|---------------------|-------------------|
| Critical points | 38      | 14                  | $6.4\mathrm{min}$ |
| Critical curves | 21      | $\infty$            | 9.6 min           |

Roadmap computation NEW

Output degree: 4847 Time: 4h10 (msolve)

A PUMA 560 [Unimation, 1984]

# Perspectives

## Algorithms

# Roadmap algorithms: Adapt the algorithms to structured systems: quadratic case (J.A.K.Elliott, M.Safey El Din, É.Schost) Generalize the connectivity result to semi-algebraic sets Design optimal roadmap algorithms with complexity exponential in O(n) Connectivity of s.a. curves: Adapt to algebraic curves given as union Generalize to semi-algebraic curves

### Applications

Analyze <u>challenging</u> class of robots

(D.Salunkhe, P.Wenger)

 $\downarrow\,$  Obtain practical version of modern roadmap algorithms

### Software

- Curves: subresultant/GCD computations deg  $\sim 100 \text{ (now)} \rightarrow \sim 200 \text{ (target)}$
- Build a Julia library for computational real algebraic geometry (C.Eder, R.Mohr)
- ↓ Implement a ready-to-use toolbox for roboticians





