

Connectivity in real algebraic sets: algorithms and applications

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Fundamental problems in computational real algebraic geometry

(P) compute a projection: one block quantifier elimination

(S) compute at least one point in each connected component

(C) decide if two points lie in the same connected component

(N) count the number of connected components

Set of real solutions of systems of polynomial equations and inequalities

Fundamental problems in computational real algebraic geometry
(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

 Stability
 [Tarski-Seidenberg]

 The family of s.a. sets is stable by projection

Finiteness

Finite number of connected components

Dynamical systems

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Finite number of connected components

Fundamental problems in computational real algebraic geometry

(P) compute a projection: one block quantifier elimination

(S) compute at least one point in each connected component

(C) decide if two points lie in the same connected component

(N) count the number of connected components

Cuspidality decision

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Fundamental problems in computational real algebraic geometry

(P) compute a projection: one block quantifier elimination (S) compute at least one point in each connected component

(C) decide if two points lie in the same connected component

(N) count the number of connected components

Cuspidality decision

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Fundamental problems in computational real algebraic geometry

Cuspidality decision

Robotics applications

 \Rightarrow First **cuspidality** decision algorithm with singly exponential bit-complexity

• Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

- Nearly optimal roadmap algorithm for unbounded algebraic sets
- Efficient algorithm for connectivity of real algebraic curves

Robotics applications

 \Rightarrow First **cuspidality** decision algorithm with singly exponential bit-complexity

• Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

• Nearly optimal roadmap algorithm for unbounded algebraic sets

• Efficient algorithm for connectivity of real algebraic curves

Robotics applications

 \Rightarrow First **cuspidality** decision algorithm with singly exponential bit-complexity

Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

Nearly optimal roadmap algorithm for unbounded algebraic sets

• Efficient algorithm for connectivity of real algebraic curves

Robotics applications

 \Rightarrow First **cuspidality** decision algorithm with singly exponential bit-complexity

Roadmap computation for a challenging robotics problem

domputational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

Nearly optimal roadmap algorithm for unbounded algebraic sets

Efficient algorithm for connectivity of real algebraic curves

Cuspidality decision algorithm

joint work with D.Chablat, M.Safey El Din, D.Salunkhe and P.Wenger

An Orthogonal 3R Serial Robot

A 3-RPR Planar Parallel Robot

 l_3

$\begin{array}{lll} \text{Kinematic map of a robot} \\ \mathcal{K} \colon & \mathbb{R}^d & \to & \mathbb{R}^d \\ & (\boldsymbol{\ell}, \boldsymbol{\theta}) & \mapsto & \boldsymbol{z} = \left(z_1(\boldsymbol{\ell}, \boldsymbol{\theta}), \dots, z_d(\boldsymbol{\ell}, \boldsymbol{\theta}) \right) \end{array}$

Associated postures

Two joint configurations (ℓ, θ) and (ℓ', θ') s.t. $\mathcal{K}(\ell, \theta) = \mathcal{K}(\ell', \theta')$

Theorem

[Borrel & Liégeois, 1986]

<u>A robot **cannot**</u> move between two associated postures, without passing by a singular posture

Theorem

[Borrel & Liégois, 1986]

<u>A robot **cannot**</u> move between two associated postures, without passing by a singular posture

 $_{[\text{Wenger, 1992}]} \rightarrow \textbf{WRONG !}$

Theorem

[Borrel & Liégois, 1986]

<u>A robot **cannot**</u> move between two associated postures, without passing by a singular posture

$_{[Wenger, 1992]} \rightarrow WRONG !$

Cuspidal robot

[Wenger, 1992]

<u>Cuspidal robots can</u> move between two associated postures, without passing by a singular posture

Motivation

Cuspidal robots can **induce problem** for task planning

Open problem

Cuspidality decision for a general robot

Theorem

[Borrel & Liégois, 1986]

<u>A robot **cannot**</u> move between two associated postures, without passing by a singular posture

$_{[Wenger, 1992]} \rightarrow WRONG !$

Cuspidal robot

[Wenger, 1992]

<u>Cuspidal robots can</u> move between two associated postures, without passing by a singular posture

Motivation

Cuspidal robots can **induce problem** for task planning

Open problem

Cuspidality decision for a general robot

Contribution NEW

 $\underline{\text{First}}$ general algorithm

Theorem

[Borrel & Liégois, 1986]

<u>A robot **cannot**</u> move between two associated postures, without passing by a singular posture

$_{[Wenger, 1992]} \rightarrow WRONG !$

Cuspidal robot

[Wenger, 1992]

<u>Cuspidal robots can</u> move between two associated postures, without passing by a singular posture

Motivation

Cuspidal robots can **induce problem** for task planning

Open problem

Cuspidality decision for a general robot

Contribution NEW

<u>First</u> general algorithm with <u>singly</u> exponential complexity

Kinematic map $\begin{array}{cccc} \mathcal{K} \colon & \mathbb{R}^d & \longrightarrow & \mathbb{R}^d \\ & (\boldsymbol{\ell}, \boldsymbol{\theta}) & \longmapsto & \boldsymbol{z}(\boldsymbol{\ell}, \boldsymbol{\theta}) \end{array}$ \mathcal{K} polynomial in ℓ , $c_j = \cos \theta_j$ and $s_j = \sin \theta_j$

The algebraic cuspidality problem

Data

Data:
$$\mathbf{f} = (f_1, \ldots, f_s)$$
 and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$

Assumptions: V = V(f) is *d*-equidimensional and $V_{\mathbb{R}} = V \cap \mathbb{R}^n \subsetneq \operatorname{sing}(V)$

The algebraic cuspidality problem

Data

Data:
$$\mathbf{f} = (f_1, \ldots, f_s)$$
 and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$

Assumptions: V = V(f) is d-equidimensional and $V_{\mathbb{R}} = V \cap \mathbb{R}^n \subsetneq \operatorname{sing}(V)$

Data

Data:
$$\mathbf{f} = (f_1, \ldots, f_s)$$
 and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$

Assumptions: V = V(f) is d-equidimensional and $V_{\mathbb{R}} = V \cap \mathbb{R}^n \subsetneq \operatorname{sing}(V)$

Algebraic cuspidality problem

The restriction of \mathcal{R} to $V_{\mathbb{R}}$ is cuspidal if there is $y \neq y' \in V_{\mathbb{R}}$ such that

1. $\mathcal{R}(\boldsymbol{y}) = \mathcal{R}(\boldsymbol{y}')$

Data

Data:
$$\mathbf{f} = (f_1, \dots, f_s)$$
 and $\mathcal{R} = (r_1, \dots, r_d)$ polynomials in $\mathbb{R}[x_1, \dots, x_n]$

Assumptions: V = V(f) is d-equidimensional and $V_{\mathbb{R}} = V \cap \mathbb{R}^n \subsetneq \operatorname{sing}(V)$

Algebraic cuspidality problem

The restriction of \mathcal{R} to $V_{\mathbb{R}}$ is cuspidal if there is $\boldsymbol{y} \neq \boldsymbol{y}' \in V_{\mathbb{R}}$ such that

- 1. $\mathcal{R}(\boldsymbol{y}) = \mathcal{R}(\boldsymbol{y}')$
- 2. they are path-connected in $V_{\mathbb{R}} \operatorname{crit}(\mathcal{R}, V)$

Data

Data:
$$\mathbf{f} = (f_1, \ldots, f_s)$$
 and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_r]$

Assumptions: V = V(f) is d-equidimensional and $V_{\mathbb{R}} = V \cap \mathbb{R}^n \subsetneq \operatorname{sing}(V)$

Algebraic cuspidality problem

The restriction of \mathcal{R} to $V_{\mathbb{R}}$ is cuspidal if there is $\boldsymbol{y} \neq \boldsymbol{y}' \in V_{\mathbb{R}}$ such that

- 1. $\mathcal{R}(\boldsymbol{y}) = \mathcal{R}(\boldsymbol{y}')$
- 2. they are path-connected in $V_{\mathbb{R}} \operatorname{crit}(\mathcal{R}, V)$

 $(\boldsymbol{y}, \boldsymbol{y}')$ is a <u>cuspidal pair</u>

Data

Data:
$$\mathbf{f} = (f_1, \ldots, f_s)$$
 and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$

Assumptions: V = V(f) is d-equidimensional and $V_{\mathbb{R}} = V \cap \mathbb{R}^n \subsetneq \operatorname{sing}(V)$

Algebraic cuspidality problem

The restriction of \mathcal{R} to $V_{\mathbb{R}}$ is cuspidal if there is $\boldsymbol{y} \neq \boldsymbol{y}' \in V_{\mathbb{R}}$ such that

- 1. $\mathcal{R}(\boldsymbol{y}) = \mathcal{R}(\boldsymbol{y}')$
- 2. they are path-connected in $V_{\mathbb{R}} \operatorname{crit}(\mathcal{R}, V)$

 $(\boldsymbol{y}, \boldsymbol{y}')$ is a <u>cuspidal pair</u>

Singular values of \mathcal{R} sval $(\mathcal{R}, V) = \mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$

Fibers from the same connected component of $\mathbb{R}^d - \operatorname{sval}(\mathcal{R}, V)$ have the **same type**

9

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^d - \operatorname{sval}(\mathcal{R}, V)$ have the **same type**

Thom's First Isotopy Lemma

Fibers from the same connected component of \mathbb{R}^d – sval (\mathcal{R}, V) have the same type

₽

One fiber from each connected component of $\mathbb{R}^d - \operatorname{sval}(\mathcal{R}, V)$ is enough

o^O Main steps ^OO

- 1. Compute polynomials defining sval $(\mathcal{R}, V) = \mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
- Compute a set Q of representatives in each connected component of R^d - sval(R, V)
- 3. Compute their preimages $\mathcal{P} = V \cap \mathcal{R}^{-1}(\mathcal{Q})$
- Search for cuspidal pairs in P by connecting points in the same connected component of V_ℝ − crit(R, V)

Algebraic set
$$= V(f) \subset \mathbb{C}^n$$
 $\dim(V) = d$ $\tilde{O}(N) = O(N \log^a N)$

Magnitude

V

 $\operatorname{degrees}(\boldsymbol{f}) \leq \boldsymbol{D} \quad \text{and} \quad |\text{coeffs}(\boldsymbol{f})| \leq 2^{\tau}$

Thom's First Isotopy Lemma

Fibers from the same connected component of \mathbb{R}^d – sval (\mathcal{R}, V) have the same type

₽

One fiber from each connected component of $\mathbb{R}^d - \operatorname{sval}(\mathcal{R}, V)$ is enough

o^O Main steps ^OO

- 1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V) = \mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
- Compute a set Q of representatives in each connected component of ^{ℝd} − sval(R, V)
- 3. Compute their preimages $\mathcal{P} = V \cap \mathcal{R}^{-1}(\mathcal{Q})$
- Search for cuspidal pairs in P by connecting points in the same connected component of V_ℝ − crit(R, V)

Algebraic set

$$V = \mathbf{V}(\mathbf{f}) \subset \mathbb{C}^n$$

 $\dim(V) = d$
 \tilde{O}

Soft-O notation

$$\tilde{O}(N) = O(N \log^a N)$$

Magnitude

 $\operatorname{degrees}(\boldsymbol{f}) \leq \boldsymbol{D} \quad \text{and} \quad |\text{coeffs}(\boldsymbol{f})| \leq 2^{\tau}$

Projection $\tau(nD)^{O(nd)}$

[Basu & Pollack & Roy, '16]

Thom's First Isotopy Lemma

Fibers from the same connected component of \mathbb{R}^d – sval (\mathcal{R}, V) have the same type

₽

One fiber from each connected component of $\mathbb{R}^d - \operatorname{sval}(\mathcal{R}, V)$ is enough

o^O Main steps ^OO

- 1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V) = \mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
- Compute a set Q of representatives in each connected component of R^d - sval(R, V)
- 3. Compute their preimages $\mathcal{P} = V \cap \mathcal{R}^{-1}(\mathcal{Q})$
- Search for cuspidal pairs in P by connecting points in the same connected component of V_ℝ − crit(R, V)

Algebraic set

$$V = V(f) \subset \mathbb{C}^n$$

 $\dim(V) = d$
Soft-O notation
 $\tilde{O}(N) = O(N \log^a)$

Magnitude

 $\operatorname{degrees}(\boldsymbol{f}) \leq \boldsymbol{D} \quad \text{and} \quad |\text{coeffs}(\boldsymbol{f})| \leq 2^{\tau}$

Projection
$$\tau(nD)^{O(nd)}$$
Sampling $\tau(nD)^{O(nd)}$

[Basu & Pollack & Roy, '16]

N)

[Le & Safey El Din, '21]

Thom's First Isotopy Lemma

Fibers from the same connected component of \mathbb{R}^d – sval (\mathcal{R}, V) have the same type

₩

One fiber from each connected component of $\mathbb{R}^d - \operatorname{sval}(\mathcal{R}, V)$ is enough

o^O Main steps ^OO

- 1. Compute polynomials defining sval $(\mathcal{R}, V) = \mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
- Compute a set Q of representatives in each connected component of R^d - sval(R, V)
- 3. Compute their preimages $\mathcal{P} = V \cap \mathcal{R}^{-1}(\mathcal{Q})$
- Search for cuspidal pairs in P by connecting points in the same connected component of V_ℝ − crit(R, V)

Algebraic set
$$V = V(f) \subset \mathbb{C}^n$$
 $\dim(V) = d$ $\tilde{O}(N) = O(N \log^a N)$

Magnitude

 $\operatorname{degrees}(\boldsymbol{f}) \leq \boldsymbol{D} \quad \text{and} \quad |\text{coeffs}(\boldsymbol{f})| \leq 2^{\tau}$

Projection
$$\tau(nD)^{O(nd)}$$
Sampling $\tau(nD)^{O(nd)}$

[Basu & Pollack & Roy, '16]

[Le & Safey El Din, '21]

Connectivity queries $\tilde{O}(\tau)(nD)^{O(n^2)}$

[Basu & Pollack & Roy, '00]

Thom's First Isotopy Lemma

Fibers from the same connected component of \mathbb{R}^d – sval (\mathcal{R}, V) have the same type

↓

One fiber from each connected component of $\mathbb{R}^d - \operatorname{sval}(\mathcal{R}, V)$ is enough

o^O Main steps ^Oo

- 1. Compute polynomials defining sval $(\mathcal{R}, V) = \mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
- 3. Compute their preimages $\mathcal{P} = V \cap \mathcal{R}^{-1}(\mathcal{Q})$
- Search for cuspidal pairs in *P* by connecting points in the same connected component of *V*_ℝ − crit(*R*, *V*)

Prototype applied to two 3R robots

[Basu & Pollack & Roy, '16]

[Le & Safey El Din, '21]

Connectivity queries $\tilde{O}(\tau)(nD)^{O(n^2)}$

[Basu & Pollack & Roy, '00]

Thom's First Isotopy Lemma

Fibers from the same connected component of \mathbb{R}^d – sval (\mathcal{R}, V) have the same type

₽

One fiber from each connected component of $\mathbb{R}^d - \operatorname{sval}(\mathcal{R}, V)$ is enough

o^O Main steps ^OO

- 1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V) = \mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
- Compute a set Q of representatives in each connected component of ^{ℝd} − sval(R, V)
- 3. Compute their preimages $\mathcal{P} = V \cap \mathcal{R}^{-1}(\mathcal{Q})$
- Search for cuspidal pairs in *P* by connecting points in the same connected component of *V*_ℝ − crit(*R*, *V*)

Contributions

Robotics applications

- First **cuspidality** decision algorithm with singly exponential bit-complexity
- Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

 \Rightarrow Nearly optimal **roadmap** algorithm for unbounded algebraic sets

• Efficient algorithm for connectivity of real algebraic curves

We have efficient algorithms for analyzing connectivity of real algebraic sets

 $\mathcal{P}_{[Canny, 1988]}$ Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic <u>curve</u> $\mathscr{R} \subset S$, containing query points (q_1, \ldots, q_N) s.t. for all connected components C of $S: C \cap \mathscr{R}$ is <u>non-empty</u> and <u>connected</u>

 $\mathcal{P}_{[Canny, 1988]}$ Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic <u>curve</u> $\mathscr{R} \subset S$, containing query points (q_1, \ldots, q_N) s.t. for all connected components C of $S: C \cap \mathscr{R}$ is <u>non-empty</u> and <u>connected</u>

 $\mathcal{P}_{[Canny, 1988]}$ Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic <u>curve</u> $\mathscr{R} \subset S$, containing query points (q_1, \ldots, q_N) s.t.

for all connected components C of $S: C \cap \mathscr{R}$ is <u>non-empty</u> and <u>connected</u>

Proposition

 q_i and q_j are path-connected in $S \iff$ they are in \mathscr{R}

Problem reduction

Arbitrary dimension

 $\mathcal{P}_{[Canny, 1988]}$ Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic <u>curve</u> $\mathscr{R} \subset S$, containing query points (q_1, \ldots, q_N) s.t.

for all connected components C of $S: C \cap \mathscr{R}$ is <u>non-empty</u> and <u>connected</u>

Proposition

 q_i and q_j are path-connected in $S \iff$ they are in \mathscr{R}

Roadmap algorithms for unbounded algebraic sets

joint work with M. Safey El Din and É. Schost

Roadmap property

 $\forall \, C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Roadmap property

 $\forall \, C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Projection through: $\pi_2 \colon (x_1, \dots, x_n) \mapsto (x_1, x_2)$

Roadmap property

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Projection through: $\pi_2: (x_1, \ldots, x_n) \mapsto (x_1, x_2)$

$W(\pi_2, V)$ critical locus of π_2 .

Intersects all the connected components of V

Roadmap property

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Projection through: $\pi_2 \colon (x_1, \dots, x_n) \mapsto (x_1, x_2)$

 $W(\pi_2, V)$ critical locus of π_2 .

Intersects all the connected components of V

Roadmap property

 $\forall \, C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Roadmap property

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Roadmap property

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Roadmap property

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Roadmap property

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Roadmap property

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Roadmap property

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Roadmap property

 $\forall C \text{ connected component}, \\ C \cap \mathscr{R} \text{ is non-empty and connected}$

Morse theory

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value
Canny's strategy

Canny's strategy

Canny's strategy

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]
If V is bounded, $W(\pi_2, V) \cup F$ has dimension $d-1$ and satisfies the Roadmap property.

Authors	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]

If V is bounded, $W(\pi_2, V) \cup F$ has dimension d-1and satisfies the Roadmap property.

Authors	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]

If V is bounded, $W(\pi_2, V) \cup F$ has dimension d-1and satisfies the Roadmap property.

Author.s	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din & Schost, 2011]

Author.s	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din & Schost, 2011]

Author.s	Complexity	Assumptions	
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$		
[Canny, 1993]	$(sD)^{O(n^2)}$		
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$		
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets	
[Basu & Roy & Safey El Din & Schost, 2014]	$(nD)^{O(n\sqrt{n})}$	Algebraic sets	

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din & Schost, 2011]

Author.s	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets
[Basu & Roy & Safey El Din & Schost, 2014]	$(nD)^{O(n\sqrt{n})}$	Algebraic sets
[Basu & Roy, 2014]	$(nD)^{O(n\log^2 n)}$	Algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din & Schost, 2011]

Author.s	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets
[Basu & Roy & Safey El Din & Schost, 2014]	$(nD)^{O(n\sqrt{n})}$	Algebraic sets
[Basu & Roy, 2014]	$(nD)^{O(n\log^2 n)}$	Algebraic sets
[Safey El Din & Schost, 2017]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din & Schost, 2011]

Author.s	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets
[Basu & Roy & Safey El Din & Schost, 2014]	$(nD)^{O(n\sqrt{n})}$	Algebraic sets
[Basu & Roy, 2014]	$(nD)^{O(n\log^2 n)}$	Algebraic sets
[Safey El Din & Schost, 2017]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets
[P. & Safey El Din & Schost, 2024]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din & Schost, 2011]

Results based on a theorem in	Assumptions	
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets
[Basu & Roy & Safey El Din & Schost, 2014]	$(nD)^{O(n\sqrt{n})}$	Algebraic sets
[Basu & Roy, 2014]	$(nD)^{O(n\log^2 n)}$	Algebraic sets
[Safey El Din & Schost, 2017]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets
[P. & Safey El Din & Schost, 2024]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result	[Safe	y El Din &	& Schost,	2011]
---------------------	-------	------------	-----------	-------

Results based on a theorem in	Assumptions	
[Schwartz & Sharir, 1983]	Remove the	boundedness
$[Canny, 1993] \leftarrow$	assumption	is a <i>costly</i> step
[Basu & Pollack & Roy, 2000]↓	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets
[Basu & Roy & Safey El Din⊄ & Schost, 2014]	$(nD)^{O(n\sqrt{n})}$	Algebraic sets
[Basu & Roy, 2014]	$(nD)^{O(n\log^2 n)}$	Algebraic sets
[Safey El Din & Schost, 2017]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets
[P. & Safey El Din & Schost, 2024]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

_			
	Results based on a theorem in	the bounded case	Assumptions
	[Schwartz & Sharir, 1983]	Remove the	boundedness
	$[Canny, 1993] \leftarrow$	assumption i	is a <i>costly</i> step
	$[Basu \ \& \ Pollack \ \& \ Roy, \ 2000] \checkmark$	$s^{d+1}D^{O(n^2)}$	
	[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$ Not	polynomial in the output size
	[Basu & Roy & Safey El Din⊄	$(nD)O(n\sqrt{n})$	Algebraia sets
	& Schost, 2014]	$(nD) \sim 10^{-1}$	Algebraic sets
	[Basu & Roy, 2014]	$(nD)^{O(n\log^2 n)} \longleftarrow$	Algebraic sets
	[Safey El Din & Schost, 2017]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets
[P. & Safey El Din & Schost, 2024]	$(n^2 D)^{6n \log_2(d) + O(n)}$	Smooth, bounded algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

- $W(\pi_2, V)$ polar variety
- $F_2 = \pi_1^{-1}(\pi_1(K)) \cap V$ critical fibers
- K =critical points of π_1 on $W(\pi_2, V)$

Connectivity result [Canny, 1988]

If V is bounded, $W(\pi_2, V) \cup F_2$ has dimension d-1and satisfies the Roadmap property

- $W(\pi_i, V)$ polar variety
- $F_i = \pi_{i-1}^{-1}(\pi_{i-1}(K)) \cap V$ critical fibers
- K =critical points of π_1 on $W(\pi_i, V)$

Connectivity result [Safey El Din & Schost, 2011]

- $W(\pi_i, V)$ polar variety
- $F_i = \pi_{i-1}^{-1}(\pi_{i-1}(K)) \cap V$ critical fibers
- K =critical points of π_1 on $W(\pi_i, V)$

Connectivity result [Safey El Din & Schost, 2011]

- $W(\boldsymbol{\varphi}_i, V)$ generalized polar variety
- $F_i = \varphi_{i-1}^{-1}(\varphi_{i-1}(K)) \cap V$ critical fibers.
- K =critical points of φ_1 on $W(\varphi_i, V)$

Connectivity result [P. & Safey El Din & Schost, 2024]

Assumptions to satisfy in the new result

(**R**) sing(V) is finite

(P) φ_1 is a proper map bounded from below

For all $1 \leq i \leq \dim(V)/2$,

(N) φ_{i-1} has finite fibers on W_i

(W) dim $W_i = i - 1$ and sing $(W_i) \subset sing(V)$

(F) dim $F_i = n - d + 1$ and sing (F_i) is finite

A successful candidate

Choose generic $(\boldsymbol{a}, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$ and:

$$oldsymbol{arphi} = \left(\sum_{i=1}^n (x_i - a_i)^2 \,, \, oldsymbol{b}_2^\mathsf{T} \overrightarrow{oldsymbol{x}} \,, \, \dots \,, \, oldsymbol{b}_n^\mathsf{T} \overrightarrow{oldsymbol{x}}
ight) \quad ext{where} \quad a_i \in \mathbb{R}, \quad oldsymbol{b}_i \in \mathbb{R}^n$$

A successful candidate

Choose generic $(\boldsymbol{a}, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$ and:

$$oldsymbol{arphi} = \left(\sum_{i=1}^n (x_i - a_i)^2 \,, \, oldsymbol{b}_2^\mathsf{T} \overrightarrow{oldsymbol{x}} \,, \, \dots \,, \, oldsymbol{b}_n^\mathsf{T} \overrightarrow{oldsymbol{x}}
ight) \quad ext{where} \quad a_i \in \mathbb{R}, \quad oldsymbol{b}_i \in \mathbb{R}^n$$

A successful candidate

Choose generic $(\boldsymbol{a}, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$ and:

$$oldsymbol{arphi} = \left(\sum_{i=1}^n (x_i - a_i)^2 \,, \, oldsymbol{b}_2^\mathsf{T} \overrightarrow{oldsymbol{x}} \,, \, \dots \,, \, oldsymbol{b}_n^\mathsf{T} \overrightarrow{oldsymbol{x}}
ight) \quad ext{where} \quad a_i \in \mathbb{R}, \quad oldsymbol{b}_i \in \mathbb{R}^n$$

A successful candidate

Choose generic $(\boldsymbol{a}, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$ and:

$$oldsymbol{arphi} = \left(\sum_{i=1}^n (x_i - a_i)^2 \ , \ oldsymbol{b}_2^\mathsf{T} \overrightarrow{oldsymbol{x}} \ , \ \ldots \ , \ oldsymbol{b}_n^\mathsf{T} \overrightarrow{oldsymbol{x}}
ight) \quad ext{where} \quad a_i \in \mathbb{R}, \quad oldsymbol{b}_i \in \mathbb{R}^n$$

Consider an algebraic set $V \subset \mathbb{C}^n$ with dimension d

Depth of recursion tree : d \Rightarrow complexity: $(nD)^{O(nd)}$

Depth of recursion tree : $\log_2(d)$ \Rightarrow complexity: $(nD)^{O(n \log_2(d))}$

Quantitative estimate					
	Output size	Complexity			
RoadmapBounded($\operatorname{fib}(\varphi_1)$) Compute $\operatorname{crit}(\varphi_2)$ & $\operatorname{fib}(\varphi_1)$					
Overall					

Quantitative estimate					
	Output size	Complexity			
RoadmapBounded(fib(φ_1)) Compute crit(φ_2) & fib(φ_1)	$(n^2D)^{4n\log_2 d + O(n)}$	$(n^2D)^{6n\log_2 d + O(n)}$			
Overall					

Quantitative estimate					
	Output size	Complexity			
RoadmapBounded(fib(φ_1)) Compute crit(φ_2) & fib(φ_1)	$(n^2D)^{4n\log_2 d + O(n)}$ $(nD)^{O(n)}$	$(n^2D)^{6n\log_2 d + O(n)}$ $(nD)^{O(n)}$			
Overall					

Quantitative estimate					
	Output size	Complexity			
RoadmapBounded(fib(φ_1))Compute crit(φ_2) & fib(φ_1)	$(n^2 D)^{4n \log_2 d + O(n)}$ $(nD)^{O(n)}$	$(n^2D)^{6n\log_2 d + O(n)}$ $(nD)^{O(n)}$			
Overall	$(n^2 D)^{4n\log_2 d + O(n)}$	$(n^2D)^{6n\log_2 d + O(n)}$			
Input

Input

Input

Input

Input

Input

Polynomials in $\mathbb{Q}[x_1, \ldots, x_n]$ of max degree D defining a smooth algebraic set of dim. d

Computing roadmaps in unbounded smooth real algebraic sets I: connectivity results, 2024 with M. Safey El Din and É. Schost

P., Safev El Din, Schost: 2024

Computing roadmaps in unbounded smooth real algebraic sets II: algorithm and complexity, 2024 with M. Safey El Din and É. Schost

Safev El Din, Schost; 2011

Contributions

Robotics applications

First cuspidality decision algorithm with singly exponential bit-complexity

Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

Nearly optimal **roadmap** algorithm for unbounded algebraic sets \rightsquigarrow Complexity: $(n^2D)^{6n\log_2 d+O(n)} \rightsquigarrow$ Output size: $(n^2D)^{4n\log_2 d+O(n)}$

o Efficient algorithm for connectivity of real algebraic curves

We have efficient algorithms for analyzing connectivity of real algebraic sets

Analysis of the kinematic singularities of a PUMA robot

with J.Capco, M.Safey El Din and P.Wenger

Canny's strategy

Canny's strategy

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist

 $[(v_3 + v_2)(1 - v_2v_3)] = 0$ A(v) $d_3A(v)$ $a_2(v_3^2+1)(v_2^2-1) - a_3A(v) = 2d_3(v_3+v_2)(v_2v_3-1)$ $v_3^2 + 1$ $(a_3 - a_2)v_3^2 + a_2 + 2a_3$ 0 0 $2a_2v_3$ 0 0 0 0 203 0 0 0 0 $v_4 = 1 - v_4^2 = 0$ $d_4(1 - v_4^2) = -2d_4v_4$

$$S = \left\{ \boldsymbol{v} \in \mathbb{R}^4 \mid \det(M(\boldsymbol{v})) \neq 0 \right\}$$

https://msolve.lip6.fr

- → Multivariate system solving
- \leadsto Real roots isolation

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist

$$\begin{bmatrix} (v_3+v_2)(1-v_2v_3) & 0 & A(v) & d_3A(v) & a_2(v_3^2+1)(v_2^2-1)-a_3A(v) & 2d_3(v_3+v_2)(v_2v_3-1) \\ 0 & v_3^2+1 & 0 & 2a_2v_3 & 0 & (a_3-a_2)v_3^2+a_2+2a_3 \\ 0 & 1 & 0 & 0 & 0 & 2a_3 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ v_4 & 1-v_4^2 & 0 & d_4(1-v_4^2) & -2d_4v_4 & 0 \\ (v_4^2-1)v_5 & 4v_4v_5 & (1-v_5^2)(v_4^2+1) & (1-v_5^2)(v_4^2-1)d_5+4d_4v_4v_5 & 2d_5v_4(1-v_5^2)+2d_4v_5(1-v_4^2) & -2d_5v_5(v_4^2+1) \end{bmatrix}$$

$$S = \left\{ \boldsymbol{v} \in \mathbb{R}^4 \mid \det(M(\boldsymbol{v})) \neq 0 \right\}$$

F	First step				
Max. deg without splitting: 1858					
	Locus	Degrees	R-roots	Tot. time	
	Critical points	400 & 934	96 & 182	$9.7\mathrm{min}$	
	Critical curves	182 & 220	∞	3h46	

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist

$$\begin{bmatrix} (v_3+v_2)(1-v_2v_3) & 0 & A(\mathbf{v}) & d_3A(\mathbf{v}) & a_2(v_3^2+1)(v_2^2-1)-a_3A(\mathbf{v}) & 2d_3(v_3+v_2)(v_2v_3-1) \\ 0 & v_3^2+1 & 0 & 2a_2v_3 & 0 & (a_3-a_2)v_3^2+a_2+2a_3 \\ 0 & 1 & 0 & 0 & 0 & 2a_3 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ v_4 & 1-v_4^2 & 0 & d_4(1-v_4^2) & -2d_4v_4 & 0 \\ (v_4^2-1)v_5 & 4v_4v_5 & (1-v_5^2)(v_4^2+1) & (1-v_5^2)(v_4^2-1)d_5+4d_4v_4v_5 & 2d_5v_4(1-v_5^2)+2d_4v_5(1-v_4^2) & -2d_5v_5(v_4^2+1) \end{bmatrix}$$

$$S = \left\{ \boldsymbol{v} \in \mathbb{R}^4 \mid \det(M(\boldsymbol{v})) \neq 0 \right\}$$

First step				
	Max. deg without splitting: 1858			
	Locus	Degrees	R-roots	Tot. time
	Critical points	400 & 934	96 & 182	$9.7\mathrm{min}$
	Critical curves	182 & 220	∞	3h46

Recursive step over 95 fibers

Data are for one fiber			
Locus	Degrees	R-roots	Total time
Critical points	38	14	6.4 min
Critical curves	21	∞	9.6 min

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist

$$\begin{bmatrix} (v_3+v_2)(1-v_2v_3) & 0 & A(\mathbf{v}) & d_3A(\mathbf{v}) & a_2(v_3^2+1)(v_2^2-1)-a_3A(\mathbf{v}) & 2d_3(v_3+v_2)(v_2v_3-1) \\ 0 & v_3^2+1 & 0 & 2a_2v_3 & 0 & (a_3-a_2)v_3^2+a_2+2a_3 \\ 0 & 1 & 0 & 0 & 0 & 2a_3 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ v_4 & 1-v_4^2 & 0 & d_4(1-v_4^2) & -2d_4v_4 & 0 \\ (v_4^2-1)v_5 & 4v_4v_5 & (1-v_5^2)(v_4^2+1) & (1-v_5^2)(v_4^2-1)d_5+4d_4v_4v_5 & 2d_5v_4(1-v_5^2)+2d_4v_5(1-v_4^2) & -2d_5v_5(v_4^2+1) \end{bmatrix}$$

$$S = \left\{ \boldsymbol{v} \in \mathbb{R}^4 \mid \det(M(\boldsymbol{v})) \neq 0 \right\}$$

First step				
Max. deg without splitting: 1858				
	Locus	Degrees	ℝ -roots	Tot. time
	Critical points	400 & 934	96 & 182	$9.7\mathrm{min}$
	Critical curves	182 & 220	∞	3h46
	Critical curves	182 & 220	∞	3n46

Recursive step over 95 fibers

Data are for one fiber				
Locus	Degrees	\mathbb{R} -roots	Total time	
Critical points	38	14	6.4 min	
Critical curves	21	∞	9.6 min	

Roadmap computation NEW

Output degree: **4847** Time: **4h10** (msolve)

A PUMA 560 [Unimation, 1984]

Contributions

Robotics applications

First cuspidality decision algorithm with singly exponential bit-complexity

Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

Nearly optimal **roadmap** algorithm for unbounded algebraic sets \sim Complexity: $(n^2D)^{6n\log_2 d+O(n)} \sim$ Output size: $(n^2D)^{4n\log_2 d+O(n)}$

Efficient algorithm for connectivity of real algebraic **curves**

We have efficient algorithms for analyzing connectivity of real algebraic sets

Computing connectivity properties: Roadmaps

 $\mathcal{P}_{[Canny, 1988]}$ Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points (q_1, \ldots, q_N) s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

 q_i and q_j are path-connected in $S \iff$ they are in \mathscr{R}

Problem reduction

Computing connectivity properties: Roadmaps

 $\mathcal{G}_{[Canny, 1988]}$ Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points (q_1, \ldots, q_N) s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

 q_i and q_j are path-connected in $S \Longleftrightarrow$ they are in $\mathscr{R} \Longleftrightarrow$ they are in \mathscr{G}

Computing connectivity properties: Roadmaps

 $\mathcal{G}_{[Canny, 1988]}$ Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points (q_1, \ldots, q_N) s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

 q_i and q_j are path-connected in $S \iff$ they are in $\mathscr{R} \iff$ they are in \mathscr{G}

Algorithm for connectivity queries on real algebraic curves

joint work with Md N.Islam and A.Poteaux

Theorem

In a generic system of coordinates, V is birational to a hypersurface of \mathbb{C}^{d+1} through: $\pi_{d+1} : (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \mapsto (\boldsymbol{x}_1, \dots, \boldsymbol{x}_{d+1})$ $\longleftarrow \begin{array}{c} V \text{ equidimensional} \\ \text{of dimension } d \end{array}$

Theorem

In a generic system of coordinates, V is birational to a hypersurface of \mathbb{C}^{d+1} through: $\pi_{d+1} : (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \mapsto (\boldsymbol{x}_1, \dots, \boldsymbol{x}_{d+1})$

Zero-dimensional parametrization of $\mathcal{P} \subset \mathbb{C}^n$ finite

$$\begin{aligned} &(\lambda,\vartheta_2,\ldots,\vartheta_n) \subset \mathbb{Z}[\boldsymbol{x}_1] \text{ s.t.} \\ &\mathcal{P} = \left\{ \left(\boldsymbol{x}_1, \frac{\vartheta_2(\boldsymbol{x}_1)}{\lambda'(\boldsymbol{x}_1)}, \ldots, \frac{\vartheta_n(\boldsymbol{x}_1)}{\lambda'(\boldsymbol{x}_1)} \right) \text{ s.t. } \lambda(\boldsymbol{x}_1) = 0 \right\} \end{aligned}$$

Theorem

In a generic system of coordinates, V is birational to a hypersurface of \mathbb{C}^{d+1} through: $\pi_{d+1}: (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \mapsto (\boldsymbol{x}_1, \dots, \boldsymbol{x}_{d+1})$

Zero-dimensional parametrization of $\mathcal{P} \subset \mathbb{C}^n$ finite

$$egin{aligned} &(\lambda,artheta_2,\ldots,artheta_n)\subset\mathbb{Z}[x_1] ext{ s.t. } \ &\mathcal{P}=\left\{\left(oldsymbol{x}_1,rac{artheta_2(oldsymbol{x}_1)}{\lambda'(oldsymbol{x}_1)},\ldots,rac{artheta_n(oldsymbol{x}_1)}{\lambda'(oldsymbol{x}_1)}
ight) ext{ s.t. } \lambda(oldsymbol{x}_1)=0
ight\} \end{aligned}$$

One-dimensional parametrization of
$$\mathscr{C} \subset \mathbb{C}^n$$
 algebraic curve
 $(\omega, \rho_3, \dots, \rho_n) \subset \mathbb{Z}[x_1, x_2]$ s.t.
 $\mathscr{C} = \overline{\left\{ \begin{array}{c} \left(\boldsymbol{x}_1, \boldsymbol{x}_2, \frac{\rho_3(\boldsymbol{x}_1, \boldsymbol{x}_2)}{\partial x_2 \, \omega(\boldsymbol{x}_1, \boldsymbol{x}_2)}, \dots, \frac{\rho_n(\boldsymbol{x}_1, \boldsymbol{x}_2)}{\partial x_2 \, \omega(\boldsymbol{x}_1, \boldsymbol{x}_2)} \right) \\ \text{s.t. } \omega(\boldsymbol{x}_1, \boldsymbol{x}_2) = 0 \quad \text{and} \quad \partial_{x_2} \omega(\boldsymbol{x}_1, \boldsymbol{x}_2) \neq 0 \end{array} \right\}^2}$

Theorem

In a generic system of coordinates, V is birational to a hypersurface of \mathbb{C}^{d+1} through: $\pi_{d+1} : (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \mapsto (\boldsymbol{x}_1, \dots, \boldsymbol{x}_{d+1})$

Zero-dimensional parametrization of $\mathcal{P} \subset \mathbb{C}^n$ finite

$$egin{aligned} &(\lambda,artheta_2,\ldots,artheta_n)\subset\mathbb{Z}[x_1] ext{ s.t.}\ &\mathcal{P}=\left\{\left(oldsymbol{x}_1,rac{artheta_2(oldsymbol{x}_1)}{\lambda'(oldsymbol{x}_1)},\ldots,rac{artheta_n(oldsymbol{x}_1)}{\lambda'(oldsymbol{x}_1)}
ight) ext{ s.t. } \lambda(oldsymbol{x}_1)=0
ight\} \end{aligned}$$

One-dimensional parametrization of
$$\mathscr{C} \subset \mathbb{C}^n$$
 algebraic curve
 $(\omega, \rho_3, \dots, \rho_n) \subset \mathbb{Z}[x_1, x_2] \text{ s.t.}$

$$\mathscr{C} = \overline{\left\{\begin{array}{c} \left(\boldsymbol{x}_1, \boldsymbol{x}_2, \frac{\rho_3(\boldsymbol{x}_1, \boldsymbol{x}_2)}{\partial x_2 \, \omega(\boldsymbol{x}_1, \boldsymbol{x}_2)}, \dots, \frac{\rho_n(\boldsymbol{x}_1, \boldsymbol{x}_2)}{\partial x_2 \, \omega(\boldsymbol{x}_1, \boldsymbol{x}_2)}\right) \\ \text{ s.t. } \omega(\boldsymbol{x}_1, \boldsymbol{x}_2) = 0 \quad \text{and} \quad \partial_{x_2} \omega(\boldsymbol{x}_1, \boldsymbol{x}_2) \neq 0 \end{array}\right\}^2}$$

 $\begin{array}{l} \textbf{Magnitude of a polynomial} \\ \boldsymbol{f} \in \mathbb{Z}[x_1, \ldots, x_n] \text{ has } magnitude \ (\boldsymbol{\delta}, \tau) \text{ if} \\ \deg(\boldsymbol{f}) \leq \boldsymbol{\delta} \quad \text{and} \quad |\text{coeffs}(\boldsymbol{f})| \leq 2^{\tau} \end{array}$

Soft-O notation $\tilde{O}(N) = O(N \log(N)^a)$

Data

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n = 2	$\tilde{O}(\delta^5(\delta+ au))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	

Cylindrical Algebraic Decomposition [Collins, '75] [Kerber, Sagraloff; '12]

[Seidel, Wolpert; '05]

Subdivision

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n = 2	$\tilde{O}(\delta^5(\delta+\tau))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	
n = 3	$\tilde{O}(\delta^{17}(\delta+\tau))$	[Cheng, Jin, Pouget, Wen, Zhang; '21]	

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n = 2	$\tilde{O}(\delta^5(\delta+\tau))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	
n = 3	$\tilde{O}(\delta^{17}(\delta+\tau))$	[Cheng, Jin, Pouget, Wen, Zhang; '21]	
n > 3	$\tilde{O}(\delta^{O(1)}(\delta + \tau))$	[Safey El Din, Schost; '11]	

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n = 2	$\tilde{O}(\delta^5(\delta+ au))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	
n = 3	$\tilde{O}(\delta^{17}(\delta+\tau))$	[Cheng, Jin, Pouget, Wen, Zhang; '21]	
n > 3	$\tilde{O}(\delta^{O(1)}(\delta + \tau))$	[Safey El Din, Schost; '11]	

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n = 2	$\tilde{O}(\delta^5(\delta+\tau))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	
n = 3	$\tilde{O}(\delta^{17}(\delta+\tau))$	[Cheng, Jin, Pouget, Wen, Zhang; '21]	
n > 3	$\tilde{O}(\delta^{O(1)}(\delta+\tau))$	[Safey El Din, Schost; '11]	

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n = 2	$\tilde{O}(\delta^5(\delta+ au))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	
n = 3	$\tilde{O}(\delta^{17}(\delta+\tau))$	[Cheng, Jin, Pouget, Wen, Zhang; '21]	
n > 3	$\tilde{O}(\delta^{O(1)}(\delta + \tau))$	[Safey El Din, Schost; '11]	

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n = 2	$\tilde{O}(\delta^5(\delta+ au))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	
n = 3	$\tilde{O}(\delta^{17}(\delta+\tau))$	[Cheng, Jin, Pouget, Wen, Zhang; '21]	
n > 3	$\tilde{O}(\delta^{O(1)}(\delta+\tau))$	[Safey El Din, Schost; '11]	

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology				
Ambient dimension	Bit complexity	Reference		
n = 2	$\tilde{O}(\delta^5(\delta+\tau))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]		
n = 3	$\tilde{O}(\delta^{17}(\delta+\tau))$	[Cheng, Jin, Pouget, Wen, Zhang; '21]		
n > 3	$\tilde{O}(\delta^{O(1)}(\delta + \tau))$	[Safey El Din, Schost; '11]		

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology				
Ambient dimension	Bit complexity	Reference		
n = 2	$\tilde{O}(\delta^5(\delta+\tau))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]		
n = 3	$\tilde{O}(\delta^{17}(\delta+\tau))$	[Cheng, Jin, Pouget, Wen, Zhang; '21]		
n > 3	$\tilde{O}(\delta^{O(1)}(\delta + \tau))$	[Safey El Din, Schost; '11]		

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology				
Ambient dimension	Bit complexity	Reference		
n = 2	$\tilde{O}(\delta^5(\delta+\tau))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]		
n = 3	$\tilde{O}(\delta^{17}(\delta+\tau))$	[Cheng, Jin, Pouget, Wen, Zhang; '21]		
n > 3	$\tilde{O}(\delta^{O(1)}(\delta+\tau))$	[Safey El Din, Schost; '11]		

Computing connectivity - Main Result NEW					
Ambient dimension	Bit complexity	Reference			
$n \ge 2$	$\tilde{O}(\delta^5(\delta+\tau))$	[Islam, Poteaux, P.; 2023]			
Avoid computation of the complete topology!					

Apparent singularities: key idea

Apparent singularities: key idea

Algorithm

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathcal{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

A partition of $\mathcal{P} \cap \mathbb{R}^n$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^n$.

- $\textbf{1. } \mathscr{D}, \mathscr{Q} \gets \mathsf{Proj2D}(\mathscr{R}), \mathsf{Proj2D}(\mathscr{P});$
- $\mathbf{2.} \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q});$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R});$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathcal{Q}, \mathcal{G}'$);

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathcal{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

A partition of $\mathcal{P} \cap \mathbb{R}^n$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^n$.

- $1. \hspace{0.2cm} \mathscr{D}, \mathscr{Q} \gets \mathsf{Proj2D}(\mathscr{R}), \mathsf{Proj2D}(\mathscr{P}); \\$
- $\mathbf{2.} \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q});$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R});$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathcal{Q}, \mathcal{G}'$);

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathcal{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

A partition of $\mathcal{P} \cap \mathbb{R}^n$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^n$.

Ç

 $\pi_2(\mathcal{C})$

- $1. \hspace{0.1 cm} \mathscr{D}, \mathscr{Q} \leftarrow \mathsf{Proj2D}(\mathscr{R}), \mathsf{Proj2D}(\mathscr{P}); \\$
- $2. \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q}); \\$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R});$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathscr{Q}, \mathscr{G}'$);

ъÖ

- $\rightsquigarrow resultants$
- $\rightsquigarrow \mathbb{R}$ -root isolation
- \leftrightarrow univariate
- \leftrightarrow bivariate triangular

Planar topology

 $\tilde{O}(\delta^5(\delta+\tau))$

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathcal{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

A partition of $\mathcal{P} \cap \mathbb{R}^n$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^n$.

- $1. \hspace{0.1 cm} \mathscr{D}, \mathscr{Q} \leftarrow \mathsf{Proj2D}(\mathscr{R}), \mathsf{Proj2D}(\mathscr{P}); \\$
- $2. \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q});$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R});$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{\mathrm{app}});$
- 5. return ConnectGraph($\mathcal{Q}, \mathcal{G}'$);

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

A partition of $\mathcal{P} \cap \mathbb{R}^n$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^n$.

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

A partition of $\mathcal{P}\cap\mathbb{R}^n$ w.r.t. the connected components of $\mathscr{C}\cap\mathbb{R}^n.$

- $1. \hspace{0.1 cm} \mathcal{D}, \mathcal{Q} \leftarrow \mathsf{Proj2D}(\mathcal{R}), \mathsf{Proj2D}(\mathcal{P}); \\$
- $2. \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q});$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R});$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathcal{Q}, \mathcal{G}'$);

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathcal{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

A partition of $\mathcal{P} \cap \mathbb{R}^n$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^n$.

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

A partition of $\mathcal{P} \cap \mathbb{R}^n$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^n$.

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathcal{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

A partition of $\mathcal{P}\cap\mathbb{R}^n$ w.r.t. the connected components of $\mathscr{C}\cap\mathbb{R}^n.$

- $1. \hspace{0.1 cm} \mathscr{D}, \mathscr{Q} \leftarrow \mathsf{Proj2D}(\mathscr{R}), \mathsf{Proj2D}(\mathscr{P}); \\$
- $2. \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q});$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R});$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathscr{Q}, \mathscr{G}'$);

Overall Complexity $\tilde{O}(\delta^5(\delta + \tau))$

Summary

Input

Polynomials in $\mathbb{Q}[x_1, \ldots, x_n]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - now

Summary

Input

Polynomials in $\mathbb{Q}[x_1, \ldots x_n]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - now

Algorithm for connectivity queries on real algebraic curves, 2023 with Md N. Islam and A. Poteaux

Contributions

Robotics applications

✓ First **cuspidality** decision algorithm with singly exponential bit-complexity

Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

- ✓ Nearly optimal **roadmap** algorithm for unbounded algebraic sets → Complexity: $(n^2D)^{6n\log_2 d+O(n)}$ → Output size: $(n^2D)^{4n\log_2 d+O(n)}$
 - Efficient algorithm for connectivity of real algebraic **curves** \rightarrow Complexity: $\tilde{O}(\delta^6)$

We have efficient algorithms for analyzing connectivity of real algebraic sets

Perspectives

Algorithms

Roadmap algorithms:	
Adapt the algorithms to structured systems: quadratic case (J.A.K.Elliott, M.Safey El Din, É.Schost)	
Reduce the <u>size</u> of the roadmap by taking fewer fibers	(M.Safey El Din, É.Schost)
Generalize the connectivity result to <u>semi</u> -algebraic sets	
↓ Design <u>optimal</u> roadmap algorithms with complexity exponential in $O(n)$	
Connectivity of s.a. curves:	
Obtain a <u>deterministic</u> version of the algorithm	(F.Bréhard, A.Poteaux)
Adapt to algebraic curves given as <u>union</u>	(A.Poteaux)
Generalize to <u>semi</u> -algebraic curves	
\downarrow Investigate the connectivity of <u>plane</u> curves	
Applications	
Analyze <u>challenging</u> class of robots	(D.Salunkhe, P.Wenger)
Algorithms for <u>rigidity</u> and <u>program verification</u> problems	(E.Bayarmagnai, F.Mohammadi)
\downarrow Obtain <u>practical</u> version of modern roadmap algorithms	
Software	
Connectivity of curves: subresultant/GCD computations deg \sim	100 (now) $\rightarrow \sim 200$ (target)
Build a Julia library for computational real algebraic geometry	(C.Eder, R.Mohr)
\downarrow Implement a ready-to-use toolbox for roboticians	2

Union of curves

• Expected additional cost: compute all intersection points between curves, including these points as control points.

$$\deg(W(\pi_1, V)) \leq {\binom{n-1}{p-1}} D^p (D-1)^{n-p}$$

If $D = 2$ then, the bound becomes ${\binom{n-1}{p-1}} 2^p$
We expect then a complexity $(nD)^{p \log_2(n-p)}$ for computing roadmaps

Semi-algebraic sets

A strategy to tackle unbounded semi-algebraic sets:

 $f \in \mathbb{R}[x_1, \dots, x_n] \qquad \qquad f \neq 0 \longrightarrow f \cdot u - 1 = 0$ u new variable $f \ge 0 \longrightarrow f - u^2 = 0$ $f > 0 \longrightarrow f \cdot u^2 - 1 = 0$

 \mathbb{R}^{d}

 $V_{\mathbb{R}}$

 \mathbb{R}^{d}

 $V_{\mathbb{R}}$

Set of proper points $prop(\mathcal{R}, V)$ \boldsymbol{y} proper point of $\mathcal{R}_{|V}$ if there exists a ball $B \ni \boldsymbol{y}$ s.t. $\mathcal{R}^{-1}(B) \cap V$ is closed and bounded **Atypical Values** $\operatorname{atyp}(\mathcal{R}, V) = \operatorname{sval}(\mathcal{R}, V) \cup \left[\mathbb{C}^d - \operatorname{prop}(\mathcal{R}, V)\right]$ Special Points $\operatorname{spec}(\mathcal{R}, V) = \mathcal{R}^{-1}(\operatorname{atyp}(\mathcal{R}, V)) \cap V$ Semi-algebraic Thom's isotopy lemma Coste & Shiota, 1995 For any open connected subset $U \subset \mathbb{R}^d$ s.t $U \cap$ $\operatorname{atyp}(\mathcal{R}, V) = \emptyset$ and for any $q \in U$, there exists a homeomorphism $\Psi \colon \left[\mathcal{R}^{-1}(U) \cap V_{\mathbb{R}} \right] \to$

Set of proper points $prop(\mathcal{R}, V)$ \boldsymbol{y} proper point of $\mathcal{R}_{|V}$ if there exists a ball $B \ni \boldsymbol{y}$ s.t. $\mathcal{R}^{-1}(B) \cap V$ is closed and bounded **Atypical Values** $\operatorname{atyp}(\mathcal{R}, V) = \operatorname{sval}(\mathcal{R}, V) \cup \left[\mathbb{C}^d - \operatorname{prop}(\mathcal{R}, V)\right]$ Special Points $\operatorname{spec}(\mathcal{R}, V) = \mathcal{R}^{-1}(\operatorname{atyp}(\mathcal{R}, V)) \cap V$ Semi-algebraic Thom's isotopy lemma Coste & Shiota, 1995 For any open connected subset $U \subset \mathbb{R}^d$ s.t $U \cap$ $\operatorname{atyp}(\mathcal{R}, V) = \emptyset$ and for any $q \in U$, there exists a homeomorphism $\Psi \colon \left[\mathcal{R}^{-1}(U) \cap V_{\mathbb{R}} \right] \to \left[\mathcal{R}^{-1}(q) \cap V_{\mathbb{R}} \right] \times U$

Set of proper points $prop(\mathcal{R}, V)$

 \boldsymbol{y} proper point of $\mathcal{R}_{|V}$ if there exists a ball $B \ni \boldsymbol{y}$

s.t. $\mathcal{R}^{-1}(B) \cap V$ is closed and bounded

Atypical Values

$$\operatorname{atyp}(\mathcal{R}, V) = \operatorname{sval}(\mathcal{R}, V) \cup \left[\mathbb{C}^d - \operatorname{prop}(\mathcal{R}, V) \right]$$

Special Points

$$\operatorname{spec}(\mathcal{R}, V) = \mathcal{R}^{-1}(\operatorname{atyp}(\mathcal{R}, V)) \cap V$$

Semi-algebraic Thom's isotopy lemma [Coste & Shiota, 1995]

For any open connected subset $U \subset \mathbb{R}^d$ s.t $U \cap$ atyp $(\mathcal{R}, V) = \emptyset$ and for any $q \in U$, there exists a homeomorphism

$$\Psi \colon \left[\mathcal{R}^{-1}(U) \cap V_{\mathbb{R}} \right] \to \left[\mathcal{R}^{-1}(\boldsymbol{q}) \cap V_{\mathbb{R}} \right] \times U$$

such that the following diagram commutes

Proposition: cuspidality graph characterization

Proposition: cuspidality graph characterization

There exist $y \neq y' \in V_{\mathbb{R}}$ s.t. $1. \mathcal{R}(y) = \mathcal{R}(y')$ 2. y, y' connected in $V_{\mathbb{R}} - \operatorname{crit}(\mathcal{R}, V)$ \uparrow There exist $p \neq p' \in \mathcal{P}$ s.t. $1. \mathcal{R}(p) = \mathcal{R}(p')$ 2. p, p' connected in \mathscr{G}

Proposition: cuspidality graph characterization

Proposition: cuspidality graph characterization

Cuspidality graph $V_{\mathbb{R}}$ $\operatorname{spec}(\mathcal{R}, V_{\mathbb{R}}) - \operatorname{crit}(\mathcal{R}, V_{\mathbb{R}})$ $\Psi^{-1}(\mathcal{R}(\gamma), \boldsymbol{p}_1')$ $\mathscr{G} = (\mathcal{P}, \mathcal{E})$ is a *cuspidality graph* of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following $\operatorname{crit}(\mathcal{R}, V_{\mathbb{R}})$ holds p_1'' 1. \mathcal{P} intersects every connected $\mathcal{R}^{-1}(U)$ component of $V_{\mathbb{P}} - \operatorname{spec}(\mathcal{R}, V)$ 2. Let $\boldsymbol{p} \in \mathcal{P}$, then $\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}$ 3. $p, p' \in \mathcal{P}$ are $\mathcal{R}(oldsymbol{y})$ connected in $V_{\mathbb{R}} - \operatorname{crit}(\mathcal{R}, V)$ $\operatorname{atyp}(\mathcal{R}, V_{\mathbb{R}})$ \mathbb{R}^{d} connected in \mathcal{G}

Proposition: cuspidality graph characterization

Proposition: cuspidality graph characterization

Sample points algorithms

 $S \subset \mathbb{R}^d$ semi-algebraic set

 $\label{eq:solution} \ensuremath{\Uparrow} \ensuremath{\Uparrow}$ Solution set of a finite system of polynomial equations g and inequalities h

S has a finite number of connected components

Sample points algorithms

 $S \subset \mathbb{R}^d$ semi-algebraic set

 $\$ Solution set of a finite system of polynomial equations g and inequalities h

S has a finite number of connected components

Sample points algorithms

 $S \subset \mathbb{R}^d$ semi-algebraic set

 $\$ Solution set of a finite system of polynomial equations g and inequalities h

S has a finite number of connected components

Sample points algorithms

Semi-algebraic sets

 $S \subset \mathbb{R}^{\boldsymbol{d}}$ semi-algebraic set

\$

Solution set of a finite system of polynomial equations \boldsymbol{g} and inequalities \boldsymbol{h}

S has a finite number of connected components

Theorem

[Basu & Pollack & Roy, 2016] [Le & Safey El Din, 2022]

- $S \subset \mathbb{R}^d$ defined by $g_1 = \cdots = g_s = 0$ and $h_1 > 0, \ldots, h_t > 0$
- $D = \max(\deg(\boldsymbol{g}), \deg(\boldsymbol{h}))$
- $\tau = \max\{\text{bitsize of the input coefficients}\}$

There exists an algorithm SAMPLEPOINTS s.t. if $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(f, g)$ then

- 1. $\mathcal{Q} \subset S$ is finite
- 2. \mathcal{Q} meets every connected component of S
- 3. $\operatorname{card}(\mathcal{Q}) \leq D^{O(\boldsymbol{d})}$

Bit complexity of SAMPLEPOINTS: $\tau(tD)^{O(d)}$

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg \mathcal{R}\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f});$

[Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f});$

[Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$

2. $\mathcal{Q} \leftarrow \text{SamplePoints}(\pm g);$

[Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$

[Le & Safey El Din, '21][Jelonek & Kurdyka, '05] ガ

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

 1. $g \leftarrow \text{ATYPICALVALUES}(\mathcal{R}, f);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$

 2. $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(\pm g);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)}D^{O(nd)}$

 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] $\not A$

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $g \leftarrow \text{ATYPICALVALUES}(\mathcal{R}, f);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$ 2. $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(\pm g);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$ 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] $\not A$ 4. $\Delta \leftarrow \text{CRIT}(\mathcal{R}, f);$

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $g \leftarrow \text{ATYPICALVALUES}(\mathcal{R}, f);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$ 2. $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(\pm g);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$ 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] $\not A$ 4. $\Delta \leftarrow \text{CRIT}(\mathcal{R}, f);$ 5. $\mathscr{R} \leftarrow \text{ROADMAP}(f, \pm \Delta, \mathcal{P});$ [Basu & Pollack & Roy, '00] $\Rightarrow \tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $g \leftarrow \text{ATYPICALVALUES}(\mathcal{R}, f);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$ 2. $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(\pm g);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$ 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] $\not A$ 4. $\Delta \leftarrow \text{CRIT}(\mathcal{R}, f);$ 5. $\mathscr{R} \leftarrow \text{ROADMAP}(f, \pm \Delta, \mathcal{P});$ [Basu & Pollack & Roy, '00] $\Rightarrow \tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 6. $\mathscr{G} = (\mathcal{P}, \mathcal{E}) \leftarrow \text{GRAPHISOTOP}(\mathscr{R}, \pm \Delta, \mathcal{P});$

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $g \leftarrow \text{ATYPICALVALUES}(\mathcal{R}, f);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$ 2. $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(\pm g);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$ 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] $\not A$ 4. $\Delta \leftarrow \text{CRIT}(\mathcal{R}, f);$ 5. $\mathscr{R} \leftarrow \text{ROADMAP}(f, \pm \Delta, \mathcal{P});$ [Basu & Pollack & Roy, '00] $\Rightarrow \tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 6. $\mathscr{G} = (\mathcal{P}, \mathcal{E}) \leftarrow \text{GRAPHISOTOP}(\mathscr{R}, \pm \Delta, \mathcal{P});$ 7. for $q \in \mathcal{Q}$ do

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{ATYPICALVALUES}(\mathcal{R}, \boldsymbol{f});$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$ 2. $\mathcal{Q} \leftarrow \operatorname{SAMPLEPOINTS}(\pm \boldsymbol{g});$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$ 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] $\not A$ 4. $\Delta \leftarrow \operatorname{CRIT}(\mathcal{R}, \boldsymbol{f});$ 5. $\mathscr{R} \leftarrow \operatorname{ROADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P});$ [Basu & Pollack & Roy, '00] $\Rightarrow \tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 6. $\mathscr{G} = (\mathcal{P}, \mathcal{E}) \leftarrow \operatorname{GRAPHISOTOP}(\mathscr{R}, \pm \Delta, \mathcal{P});$ 7. for $\boldsymbol{q} \in \mathcal{Q}$ do 8. for $\boldsymbol{v}_1 \neq \boldsymbol{v}_2 \in \mathcal{P} \cap \mathcal{R}^{-1}(\boldsymbol{q})$ do

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $g \leftarrow \text{ATYPICALVALUES}(\mathcal{R}, f);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$ 2. $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(\pm g);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$ 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] \not{A} 4. $\Delta \leftarrow \text{CRIT}(\mathcal{R}, f);$ 5. $\mathscr{R} \leftarrow \text{ROADMAP}(f, \pm \Delta, \mathcal{P});$ [Basu & Pollack & Roy, '00] $\Rightarrow \tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 6. $\mathscr{G} = (\mathcal{P}, \mathcal{E}) \leftarrow \text{GRAPHISOTOP}(\mathscr{R}, \pm \Delta, \mathcal{P});$ 7. for $q \in \mathcal{Q}$ do 8. for $v_1 \neq v_2 \in \mathcal{P} \cap \mathcal{R}^{-1}(q)$ do 9. if v_1, v_2 are connected in \mathscr{G} then

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $g \leftarrow \text{ATYPICALVALUES}(\mathcal{R}, f);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$ 2. $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(\pm g);$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$ 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] \not{A} 4. $\Delta \leftarrow \text{CRIT}(\mathcal{R}, f);$ 5. $\mathscr{R} \leftarrow \text{ROADMAP}(f, \pm \Delta, \mathcal{P});$ [Basu & Pollack & Roy, '00] $\Rightarrow \tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 6. $\mathscr{G} = (\mathcal{P}, \mathcal{E}) \leftarrow \text{GRAPHISOTOP}(\mathscr{R}, \pm \Delta, \mathcal{P});$ 7. for $q \in \mathcal{Q}$ do 8. for $v_1 \neq v_2 \in \mathcal{P} \cap \mathcal{R}^{-1}(q)$ do 9. if v_1, v_2 are connected in \mathscr{G} then 10. return True;

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f});$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$ 2. $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(\pm g);$ 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] $\not{\!\!/}$ 4. $\Delta \leftarrow \operatorname{CRIT}(\mathcal{R}, f)$; 5. $\mathscr{R} \leftarrow \operatorname{ROADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}); \quad [\operatorname{Basu \& Pollack \& Roy, '00}] \Rightarrow \tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 6. $\mathscr{G} = (\mathcal{P}, \mathcal{E}) \leftarrow \text{GRAPHISOTOP}(\mathscr{R}, \pm \Delta, \mathcal{P});$ 7. for $q \in \mathcal{Q}$ do 8. for $v_1 \neq v_2 \in \mathcal{P} \cap \mathcal{R}^{-1}(q)$ do 9 if v_1, v_2 are connected in \mathscr{G} then 10. return True; 11. return False;

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f});$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$ 2. $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(\pm g);$ 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] $\not{\!\!/}$ 4. $\Delta \leftarrow \operatorname{CRIT}(\mathcal{R}, f)$; 5. $\mathscr{R} \leftarrow \operatorname{ROADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}); \quad [\operatorname{Basu \& Pollack \& Roy, '00}] \Rightarrow \tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 6. $\mathscr{G} = (\mathcal{P}, \mathcal{E}) \leftarrow \text{GRAPHISOTOP}(\mathscr{R}, \pm \Delta, \mathcal{P});$ 7. for $q \in \mathcal{Q}$ do Total bit complexity bound 8. for $v_1 \neq v_2 \in \mathcal{P} \cap \mathcal{R}^{-1}(q)$ do $\tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 9 if v_1, v_2 are connected in \mathscr{G} then 10. return True; 11. return False;

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f});$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$ 2. $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(\pm g);$ 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] $\not{\!\!/}$ 4. $\Delta \leftarrow \operatorname{CRIT}(\mathcal{R}, f)$; 5. $\mathscr{R} \leftarrow \operatorname{ROADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}); \quad [\operatorname{Basu \& Pollack \& Roy, '00}] \Rightarrow \tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 6. $\mathscr{G} = (\mathcal{P}, \mathcal{E}) \leftarrow \text{GRAPHISOTOP}(\mathscr{R}, \pm \Delta, \mathcal{P});$ 7. for $q \in \mathcal{Q}$ do Total bit complexity bound 8. for $v_1 \neq v_2 \in \mathcal{P} \cap \mathcal{R}^{-1}(q)$ do $\tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 9 if v_1, v_2 are connected in \mathscr{G} then 10. return True; 11. return False;

Input

- $\mathbf{f} = (f_1, \ldots, f_s)$ and $\mathcal{R} = (r_1, \ldots, r_d)$ polynomials in $\mathbb{R}[x_1, \ldots, x_n]$
- V = V(f) and $V_{\mathbb{R}} = V \cap \mathbb{R}^n$ are equidimensional of dimension d
- $D = \max\{\deg f, \deg R\}$ $\tau = \max\{\text{bitsize of the input coefficients}\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f});$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau(sD)^{O(nd)}$ [Basu & Pollack & Roy, '16] $\Rightarrow \tau n^{O(d^2)} D^{O(nd)}$ 2. $\mathcal{Q} \leftarrow \text{SAMPLEPOINTS}(\pm g);$ 3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q});$ [Le & Safey El Din, '21][Jelonek & Kurdyka, '05] $\not{\!\!/}$ 4. $\Delta \leftarrow \operatorname{CRIT}(\mathcal{R}, f)$; 5. $\mathscr{R} \leftarrow \operatorname{ROADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}); \quad [\operatorname{Basu \& Pollack \& Roy, '00}] \Rightarrow \tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 6. $\mathscr{G} = (\mathcal{P}, \mathcal{E}) \leftarrow \text{GRAPHISOTOP}(\mathscr{R}, \pm \Delta, \mathcal{P});$ 7. for $q \in \mathcal{Q}$ do Total bit complexity bound 8. for $v_1 \neq v_2 \in \mathcal{P} \cap \mathcal{R}^{-1}(q)$ do $\tilde{O}(\tau) \cdot ((s+d)D)^{O(n^2)}$ 9 if v_1, v_2 are connected in \mathscr{G} then 10. return True; 11. return False;

Data

- $S \subset \mathbb{R}^n$ defined by $g_1 = \cdots = g_s = 0$ and $h_1 > 0, \dots, h_t > 0$
- $D = \max(\deg(\mathbf{g}), \deg(\mathbf{h}))$ and $\tau = \max\{\text{bitsize of the input coefficients}\}$
- $\mathcal{P} \subset V_{\mathbb{R}}$ of cardinality δ

 \oplus

Data

- $S \subset \mathbb{R}^n$ defined by $g_1 = \cdots = g_s = 0$ and $h_1 > 0, \dots, h_t > 0$
- $D = \max(\deg(\boldsymbol{g}), \deg(\boldsymbol{h}))$ and $\tau = \max\{\text{bitsize of the input coefficients}\}\$
- $\mathcal{P} \subset V_{\mathbb{R}}$ of cardinality δ

Theorem	[Basu & Pollack & Roy, 2000]	
There exists an $\mathscr{R} \leftarrow \operatorname{Roadmap}(\boldsymbol{g}$	algorithm ROADMAP s.t if $(\mathbf{h}, \mathcal{P})$ then	
1. $\mathscr{R} \subset S$ is a f	roadmap of (S, \mathcal{P}) ;	<i>т</i>
2. polynomials defining \mathscr{R} have degrees $\leq t^{n+1} \delta D^{O(n^2)}$		
Bit compl $\leq \tilde{O}(\tau)$	exity of ROADMAP: $\cdot t^{O(n)} \delta D^{O(n^2)}$	

Data

- $S \subset \mathbb{R}^n$ defined by $g_1 = \cdots = g_s = 0$ and $h_1 > 0, \ldots, h_t > 0$
- $D = \max(\deg(\boldsymbol{g}), \deg(\boldsymbol{h}))$ and $\tau = \max\{\text{bitsize of the input coefficients}\}\$
- $\mathcal{P} \subset V_{\mathbb{R}}$ of cardinality δ

Theorem [Basu & Pollack & Roy, 2000]	
There exists an algorithm ROADMAP s.t if $\mathscr{R} \leftarrow \operatorname{ROADMAP}(\boldsymbol{g}, \boldsymbol{h}, \mathcal{P})$ then	
1. $\mathscr{R} \subset S$ is a roadmap of (S, \mathcal{P}) ;	-
2. polynomials defining \mathscr{R} have degrees $\leq t^{n+1} \delta D^{O(n^2)}$	\oplus
Bit complexity of ROADMAP: $\leq \tilde{O}(\tau) \cdot t^{O(n)} \delta D^{O(n^2)}$	

Data

- $S \subset \mathbb{R}^n$ defined by $g_1 = \cdots = g_s = 0$ and $h_1 > 0, \ldots, h_t > 0$
- $D = \max(\deg(\boldsymbol{g}), \deg(\boldsymbol{h}))$ and $\tau = \max\{\text{bitsize of the input coefficients}\}\$
- $\mathcal{P} \subset V_{\mathbb{R}}$ of cardinality δ

Theorem	[Basu & Pollack & Roy, 2000]	
There exists as $\mathscr{R} \leftarrow \operatorname{RoadMap}$	n algorithm ROADMAP s.t if $(oldsymbol{g},oldsymbol{h},\mathcal{P})$ then	
1. $\mathscr{R} \subset S$ is a	a roadmap of (S, \mathcal{P}) ;	T
2. polynomia $\leq t^{n+1}\delta D$	ls defining \mathscr{R} have degrees $O(n^2)$	đ
Bit com $\leq \tilde{O}(z)$	plexity of ROADMAP: $r) \cdot t^{O(n)} \delta D^{O(n^2)}$	

Theorem[Diatta & Mourrain & Ruatta, 2012][Cheng & Jin & Lazard, 2013][Jin & Cheng, 2021]There exists an algorithm GRAPHISOTOP s.tif $\mathscr{G} \leftarrow$ GRAPHISOTOP($\mathscr{R}, h, \mathcal{P}$) then1. $\mathscr{G} = (\widetilde{\mathcal{P}}, \mathcal{E})$ is a graph s.t. $\mathcal{P} \subset \widetilde{\mathcal{P}}$ 2. \mathscr{G} is isotopy equivalent to $\mathscr{R} \cap S$ Bit complexity of GRAPHISOTOP: $\leq \widetilde{O}(\tau) \cdot (\delta \deg(\mathscr{R}))^{O(1)}$

Connecting $p, p' \in \mathcal{P}$

p and p'path-connected in $S \iff$ path-connected in $\mathscr{R} \cap S \iff$ connected in \mathscr{G}

 $\begin{array}{rcl} \text{Non-negative} & \underline{\text{proper}} & \text{polynomial map} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \end{pmatrix} & & & \\ \mathbb{C}^i \\ & & & & \\ &$

- $W(\boldsymbol{\varphi}_i, V)$ generalized polar variety
- $F_i = \varphi_{i-1}^{-1}(\varphi_{i-1}(K)) \cap V$ critical fibers.
- $K = \text{critical points of } \boldsymbol{\varphi}_1 \text{ on } W(\boldsymbol{\varphi}_i, V)$

Roadmap property RM:

For all connected components C of V $C \cap (F_i \cup W(\varphi_i, V))$ is non-empty and connected

 $\begin{array}{rcl} \text{Non-negative} & \underline{\text{proper}} & \text{polynomial map} \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

• $W(\boldsymbol{\varphi}_i, V)$ generalized polar variety

•
$$F_i = \varphi_{i-1}^{-1}(\varphi_{i-1}(K)) \cap V$$
 critical fibers.

• $K = \text{critical points of } \boldsymbol{\varphi}_1 \text{ on } W(\boldsymbol{\varphi}_i, V)$

"Graded" roadmap property RM(x):

For all connected components C of $V \cap \mathbb{R}^n \cap \varphi_1^{-1}((-\infty, x])$ $C \cap (F_i \cup W(\varphi_i, V))$ is non-empty and connected

 $\begin{array}{rcl} \text{Non-negative} & \underline{\text{proper}} & \text{polynomial map} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \end{pmatrix} & & & \\ \mathbb{C}^i \\ & & & & \\ &$

- $W(\boldsymbol{\varphi}_i, V)$ generalized polar variety
- $F_i = \varphi_{i-1}^{-1}(\varphi_{i-1}(K)) \cap V$ critical fibers.
- $K = \text{critical points of } \boldsymbol{\varphi}_1 \text{ on } W(\boldsymbol{\varphi}_i, V)$

"Graded" roadmap property RM(x):

For all connected components C of $V \cap \mathbb{R}^n \cap \varphi_1^{-1}((-\infty, x])$ $C \cap (F_i \cup W(\varphi_i, V))$ is non-empty and connected

Non-ne	gativ	e prop	er polynomial map
$oldsymbol{arphi}_i$:	$egin{array}{c} \mathbb{C}^n \ m{x} \end{array}$	$$ \mapsto	$\mathbb{C}^i \ (\psi_1(oldsymbol{x}),\ldots,\psi_i(oldsymbol{x}))$

• $W(\boldsymbol{\varphi}_i, V)$ generalized polar variety

•
$$F_i = \varphi_{i-1}^{-1}(\varphi_{i-1}(K)) \cap V$$
 critical fibers.

• K =critical points of φ_1 on $W(\varphi_i, V)$

"Graded" roadmap property RM(x):

For all connected components C of $V \cap \mathbf{R}^n \cap \boldsymbol{\varphi}_1^{-1}((-\infty, x])$ $C \cap (F_i \cup W(\boldsymbol{\varphi}_i, V))$ is non-empty and connected

 $\begin{array}{rcl} \text{Non-negative} & \underline{\text{proper}} & \text{polynomial map} \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

- $W(\boldsymbol{\varphi}_i, V)$ generalized polar variety
- $F_i = \varphi_{i-1}^{-1}(\varphi_{i-1}(K)) \cap V$ critical fibers.
- K =critical points of φ_1 on $W(\varphi_i, V)$

"Graded" roadmap property RM(x):

For all connected components C of $V \cap \mathbb{R}^n \cap \varphi_1^{-1}((-\infty, x])$ $C \cap (F_i \cup W(\varphi_i, V))$ is non-empty and connected

 $\begin{array}{rcl} \text{Non-negative} & \underline{\text{proper}} & \underline{\text{polynomial map}} \\ \boldsymbol{\varphi}_i \colon & \mathbb{C}^n & \longrightarrow & \mathbb{C}^i \\ & \boldsymbol{x} & \mapsto & (\psi_1(\boldsymbol{x}), \dots, \psi_i(\boldsymbol{x})) \end{array}$

- $W(\boldsymbol{\varphi}_i, V)$ generalized polar variety
- $F_i = \varphi_{i-1}^{-1}(\varphi_{i-1}(K)) \cap V$ critical fibers.
- $K = \text{critical points of } \boldsymbol{\varphi}_1 \text{ on } W(\boldsymbol{\varphi}_i, V)$

"Graded" roadmap property RM(x):

For all connected components C of $V \cap \mathbb{R}^n \cap \varphi_1^{-1}((-\infty, x])$ $C \cap (F_i \cup W(\varphi_i, V))$ is non-empty and connected

 $\begin{array}{rcl} \text{Non-negative} & \underline{\text{proper}} & \text{polynomial map} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \end{pmatrix} & & & \\ \mathbb{C}^i \\ & & & & \\ &$

- $W(\boldsymbol{\varphi}_i, V)$ generalized polar variety
- $F_i = \varphi_{i-1}^{-1}(\varphi_{i-1}(K)) \cap V$ critical fibers.
- K =critical points of φ_1 on $W(\varphi_i, V)$

Roadmap property RM:

For all connected components C of V $C \cap (F_i \cup W(\varphi_i, V))$ is non-empty and connected

Genericity assumptions

Data

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve

 $\pi_3: \mathbb{C}^n \to \mathbb{C}^3$ projection on a **generic** 3D space $\pi_2: \mathbb{C}^n \to \mathbb{C}^2$ projection on a **generic** plane

Genericity assumptions
Data

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve $\pi_3 : \mathbb{C}^n \to \mathbb{C}^3$ projection on a **generic** 3D space $\pi_2 : \mathbb{C}^n \to \mathbb{C}^2$ projection on a **generic** plane

- (H_1) $\pi_2: \mathscr{C} \to \pi_2(\mathscr{C})$ is birational
- (H_2) $\pi_3:\mathscr{C}\to\pi_3(\mathscr{C})$ bijective

Data

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve

 $\pi_3 : \mathbb{C}^n \to \mathbb{C}^3$ projection on a **generic** 3D space $\pi_2 : \mathbb{C}^n \to \mathbb{C}^2$ projection on a **generic** plane

- (H_1) $\pi_2: \mathscr{C} \to \pi_2(\mathscr{C})$ is birational
- (H_2) $\pi_3:\mathscr{C}\to\pi_3(\mathscr{C})$ bijective

Data

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve

 $\pi_3 : \mathbb{C}^n \to \mathbb{C}^3$ projection on a **generic** 3D space $\pi_2 : \mathbb{C}^n \to \mathbb{C}^2$ projection on a **generic** plane

- (H_1) $\pi_2: \mathscr{C} \to \pi_2(\mathscr{C})$ is birational
- (H_2) $\pi_3:\mathscr{C}\to\pi_3(\mathscr{C})$ bijective
- (H_3) Overlaps involve at most two points
- (H₄) Overlaps introduce only nodes

Nodal apparent singularity

Data

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve

 $\pi_3 : \mathbb{C}^n \to \mathbb{C}^3$ projection on a **generic** 3D space $\pi_2 : \mathbb{C}^n \to \mathbb{C}^2$ projection on a **generic** plane

- (H_1) $\pi_2: \mathscr{C} \to \pi_2(\mathscr{C})$ is birational
- (H_2) $\pi_3:\mathscr{C}\to\pi_3(\mathscr{C})$ bijective
- (H_3) Overlaps involve at most two points
- (H₄) Overlaps introduce only nodes

Data

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve

 $\pi_3 : \mathbb{C}^n \to \mathbb{C}^3$ projection on a **generic** 3D space $\pi_2 : \mathbb{C}^n \to \mathbb{C}^2$ projection on a **generic** plane

- (H_1) $\pi_2: \mathscr{C} \to \pi_2(\mathscr{C})$ is birational
- (H_2) $\pi_3:\mathscr{C}\to\pi_3(\mathscr{C})$ bijective
- (H_3) Overlaps involve at most two points
- (H_4) Overlaps introduce only nodes

Witness apparent singularities

• $\mathscr{R} = (\omega, \rho_3, \dots, \rho_n) \subset \mathbb{Z}[x, y]$ encoding $\mathscr{C} \subset \mathbb{C}^n$ in generic position;

•
$$\mathcal{A}(x,y) = \partial_{x_2}^2 \boldsymbol{\omega} \cdot \partial_{x_1} \boldsymbol{\rho_3} - \partial_{x_1 x_2}^2 \boldsymbol{\omega} \cdot \partial_{x_2} \boldsymbol{\rho_3} \in \mathbb{Z}[x,y]$$

Witness apparent singularities

•
$$\mathscr{R} = (\omega, \rho_3, \dots, \rho_n) \subset \mathbb{Z}[x, y]$$
 encoding $\mathscr{C} \subset \mathbb{C}^n$ in generic position

•
$$\mathcal{A}(x,y) = \partial_{x_2}^2 \boldsymbol{\omega} \cdot \partial_{x_1} \boldsymbol{\rho_3} - \partial_{x_1 x_2}^2 \boldsymbol{\omega} \cdot \partial_{x_2} \boldsymbol{\rho_3} \in \mathbb{Z}[x,y]$$

Proposition - Generalization of [El Kahoui; '08]

A node (α, β) is an **apparent singularity** if and only if $\mathcal{A}(\alpha, \beta) \neq 0$

Witness apparent singularities

•
$$\mathscr{R} = (\omega, \rho_3, \dots, \rho_n) \subset \mathbb{Z}[x, y]$$
 encoding $\mathscr{C} \subset \mathbb{C}^n$ in generic position

•
$$\mathcal{A}(x,y) = \partial_{x_2}^2 \boldsymbol{\omega} \cdot \partial_{x_1} \boldsymbol{\rho_3} - \partial_{x_1 x_2}^2 \boldsymbol{\omega} \cdot \partial_{x_2} \boldsymbol{\rho_3} \in \mathbb{Z}[x,y]$$

Proposition - Generalization of [El Kahoui; '08]

A node (α, β) is an **apparent singularity** if and only if $\mathcal{A}(\alpha, \beta) \neq 0$

Computational aspect Q

- 1. Non-vanishing can be tested using gcd computations
- 2. Gcd computations can be done modulo prime numbers

Lift connectivity

Recover connectivity ambiguity

At each vertex associated to an apparent singularities, operate two steps

Cylindrical algebraic decomposition

Decompose the plane into cylinders where the topology of the curve can be computed

Cylindrical algebraic decomposition

Decompose the plane into cylinders where the topology of the curve can be computed

Morse theory

Topology changes at x-critical values

 $V = V_1 \cup \cdots \cup V_M$ V_i irreducible

Real trace of algebraic sets $V_{\mathbb{R}} = V \cap \mathbb{R}^{n}$ where $V = \{f_{1} = \cdots f_{p} = 0\} \subset \mathbb{C}^{n}$

Real algebraic sets $V_{\mathbb{R}} = \{f_1 = \cdots f_p = 0\} \subset \mathbb{R}^n$ where $(f_1, \dots, f_p) \subset \mathbb{R}[x_1, \dots, x_n]$

 \Leftrightarrow

Irreducible decomposition

 $V = V_1 \cup \cdots \cup V_M$ V_i irreducible

Dimension and degree

Consider $\mathcal{H}_1, \ldots, \mathcal{H}_n$ generic hyperplanes: $\dim V_i = \text{smallest } d \leq n \text{ such that:}$ $\deg V_i = \operatorname{card} (V \cap \mathcal{H}_1 \cap \ldots \cap \mathcal{H}_d) < +\infty$ Real trace of algebraic sets $V_{\mathbb{R}} = V \cap \mathbb{R}^{n}$ where $V = \{f_{1} = \cdots f_{p} = 0\} \subset \mathbb{C}^{n}$

Real algebraic sets $V_{\mathbb{R}} = \{f_1 = \cdots f_p = 0\} \subset \mathbb{R}^n$ where $(f_1, \dots, f_p) \subset \mathbb{R}[x_1, \dots, x_n]$

 \Leftrightarrow

Irreducible decomposition

 $V = V_1 \cup \cdots \cup V_M$ V_i irreducible

Dimension and degree

Consider $\mathcal{H}_1, \ldots, \mathcal{H}_n$ generic hyperplanes: $\dim V_i = \text{smallest } d \leq n \text{ such that:}$ $\deg V_i = \operatorname{card} \left(V \cap \mathcal{H}_1 \cap \ldots \cap \mathcal{H}_d \right) < +\infty$

Union

 $\dim V = \max\{\dim V_1, \dots, \dim V_M\}$ $\deg V = \deg V_1 + \dots + \deg V_M$

Real trace of algebraic sets $V_{\mathbb{R}} = V \cap \mathbb{R}^{n}$ where $V = \{f_{1} = \cdots + f_{n} = 0\} \subset \mathbb{C}^{n}$

 $\dim V = \max\{\dim V_1, \ldots, \dim V_M\}$ $\deg V = \deg V_1 + \ldots + \deg V_M$

$$V = \{p_1, \dots, p_{15}\}$$

deg $V = 15$

 $V_{\mathbb{P}} = V \cap \mathbb{R}^n$

where

$$V(x^2 + y^2 - 1, z)$$

$$\Rightarrow \deg V = 2$$

Real algebraic sets $V_{\mathbb{R}} = \{f_1 = \cdots f_p = 0\} \subset \mathbb{R}^n$ where $(f_1, \dots, f_p) \subset \mathbb{R}[x_1, \dots, x_n]$

 \Leftrightarrow

Irreducible decomposition

 $V = V_1 \cup \cdots \cup V_M$ V_i irreducible

Dimension and degree

Consider $\mathcal{H}_1, \ldots, \mathcal{H}_n$ generic hyperplanes: dim V_i = smallest $d \leq n$ such that: deg V_i = card $(V \cap \mathcal{H}_1 \cap \ldots \cap \mathcal{H}_d) < +\infty$

Union

 $\dim V = \max \{\dim V_1, \dots, \dim V_M\} \\ \deg V = \deg V_1 + \dots + \deg V_M$

Real trace of algebraic sets $V_{\mathbb{R}} = V \cap \mathbb{R}^{n}$ where $V = \{f_{1} = \cdots f_{p} = 0\} \subset \mathbb{C}^{n}$

Bézout Bound

$$\deg V \le \prod_{j=1}^p \deg f_j$$

 $V((x^2 + y^2 + z^2 + \alpha)^2 - \beta(x^2 + y^2))$

Real algebraic sets $V_{\mathbb{R}} = \{f_1 = \cdots f_p = 0\} \subset \mathbb{R}^n$ where $(f_1, \dots, f_p) \subset \mathbb{R}[x_1, \dots, x_n]$

 \Leftrightarrow

Irreducible decomposition

 $V = V_1 \cup \cdots \cup V_M$ V_i irreducible

Dimension and degree

Consider $\mathcal{H}_1, \ldots, \mathcal{H}_n$ generic hyperplanes: dim V_i = smallest $d \leq n$ such that: deg V_i = card $(V \cap \mathcal{H}_1 \cap \ldots \cap \mathcal{H}_d) < +\infty$

Union

 $\dim V = \max \{\dim V_1, \dots, \dim V_M\} \\ \deg V = \deg V_1 + \dots + \deg V_M$

Bézout Bound

$$\deg V \le \prod_{j=1}^p \deg f_j$$

Real trace of algebraic sets $V_{\mathbb{R}} = V \cap \mathbb{R}^{n}$ where $V = \{f_{1} = \cdots f_{p} = 0\} \subset \mathbb{C}^{n}$

 $V((x^2 + y^2 + z^2 + \alpha)^2 - \beta(x^2 + y^2))$

Reduction

Consider
$$S = \left\{ \boldsymbol{x} \in \boldsymbol{R}^n \mid f(\boldsymbol{x}) \neq 0 \right\}$$

Assumption 1: S is bounded.

For r > 0 large enough,

$$\mathsf{RoadMap}ig(S\cap\overline{\mathcal{B}}(0,r)ig) = \mathsf{RoadMap}(S)$$

Assumption 2: S is an algebraic set

Boundaries

Sufficient to compute the intersection of $S \cap \overline{\mathcal{B}}(0,r)$ with the roadmaps of

$$S_{\varepsilon}^+ = \mathbf{V}(f - \varepsilon), \quad S_{\varepsilon,r}^+ = \mathbf{V}(f - \varepsilon, ||\mathbf{x}||^2 - r), \quad S_r^+ = \mathbf{V}(||\mathbf{x}||^2 - r)$$

and $S_{\varepsilon}^{-} = V(f + \varepsilon), \quad S_{\varepsilon,r}^{-} = V(f + \varepsilon, ||\boldsymbol{x}||^2 - r), \quad S_{r}^{-} = V(||\boldsymbol{x}||^2 - r).$

[Canny, 1988]

[Canny, 1993]
Critical points

$$\boldsymbol{x}$$
 critical point of π_i on $V \iff \left\{ \boldsymbol{x} \in \operatorname{reg}(V) \mid \pi_i(T_{\boldsymbol{x}}V) \neq \boldsymbol{C}^i \right\} = W^{\circ}(\pi_i, V)$

An effective characterisation

Critical points

$$\boldsymbol{x}$$
 critical point of π_i on $V \iff \left\{ \boldsymbol{x} \in \operatorname{reg}(V) \mid \pi_i(T_{\boldsymbol{x}}V) \neq \boldsymbol{C}^i \right\} = W^{\circ}(\pi_i, V)$

An effective characterisation

$$\begin{array}{ccc} \boldsymbol{x} \text{ critical point of } \pi_i \text{ on } V & J_i = \operatorname{Jac}(\boldsymbol{h}, [x_{i+1}, \dots, x_n]) \text{ where } \boldsymbol{h} \in \boldsymbol{I}(V) \subset \boldsymbol{R}[x_1, \dots, x_n] \\ & (\operatorname{Lemma}) & \downarrow c = n - \operatorname{dim}(V) & & \\ & \left\{ \boldsymbol{x} \in V \mid \operatorname{rank} J_i(\boldsymbol{x}) < c \right\} & & \\ & & \operatorname{All } c\text{-minors of } J_i(\boldsymbol{x}) \text{ vanish at } \boldsymbol{x} \end{array}$$

Critical points

$$\boldsymbol{x}$$
 critical point of π_i on $V \iff \left\{ \boldsymbol{x} \in \operatorname{reg}(V) \mid \pi_i(T_{\boldsymbol{x}}V) \neq \boldsymbol{C}^i \right\} = W^{\circ}(\pi_i, V)$

Critical points

$$\boldsymbol{x}$$
 critical point of π_i on $V \iff \left\{ \boldsymbol{x} \in \operatorname{reg}(V) \mid \pi_i(T_{\boldsymbol{x}}V) \neq \boldsymbol{C}^i \right\} = W^{\circ}(\pi_i, V)$

An effective characterisation

Two kinds of critical points x critical point of π_i on V $x \in W_2$ (polar variety) $T_x W_2 \subset T_x V$ is normal to $\operatorname{Im}(\pi_1)$ $T_x W_2$ is normal to $\operatorname{Im}(\pi_1)$ $T_x W_2$ is normal to $\operatorname{Im}(\pi_1)$

Splitting in two sets \implies Degree reduction

Parameters	Thresholds
Parameters $(a_2, a_3, d_3, d_4, d_5) = (114, 40, 40, 104, 6)$ (Generic in in $\{1, \dots, 128\}$)	$(\varepsilon,r)=(2^{-16},2^9)$

Alg. set	Dimension			Degree			Real points			Timings	
	S_{ε}^+	$S_{\varepsilon,r}^+$	S_r^+	S_{ε}^+	$S_{\varepsilon,r}^+$	S_r^+	S_{ε}^+	$S_{\varepsilon,r}^+$	S_r^+	msolve	Maple
V	3	2	3	11	22	2				$0.0 \min$	$0.0\mathrm{min}$
K(1, V)	0	0	0	400	934	2	88	116	2	$4.8\mathrm{min}$	$84\mathrm{min}$
$K_{\text{vert}}(2, V)$	0	0	0	354	924	0	8	66	0	$5.3\mathrm{min}$	$49\mathrm{min}$
K(2, V)	1	1	1	220	182	2				77 min 280 m	

First step - computation of a parametrisation of critical locus over the algebraic sets

Library msolve

https://msolve.lip6.fr

New library for solving zero-dimensional ideals. Performances bring back the state-of-the art to the scope of laptops.

Pa	arameters	1	Thresholds
Pa	arameters $(a_2, a_3, d_3, d_4, d_5) = (114, 40, 40, 104, 6)$ (Generic in in $\{1, \dots, 128\}$)		$(\varepsilon,r)=(2^{-16},2^9)$

Alg. set	Dimension			Degree			Real points			Timings (min.)		
	S_{ε}^+	$S_{\varepsilon,r}^+$	S_r^+									
V	3	2	3	11	22	2				0	0	0
K(1, V)	0	0	0	400	934	2	88	116	2	1.8	3.1	0
$K_{\text{vert}}(2, V)$	0	0	0	354	924	0	8	66	0	1.9	3.4	0
K(2, V)	1	1	1	220	182	2				108	39	0

First step - computation of a parametrisation of critical locus over the algebraic sets with msolve

Library msolve

https://msolve.lip6.fr

New library for solving zero-dimensional ideals. Performances bring back the state-of-the art to the scope of laptops.

Parameters		Т	hresholds
Parameters $(a_2, a_3, d_3, d_4, d_5) = (114, 40, 40, 104, 6)$ (6)	Generic in in $\{1, \ldots, 128\}$)	($(\varepsilon, r) = (2^{-16}, 2^9)$

Alg. set	D	Dimension			Degree			Real points			Timings (min.)		
	S_{ε}^+	$S_{\varepsilon,r}^+$	S_r^+										
V	3	2	3	11	22	2				0	0	0	
K(1, V)	0	0	0	400	934	2	88	116	2	1.8	3.1	0	
$K_{\text{vert}}(2, V)$	0	0	0	354	924	0	8	66	0	1.9	3.4	0	
K(2, V)	1	1	1	220	182	2				108	39	0	

First step - computation of a parametrisation of critical locus over the algebraic sets with msolve

Recursive step - critical locus over fibers of S_{ε}^+ .

Th	Timings				
Alg. set	Dimension	Degree	Real points	One fiber	All fibers
F_{ε}	2	7		$3\mathrm{s}$	$4.75\mathrm{min}$
$K(1, F_{\varepsilon})$	0	38	14	$2 \mathrm{s}$	$3.2 \min$
$K_{\text{vert}}(2, F_{\varepsilon})$	0	0	0	0 s	$0.0 \min$
$K(2, F_{\varepsilon})$	1	21		$3\mathrm{s}$	$4.8\mathrm{min}$

Library msolve

https://msolve.lip6.fr

New library for solving zero-dimensional ideals.

Performances bring back the state-of-the art to the scope of laptops.

Parameters		Thresholds
Parameters $(a_2, a_3, d_3, d_4, d_5) = (114, 40, 40, 104, 6)$ (Generic in in	$\{1, \ldots, 128\})$	$(\varepsilon, r) = (2^{-16}, 2^9)$

Alg. set	D	Dimension			Degree			Real points			Timings (min.)		
	S_{ε}^+	$S_{\varepsilon,r}^+$	S_r^+										
V	3	2	3	11	22	2				0	0	0	
K(1, V)	0	0	0	400	934	2	88	116	2	1.8	3.1	0	
$K_{\text{vert}}(2, V)$	0	0	0	354	924	0	8	66	0	1.9	3.4	0	
K(2, V)	1	1	1	220	182	2				108	39	0	

First step - computation of a parametrisation of critical locus over the algebraic sets with msolve

Recursive step - critical locus over fibers of S_{ε}^+ .

Th	Timings					
Alg. set	Dimension	Degree	Real points	One fiber	All fibers	
F_{ε}	2	7		$3\mathrm{s}$	$4.75\mathrm{min}$	
$K(1, F_{\varepsilon})$	0	38	14	$2 \mathrm{s}$	$3.2 \min$	
$K_{\text{vert}}(2, F_{\varepsilon})$	0	0	0	0 s	$0.0 \min$	
$K(2, F_{\varepsilon})$	1	21		$3 \mathrm{s}$	$4.8\mathrm{min}$	

Roadmap

Degree: **8168** Time: **3h22**

Library msolve

https://msolve.lip6.fr

New library for solving zero-dimensional ideals.

Performances bring back the state-of-the art to the scope of laptops.

Hyperlinks

Cuspidal	ity
Slides: Bonus:	Cusp definition Cusp resolution Thom's Correction Algorithm Application Sample Points Connectivity queries
Roadma	p
Slides:	Canny's strategy Roadmap state-of-the-art Genericity assumptions Algorithm
Bonus:	Proof of the new connectivity result
PUMA I	obot
Bonus:	Reduction to alg. sets Splitting critical loci Computational details
Curves	
Slides:	Rational Parametrization State-of-the-art Algorithm
Bonus:	Genericity assumptions App sing. identification Node resolution Plane topology
Misc	
Slides: Bonus:	Main contributions Perspectives Quantitative bounds on alg. sets