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General approach: complete description of the geometry

Input

S ⊂ Rn s.a. set defined by

s polynomials of deg ≤ D

−−−−−−−−−−−−−→

Output

Complete and tractable

description of the geometry of S

−−
−−
−−
→

Cylindrical Algebraic Decomposition [Collins; 1975]

Partition of Rn into semi-algebraic cells

homeomorphic to (0, 1)i and

s.t. S is a union of these cells.

Price of generality [Collins, Wüthrich; 1975-76]

=⇒ High complexity: (sD)2
O(n)

Oleinik-Petrovsky-Thom-Milnor’s bound
[Gabrielov & Vorobjov, 2009]

#
{
Connected components of S

}
≤ O(sD)n

Change of paradigm

⇝ Target specific problems:

e.g. solve connectivity queries
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Contributions

Robotics applications

⇒ First cuspidality decision algorithm with singly exponential bit-complexity

◦ Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

◦ Nearly optimal roadmap algorithm for unbounded algebraic sets

◦ Efficient algorithm for connectivity of real algebraic curves

We have efficient algorithms for analyzing connectivity of real algebraic sets
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Cuspidality decision algorithm

joint work with D.Chablat, M.Safey El Din,

D.Salunkhe and P.Wenger



A quick look at robotics

Kinematic map of a robot

K : Rd → Rd

(ℓ,θ) 7→ z =
(
z1(ℓ,θ), . . . , zd(ℓ,θ)

)

An Orthogonal 3R Serial Robot A 3-RPR Planar Parallel Robot
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Cuspidal robot

Theorem [Borrel & Liégeois, 1986]

A robot cannot move between two associated postures,

without passing by a singular posture

WRONG !

Cuspidal robot [Wenger, 1992]

Cuspidal robots can move between two associated postures,

without passing by a singular posture

Motivation

Cuspidal robots can induce problem

for task planning

Open problem

Cuspidality decision for a general robot

Contribution

First general algorithm

with singly exponential complexity
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An algebro-geometric point of view

Kinematic map

K : Rd −→ Rd

(ℓ, θ) 7−→ z(ℓ, θ)

K polynomial in ℓ, cj = cos θj and sj = sin θj

singP(K) =
{
(ℓ, θ) | Jacℓ,θ K is rank deficient

}
⇑

Change of variables:

ri(ℓ, c, s) = zi(ℓ, θ)

with constraints

fj(c, s) = cj
2 + sj

2 − 1 = 0

⇓
Algebraic kinematic map

R̃ : V (f) ∩ Rn −→ Rd

(ℓ, c, s) 7−→
(
r1(ℓ, c, s), . . . , rd(ℓ, c, s)

)
R = (r1, . . . , rd) and f = (f1, . . . , fs) in R[x1, . . . , xn]

crit(R, V ) =
{
(ℓ, c, s) | Jacℓ,c,s[f ,R] is rank deficient

}
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The algebraic cuspidality problem

Data

Data: f = (f1, . . . , fs) and R = (r1, . . . , rd) polynomials in R[x1, . . . , xn]

Assumptions: V = V (f) is d-equidimensional and VR = V ∩ Rn ⊊ sing(V )

Algebraic cuspidality problem

The restriction of R to VR is cuspidal

if there is y ̸= y′ ∈ VR such that

1. R(y) = R(y′)

2. they are path-connected in

VR − crit(R, V )

(y,y′) is a cuspidal pair

Singular values of R

sval(R, V ) = R
(
crit(R, V )

)
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The cuspidality algorithm

Thom’s First Isotopy Lemma

Fibers from the same connected component

of Rd − sval(R, V ) have the same type

⇓

One fiber from each connected compo-

nent of Rd − sval(R, V ) is enough

Main steps

1. Compute polynomials defining

sval(R, V ) = R(crit(R, V ))

2. Compute a set Q of representatives

in each connected component of

Rd − sval(R, V )

3. Compute their preimages

P = V ∩R−1(Q)

4. Search for cuspidal pairs in P by

connecting points in the same

connected component of

VR − crit(R, V )

9
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Contributions

Robotics applications

First cuspidality decision algorithm with singly exponential bit-complexity

◦ Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

⇒ Nearly optimal roadmap algorithm for unbounded algebraic sets

◦ Efficient algorithm for connectivity of real algebraic curves

We have efficient algorithms for analyzing connectivity of real algebraic sets

10



Computing connectivity properties: Roadmaps

[Canny, 1988] Compute R ⊂ S one-dimensional, sharing its connectivity

Roadmap of (S,P)

A semi-algebraic curve R ⊂ S, containing query points (q1, . . . , qN ) s.t.

for all connected components C of S: C ∩R is non-empty and connected

Proposition

qi and qj are path-connected in S ⇐⇒ they are in R

Problem reduction

Arbitrary dimension

=⇒
Roadmap

Dimension 1

q3
q2

q1

11
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Roadmap algorithms for

unbounded algebraic sets

joint work with M. Safey El Din and É. Schost



Canny’s strategy

x

z

V

Projection through:

π2 : (x1, . . . , xn) 7→ (x1, x2)

W (π2, V ) critical locus of π2.

Intersects all the

connected components of V

Theorem [Canny, 1988]

If V is bounded, W (π2, V )
⋃

F has dimension dim(V )− 1

and satisfies the Roadmap property

Roadmap property

∀C connected component,

C ∩R is non-empty and connected
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On the complexity of computing roadmaps

S ⊂ Rn semi alg. set of dimension d and defined by s polynomials of degree ⩽ D

Connectivity result [Canny, 1988]

If V is bounded, W (π2, V ) ∪ F has dimension d− 1

and satisfies the Roadmap property.

Author·s Complexity Assumptions

[Schwartz & Sharir, 1983] (sD)2
O(n)

[Canny, 1993] (sD)O(n2)

[Basu & Pollack & Roy, 2000] sd+1DO(n2)

[Safey El Din & Schost, 2011] (nD)O(n
√

n) Smooth, bounded algebraic sets

[Basu & Roy & Safey El Din

& Schost, 2014]
(nD)O(n

√
n) Algebraic sets

[Basu & Roy, 2014] (nD)O(n log2 n) Algebraic sets

[Safey El Din & Schost, 2017] (n2D)6n log2(d)+O(n) Smooth, bounded algebraic sets

[P. & Safey El Din & Schost, 2024] (n2D)6n log2(d)+O(n) Smooth, bounded algebraic sets

13
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On the extension of Canny’s result

Projection on 2 coordinates

π2 : Cn → C2

(x1, . . . ,xn) 7→ (x1,x2)

• W (π2, V ) polar variety

• F2 = π−1
1 (π1(K)) ∩ V critical fibers

• K = critical points of π1 on W (π2, V )

Connectivity result [Canny, 1988]

If V is bounded, W (π2, V ) ∪ F2 has dimension d− 1

and satisfies the Roadmap property

No critical point!

14
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On the extension of Canny’s result

Non-negative proper polynomial map

φi : Cn −→ Ci

x 7→ (ψ1(x), . . . , ψi(x))

• W (φi, V ) generalized polar variety

• Fi = φ−1
i−1(φi−1(K)) ∩ V critical fibers.

• K = critical points of φ1 on W (φi, V )

Connectivity result [P. & Safey El Din & Schost, 2024]

If V is bounded, W (φi, V ) ∪ Fi has dimension max(i− 1, d− i+ 1)

and satisfies the Roadmap property

Critical point!

⇝ Sard’s lemma

⇝ Thom’s isotopy lemma

⇝ Puiseux series

14



How to use it?

Assumptions to satisfy in the new result

(R) sing(V ) is finite

(P) φ1 is a proper map bounded from below

For all 1 ⩽ i ⩽ dim(V )/2,

(N) φi−1 has finite fibers on Wi

(W) dimWi = i− 1 and sing(Wi) ⊂ sing(V )

(F) dimFi = n− d+ 1 and sing(Fi) is finite

A successful candidate

Choose generic (a, b2, . . . , bn) ∈ Rn2
and:

φ =

(
n∑

i=1

(xi − ai)2 , bT2
−→x , . . . , bTn

−→x
)

where ai ∈ R, bi ∈ Rn

It satisfies the assumptions!

15



How to use it?

Assumptions to satisfy in the new result

(R) sing(V ) is finite

(P) φ1 is a proper map bounded from below

For all 1 ⩽ i ⩽ dim(V )/2,

(N) φi−1 has finite fibers on Wi

(W) dimWi = i− 1 and sing(Wi) ⊂ sing(V )

(F) dimFi = n− d+ 1 and sing(Fi) is finite

Assumption on

the input

A successful candidate

Choose generic (a, b2, . . . , bn) ∈ Rn2
and:

φ =

(
n∑

i=1

(xi − ai)2 , bT2
−→x , . . . , bTn

−→x
)

where ai ∈ R, bi ∈ Rn

It satisfies the assumptions!

15



How to use it?

Assumptions to satisfy in the new result

(R) sing(V ) is finite

(P) φ1 is a proper map bounded from below

For all 1 ⩽ i ⩽ dim(V )/2,

(N) φi−1 has finite fibers on Wi

(W) dimWi = i− 1 and sing(Wi) ⊂ sing(V )

(F) dimFi = n− d+ 1 and sing(Fi) is finite

By construction

of φ

A successful candidate

Choose generic (a, b2, . . . , bn) ∈ Rn2
and:

φ =

(
n∑

i=1

(xi − ai)2 , bT2
−→x , . . . , bTn

−→x
)

where ai ∈ R, bi ∈ Rn

It satisfies the assumptions!

15



How to use it?

Assumptions to satisfy in the new result

(R) sing(V ) is finite

(P) φ1 is a proper map bounded from below

For all 1 ⩽ i ⩽ dim(V )/2,

(N) φi−1 has finite fibers on Wi

(W) dimWi = i− 1 and sing(Wi) ⊂ sing(V )

(F) dimFi = n− d+ 1 and sing(Fi) is finite

Generalization of

Noether position from

[Safey El Din & Schost, 2003]

A successful candidate

Choose generic (a, b2, . . . , bn) ∈ Rn2
and:

φ =

(
n∑

i=1

(xi − ai)2 , bT2
−→x , . . . , bTn

−→x
)

where ai ∈ R, bi ∈ Rn

It satisfies the assumptions!

15



How to use it?

Assumptions to satisfy in the new result

(R) sing(V ) is finite

(P) φ1 is a proper map bounded from below

For all 1 ⩽ i ⩽ dim(V )/2,

(N) φi−1 has finite fibers on Wi

(W) dimWi = i− 1 and sing(Wi) ⊂ sing(V )

(F) dimFi = n− d+ 1 and sing(Fi) is finite

Jacobian criterion

⊕
Thom’s transversality

theorem

A successful candidate

Choose generic (a, b2, . . . , bn) ∈ Rn2
and:

φ =

(
n∑

i=1

(xi − ai)2 , bT2
−→x , . . . , bTn

−→x
)

where ai ∈ R, bi ∈ Rn

It satisfies the assumptions!

15



How to use it?

Assumptions to satisfy in the new result

(R) sing(V ) is finite

(P) φ1 is a proper map bounded from below

For all 1 ⩽ i ⩽ dim(V )/2,

(N) φi−1 has finite fibers on Wi

(W) dimWi = i− 1 and sing(Wi) ⊂ sing(V )

(F) dimFi = n− d+ 1 and sing(Fi) is finite

Jacobian criterion

⊕
Noether position

A successful candidate

Choose generic (a, b2, . . . , bn) ∈ Rn2
and:

φ =

(
n∑

i=1

(xi − ai)2 , bT2
−→x , . . . , bTn

−→x
)

where ai ∈ R, bi ∈ Rn

It satisfies the assumptions!

15



An algorithm for unbounded algebraic set

Consider an algebraic set V ⊂ Cn with dimension d

Depth of recursion tree : τ

⇒ complexity: (nD)O(nτ)
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An algorithm for unbounded algebraic set
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Depth of recursion tree : log2(d)

⇒ complexity: (nD)O(n log2(d))
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An algorithm for unbounded algebraic set

Consider an algebraic set V ⊂ Cn with dimension d

algorithmic

structure

Quantitative estimate

Output size Complexity

RoadmapBounded(fib(φ1))

(n2D)4n log2 d+O(n) (n2D)6n log2 d+O(n)

Compute crit(φ2) & fib(φ1)

(nD)O(n) (nD)O(n)

Overall

(n2D)4n log2 d+O(n) (n2D)6n log2 d+O(n)

16



An algorithm for unbounded algebraic set

Consider an algebraic set V ⊂ Cn with dimension d

algorithmic

structure

Quantitative estimate

Output size Complexity

RoadmapBounded(fib(φ1)) (n2D)4n log2 d+O(n) (n2D)6n log2 d+O(n)

Compute crit(φ2) & fib(φ1)

(nD)O(n) (nD)O(n)

Overall

(n2D)4n log2 d+O(n) (n2D)6n log2 d+O(n)

16



An algorithm for unbounded algebraic set

Consider an algebraic set V ⊂ Cn with dimension d

algorithmic

structure

Quantitative estimate

Output size Complexity

RoadmapBounded(fib(φ1)) (n2D)4n log2 d+O(n) (n2D)6n log2 d+O(n)

Compute crit(φ2) & fib(φ1) (nD)O(n) (nD)O(n)

Overall

(n2D)4n log2 d+O(n) (n2D)6n log2 d+O(n)

16



An algorithm for unbounded algebraic set

Consider an algebraic set V ⊂ Cn with dimension d

algorithmic

structure

Quantitative estimate

Output size Complexity

RoadmapBounded(fib(φ1)) (n2D)4n log2 d+O(n) (n2D)6n log2 d+O(n)

Compute crit(φ2) & fib(φ1) (nD)O(n) (nD)O(n)

Overall (n2D)4n log2 d+O(n) (n2D)6n log2 d+O(n)

16



Summary

Input

Polynomials in Q[x1, . . . xn] of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension Roadmap
=⇒

Dimension: 1

Size: (nD)O(n log(n))

Topology
=⇒ Finite graph G

↓ ↓

(nD)O(n log2(n)) (Size)O(1) = (nD)O(n log(n))

[Basu, Roy; 2014] [Safey El Din, Schost; 2011]

Connectivity reduction process - now

Arbitrary dimension Roadmap
=⇒

Dimension: 1

Size: (n2D)4n log2(d)+O(n)
Topology

=⇒ Finite graph G

↓ ↓

(n2D)6n log2(d)+O(n) (Size)O(1) = (n2D)O(n log2(d))

[P., Safey El Din, Schost; 2024] [Safey El Din, Schost; 2011]

Computing roadmaps in unbounded smooth real algebraic sets I: connectivity results, 2024

with M. Safey El Din and É. Schost

Computing roadmaps in unbounded smooth real algebraic sets II: algorithm and complexity, 2024

with M. Safey El Din and É. Schost
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17



Summary

Input

Polynomials in Q[x1, . . . xn] of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension Roadmap
=⇒

Dimension: 1

Size: (nD)O(n log(n))
Topology
=⇒ Finite graph G

↓ ↓

(nD)O(n log2(n)) (Size)O(1) = (nD)O(n log(n))

[Basu, Roy; 2014] [Safey El Din, Schost; 2011]

Connectivity reduction process - now

Arbitrary dimension Roadmap
=⇒

Dimension: 1

Size: (n2D)4n log2(d)+O(n)
Topology

=⇒ Finite graph G

↓ ↓

(n2D)6n log2(d)+O(n) (Size)O(1) = (n2D)O(n log2(d))

[P., Safey El Din, Schost; 2024] [Safey El Din, Schost; 2011]

Computing roadmaps in unbounded smooth real algebraic sets I: connectivity results, 2024

with M. Safey El Din and É. Schost
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Contributions

Robotics applications

First cuspidality decision algorithm with singly exponential bit-complexity

⇒ Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

Nearly optimal roadmap algorithm for unbounded algebraic sets

⇝ Complexity: (n2D)6n log2 d+O(n) ⇝ Output size: (n2D)4n log2 d+O(n)

◦ Efficient algorithm for connectivity of real algebraic curves

We have efficient algorithms for analyzing connectivity of real algebraic sets

18



Analysis of the kinematic

singularities of a PUMA robot

with J.Capco, M.Safey El Din and P.Wenger



Canny’s strategy

x

y

z

V

W (π2, V ) polar variety

F critical fibers

Genericity assumptions

1. W (π2, V ) has dimension 1

2. F has dimension dim(V )− 1

Theorem [Canny, 1988]

If V is bounded, W (π2, V )
⋃

F has dimension dim(V )− 1

and satisfies the Roadmap property

Roadmap property

∀C connected component,

C ∩R is non-empty and connected
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Roadmap computation for robotics

Matrix M associated to a puma-type robot with a non-zero offset in the wrist

(v3 + v2)(1− v2v3) 0 A(v) d3A(v) a2(v23 + 1)(v22 − 1)− a3A(v) 2d3(v3 + v2)(v2v3 − 1)

0 v23 + 1 0 2a2v3 0 (a3 − a2)v23 + a2 + 2a3
0 1 0 0 0 2a3
0 0 1 0 0 0

v4 1− v24 0 d4(1− v24) −2d4v4 0

(v24 − 1)v5 4v4v5 (1− v25)(v24 + 1) (1− v25)(v24 − 1)d5 + 4d4v4v5 2d5v4(1− v25) + 2d4v5(1− v24) −2d5v5(v24 + 1)



S =
{
v ∈ R4 | det(M(v)) ̸= 0

}

A puma 560 [Unimation, 1984]

https://msolve.lip6.fr

⇝ Multivariate system solving

⇝ Real roots isolation

First step

Max. deg without splitting: 1858

Locus Degrees R-roots Tot. time

Critical points 400 & 934 96 & 182 9.7min

Critical curves 182 & 220 ∞ 3h46

Recursive step over 95 fibers

Data are for one fiber

Locus Degrees R-roots Total time

Critical points 38 14 6.4min

Critical curves 21 ∞ 9.6min

Roadmap computation

Output degree: 4847

Time: 4h10 (msolve)
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Contributions

Robotics applications

First cuspidality decision algorithm with singly exponential bit-complexity

Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

Nearly optimal roadmap algorithm for unbounded algebraic sets

⇝ Complexity: (n2D)6n log2 d+O(n) ⇝ Output size: (n2D)4n log2 d+O(n)

⇒ Efficient algorithm for connectivity of real algebraic curves

We have efficient algorithms for analyzing connectivity of real algebraic sets
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Computing connectivity properties: Roadmaps

[Canny, 1988] Compute R ⊂ S one-dimensional, sharing its connectivity

Roadmap of (S,P)

A semi-algebraic curve R ⊂ S, containing query points (q1, . . . , qN ) s.t.

for all connected components C of S: C ∩R is non-empty and connected

Proposition

qi and qj are path-connected in S ⇐⇒ they are in R

⇐⇒ they are in G

Problem reduction

Arbitrary dimension =⇒
Roadmap

Dimension 1

=⇒
Topology

Finite graph G

q3
q2

q1

22
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Algorithm for connectivity

queries on real algebraic curves

joint work with Md N.Islam and A.Poteaux



Data representation and quantitative estimate

Theorem

In a generic system of coordinates,

V is birational to a hypersurface of Cd+1 through:

πd+1 : (x1, . . . ,xn) 7→ (x1, . . . ,xd+1)

←− V equidimensional

of dimension d

Zero-dimensional parametrization of P ⊂ Cn finite

(λ, ϑ2, . . . , ϑn) ⊂ Z[x1] s.t.

P =

{(
x1,

ϑ2(x1)

λ′(x1)
, . . . ,

ϑn(x1)

λ′(x1)

)
s.t. λ(x1) = 0

}

One-dimensional parametrization of C ⊂ Cn algebraic curve

(ω, ρ3, . . . , ρn) ⊂ Z[x1, x2] s.t.

C =


(
x1,x2,

ρ3(x1,x2)

∂x2
ω(x1,x2)

, . . . ,
ρn(x1,x2)

∂x2
ω(x1,x2)

)
s.t. ω(x1,x2) = 0 and ∂x2ω(x1,x2) ̸= 0


Z

Magnitude of a polynomial

f ∈ Z[x1, . . . , xn] has magnitude (δ, τ) if

deg(f) ≤ δ and |coeffs(f)| ≤ 2τ

Soft-O notation

Õ(N) = O(N log(N)a)
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Results

Data

• R ⊂ Z[x1, x2] of magnitude (δ, τ), encoding an algebraic curve C ⊂ Cn;

• P ⊂ Z[x1] of magnitude (δ, τ), encoding a finite P ⊂ C ;

Computing topology

Ambient dimension Bit complexity Reference

n = 2 Õ(δ5(δ + τ))
[Kobel, Sagraloff; ’15][

D.Diatta, S.Diatta,
Rouiller, Roy, Sagraloff; ’22

]

n = 3 Õ(δ17(δ + τ)) [Cheng, Jin, Pouget, Wen, Zhang; ’21]

n > 3 Õ(δO(1)(δ + τ)) [Safey El Din, Schost; ’11]

Cylindrical Algebraic Decomposition

[Collins, ’75] [Kerber, Sagraloff; ’12]

Multiple projections

[Seidel, Wolpert; ’05]

Subdivision

[Burr, Choi, Galehouse, Yap; ’05]

Computing connectivity - Main Result

Ambient dimension Bit complexity Reference

n ≥ 2 Õ(δ5(δ + τ)) [Islam, Poteaux, P.; 2023]

Avoid computation of the complete topology!
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n > 3 Õ(δO(1)(δ + τ)) [Safey El Din, Schost; ’11]

Computing connectivity - Main Result

Ambient dimension Bit complexity Reference
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n ≥ 2 Õ(δ5(δ + τ)) [Islam, Poteaux, P.; 2023]

Avoid computation of the complete topology!

24



Results

Data

• R ⊂ Z[x1, x2] of magnitude (δ, τ), encoding an algebraic curve C ⊂ Cn;

• P ⊂ Z[x1] of magnitude (δ, τ), encoding a finite P ⊂ C ;

Computing topology

Ambient dimension Bit complexity Reference
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n ≥ 2 Õ(δ5(δ + τ)) [Islam, Poteaux, P.; 2023]

Avoid computation of the complete topology!

24



Results

Data

• R ⊂ Z[x1, x2] of magnitude (δ, τ), encoding an algebraic curve C ⊂ Cn;

• P ⊂ Z[x1] of magnitude (δ, τ), encoding a finite P ⊂ C ;

Computing topology

Ambient dimension Bit complexity Reference
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n ≥ 2 Õ(δ5(δ + τ)) [Islam, Poteaux, P.; 2023]

Avoid computation of the complete topology!

24



Apparent singularities: key idea

Generic apparent singularities

Projecting in a generic direction introduce

finitely many apparent singularities like:

Below

̸=

Above

̸=

Space singularities

Spatial nodes

project as:

Same

Key idea

Local connectivity does not depend on the relative position

Only two cases to consider!
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Algorithm

Input

• R ⊂ Z[x1, x2] of magnitude (δ, τ), encoding an algebraic curve C ⊂ Cn;

• P ⊂ Z[x1] of magnitude (δ, τ), encoding a finite P ⊂ C ;

• C satisfies genericity assumptions w.r.t. P

Output

A partition of P ∩ Rn w.r.t. the connected components of C ∩ Rn.

1. D ,Q ← Proj2D(R),Proj2D(P);

2. G ← Topo2D(D ,Q);

3. Qapp ← ApparentSingularities(R);

4. G ′ ← NodeResolution(G , Qapp);

5. return ConnectGraph(Q, G ′);

⇝ resultants

⇝ R-root isolation

↫

univariate

↫

bivariate triangular

Planar topology

Õ(δ5(δ + τ))

26



Algorithm

Input

• R ⊂ Z[x1, x2] of magnitude (δ, τ), encoding an algebraic curve C ⊂ Cn;

• P ⊂ Z[x1] of magnitude (δ, τ), encoding a finite P ⊂ C ;

• C satisfies genericity assumptions w.r.t. P

Output

A partition of P ∩ Rn w.r.t. the connected components of C ∩ Rn.

1. D ,Q ← Proj2D(R),Proj2D(P);

2. G ← Topo2D(D ,Q);

3. Qapp ← ApparentSingularities(R);

4. G ′ ← NodeResolution(G , Qapp);

5. return ConnectGraph(Q, G ′);

⇝ resultants

⇝ R-root isolation

↫

univariate

↫

bivariate triangular

Planar topology
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Overall Complexity

Õ(δ5(δ + τ))
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Summary

Input

Polynomials in Q[x1, . . . xn] of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension Roadmap
=⇒

Dimension: 1

Size: (nD)O(n log(n))
Topology
=⇒ Finite graph G

↓ ↓

(nD)O(n log2(n)) (Size)O(1) = (nD)O(n log(n))

[Basu, Roy; 2014] [Safey El Din, Schost; 2011]

Connectivity reduction process - now

Arbitrary dimension Roadmap
=⇒

Dimension: 1

Size: (n2D)4n log2(d)+O(n)
Topology
=⇒ Finite graph G

↓ ↓

(n2D)6n log2(d)+O(n) (Size)O(1) = (n2D)O(n log2(d))

[P., Safey El Din, Schost; 2024] [Safey El Din, Schost; 2011]

Algorithm for connectivity queries on real algebraic curves, 2023

with Md N. Islam and A. Poteaux
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Connectivity reduction process - now

Arbitrary dimension Roadmap
=⇒

Dimension: 1

Size: (n2D)4n log2(d)+O(n)
Connectivity
=⇒ Finite graph G

↓ ↓

(n2D)6n log2(d)+O(n) (Size)3 = (n2D)12n log2(d)+O(n)

[P., Safey El Din, Schost; 2024] [Islam, Poteaux, P.; 2023]

Algorithm for connectivity queries on real algebraic curves, 2023

with Md N. Islam and A. Poteaux
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Contributions

Robotics applications

First cuspidality decision algorithm with singly exponential bit-complexity

Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

Nearly optimal roadmap algorithm for unbounded algebraic sets

⇝ Complexity: (n2D)6n log2 d+O(n) ⇝ Output size: (n2D)4n log2 d+O(n)

Efficient algorithm for connectivity of real algebraic curves

⇝ Complexity: Õ(δ6)

We have efficient algorithms for analyzing connectivity of real algebraic sets
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Perspectives

Algorithms

Roadmap algorithms:

| Adapt the algorithms to structured systems: quadratic case (J.A.K.Elliott, M.Safey El Din, É.Schost)

| Reduce the size of the roadmap by taking fewer fibers (M.Safey El Din, É.Schost)

| Generalize the connectivity result to semi-algebraic sets

↓ Design optimal roadmap algorithms with complexity exponential in O(n)

Connectivity of s.a. curves:

| Obtain a deterministic version of the algorithm (F.Bréhard, A.Poteaux)

| Adapt to algebraic curves given as union (A.Poteaux)

| Generalize to semi-algebraic curves

↓ Investigate the connectivity of plane curves

Applications

| Analyze challenging class of robots (D.Salunkhe, P.Wenger)

| Algorithms for rigidity and program verification problems (E.Bayarmagnai, F.Mohammadi)

↓ Obtain practical version of modern roadmap algorithms

Software

| Connectivity of curves: subresultant/gcd computations deg ∼ 100 (now) → ∼ 200 (target)

| Build a Julia library for computational real algebraic geometry (C.Eder, R.Mohr)

↓ Implement a ready-to-use toolbox for roboticians
29



Union of curves

• Expected additional cost: compute all intersection points between curves,

including these points as control points.

q3
q2

q1

30



Reduce data size

31



Structured systems

deg(W (π1, V )) ≤
(n−1
p−1

)
Dp(D − 1)n−p

If D = 2 then, the bound becomes
(n−1
p−1

)
2p

We expect then a complexity (nD)p log2(n−p) for computing roadmaps
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Toward roadmap algorithms for s.a. sets

Semi-algebraic sets

A strategy to tackle unbounded semi-algebraic sets:

f ∈ R[x1, . . . , xn]

u new variable

f ̸= 0 −→ f · u− 1 = 0

f ≥ 0 −→ f − u2 = 0

f > 0 −→ f · u2 − 1 = 0

33



Thom’s isotopy lemma

Set of proper points prop(R, V )

y proper point ofR|V if there exists a ballB ∋ y

s.t. R−1(B) ∩ V is closed and bounded

Atypical Values

atyp(R, V ) = sval(R, V ) ∪
[
Cd − prop(R, V )

]
Special Points

spec(R, V ) = R−1
(
atyp(R, V )

)
∩ V

Semi-algebraic Thom’s isotopy lemma [Coste & Shiota, 1995]

For any open connected subset U ⊂ Rd s.t U ∩
atyp(R, V ) = ∅ and for any q ∈ U , there exists

a homeomorphism

Ψ:
[
R−1

(U) ∩ VR
]
→

[
R−1

(q) ∩ VR
]
× U

such that the following diagram commutes[
R−1(U) ∩ VR

] [
R−1(q) ∩ VR

]
×U

U
R

Ψ

πU
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Cuspidality graph

Cuspidality graph

G = (P, E) is a cuspidality graph of the

restriction of R to VR if the following

holds

1. P intersects every connected

component of VR − spec(R, V )

2. Let p ∈ P, then

R−1 (R(p)) ∩ VR ⊂ P

3. p,p′ ∈ P are

connected in VR − crit(R, V )

⇕
connected in G

Proposition: cuspidality graph characterization

There exist y ̸= y′ ∈ VR s.t. 1. R(y) = R(y′) 2. y,y′ connected in VR − crit(R, V )

⇕
There exist p ̸= p′ ∈ P s.t. 1.R(p) = R(p′) 2.p,p′ connected in G
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Sample points algorithms

Semi-algebraic sets

S ⊂ Rd semi-algebraic set

⇕
Solution set of a finite system of polynomial equations g and inequalities h

S has a finite number of connected components
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Sample points algorithms

Semi-algebraic sets

S ⊂ Rd semi-algebraic set

⇕
Solution set of a finite system of polynomial equations g and inequalities h

S has a finite number of connected components

Theorem [Basu & Pollack & Roy, 2016] [Le & Safey El Din, 2022]

• S ⊂ Rd defined by g1 = · · · = gs = 0 and h1 > 0, . . . , ht > 0

• D = max(deg(g), deg(h))

• τ = max{bitsize of the input coefficients}

There exists an algorithm SamplePoints s.t. if Q ← SamplePoints(f , g) then

1. Q ⊂ S is finite

2. Q meets every connected component of S

3. card(Q) ≤ DO(d)

Bit complexity of SamplePoints: τ(tD)O(d)
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The cuspidality decision algorithm

Input

• f = (f1, . . . , fs) and R = (r1, . . . , rd) polynomials in R[x1, . . . , xn]

• V = V (f) and VR = V ∩ Rn are equidimensional of dimension d

• D = max{deg f , degR} τ = max{bitsize of the input coefficients}

Output

A decision, True or False, on the cuspidality of the restriction of R to VR.

1. g ←AtypicalValues(R,f); [Basu & Pollack & Roy, ’16]⇒τ(sD)O(nd)

2. Q ←SamplePoints(±g); [Basu & Pollack & Roy, ’16]⇒τnO(d2)DO(nd)

[Le & Safey El Din, ’21][Jelonek & Kurdyka, ’05] ⇒
4. ∆← Crit(R,f);

5. R ←Roadmap(f ,±∆,P); [Basu & Pollack & Roy, ’00]⇒Õ(τ) · ((s + d)D)O(n2)

6. G = (P, E)←GraphIsotop(R,±∆,P);
7. for q ∈ Q do

8. for v1 ̸= v2 ∈ P ∩R−1(q) do

9. if v1,v2 are connected in G then

10. return True;

11. return False;
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Õ(τ)·((s+ d)D)O(n2)

37



The cuspidality decision algorithm

Input

• f = (f1, . . . , fs) and R = (r1, . . . , rd) polynomials in R[x1, . . . , xn]

• V = V (f) and VR = V ∩ Rn are equidimensional of dimension d

• D = max{deg f , degR} τ = max{bitsize of the input coefficients}

Output

A decision, True or False, on the cuspidality of the restriction of R to VR.

1. g ←AtypicalValues(R,f); [Basu & Pollack & Roy, ’16]⇒τ(sD)O(nd)

2. Q ←SamplePoints(±g); [Basu & Pollack & Roy, ’16]⇒τnO(d2)DO(nd)

3. P ← R−1(Q); [Le & Safey El Din, ’21][Jelonek & Kurdyka, ’05] ⇒
4. ∆← Crit(R,f);

5. R ←Roadmap(f ,±∆,P); [Basu & Pollack & Roy, ’00]⇒Õ(τ) · ((s + d)D)O(n2)
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Connectivity queries: algorithms

Data

• S ⊂ Rn defined by g1 = · · · = gs = 0 and h1 > 0, . . . , ht > 0

• D = max(deg(g), deg(h)) and τ = max{bitsize of the input coefficients}

• P ⊂ VR of cardinality δ

Theorem [Basu & Pollack & Roy, 2000]

There exists an algorithm Roadmap s.t if

R ← Roadmap(g,h,P) then

1. R ⊂ S is a roadmap of (S,P);

2. polynomials defining R have degrees

≤ tn+1δDO(n2)

Bit complexity of Roadmap:

≤ Õ(τ) · tO(n)δDO(n2)

⊕

Theorem [Diatta & Mourrain & Ruatta, 2012]

[Cheng & Jin & Lazard, 2013] [Jin & Cheng, 2021]

There exists an algorithm GraphIsotop s.t

if G ← GraphIsotop(R,h,P) then

1. G = (P̃, E) is a graph s.t. P ⊂ P̃

2. G is isotopy equivalent to R ∩ S

Bit complexity of GraphIsotop:

≤ Õ(τ) · (δ deg(R))O(1)

Connecting p,p′ ∈ P

p and p′

path-connected in S ⇐⇒ path-connected in R ∩ S ⇐⇒ connected in G

38
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A basic cuspidal example

K : R3 −→ R3

θ 7−→
(
z1(θ), z2(θ), z3(θ)

)
z1 =

1

2
c1c2(3c3 + 4) −

1

2
s1(3s3 + 2) + c1

z2 =
1

2
s1c2(3c3 + 4) +

1

2
c1(3s3 + 2) + s1

z3 = −
1

2
s2(3c3 + 4)

K−→

39
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A basic non-cuspidal example
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Proof of the new connectivity result

Non-negative proper polynomial map

φi : Cn −→ Ci

x 7→ (ψ1(x), . . . , ψi(x))

• W (φi, V ) generalized polar variety

• Fi = φ−1
i−1(φi−1(K)) ∩ V critical fibers.

• K = critical points of φ1 on W (φi, V )

Roadmap property RM:

For all connected components C of V

C ∩ (Fi ∪W (φi, V )) is non-empty and connected

x V

W
(π
i,
V

)

Fi

41
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Morse theory

Two disjoint cases:

x ∈ φ−1
1 (K) or not

Sard’s lemma

φ−1
1 (K) is finite
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Genericity assumptions

Data

C ⊂ Cn algebraic curve
π3 : Cn → C3 projection on a generic 3D space

π2 : Cn → C2 projection on a generic plane

Genericity assumptions

(H1) π2 : C → π2(C ) is birational

(H2) π3 : C → π3(C ) bijective

(H3) Overlaps involve at most two points

(H4) Overlaps introduce only nodes

Secants are exceptional lines

[Shafarevich, ’13]

Secants with coplanar tangents are exceptional secants

Proof: Generalize results from literature

[Mumford; ’76]

[
Fortuna, Gianni
Trager; ’09

]
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Witness apparent singularities

• R = (ω,ρ3, . . . , ρn) ⊂ Z[x, y] encoding C ⊂ Cn in generic position;

• A(x, y) = ∂2x2
ω · ∂x1ρ3 − ∂2x1x2

ω · ∂x2ρ3 ∈ Z[x, y]

Proposition - Generalization of [El Kahoui; ’08]

A node (α, β) is an apparent singularity if and only if A(α, β) ̸= 0

A(α, β) ̸= 0 A(α,β) = 0 A(α, β) ̸= 0

Computational aspect

1. Non-vanishing can be tested using gcd computations

2. Gcd computations can be done modulo prime numbers
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Lift connectivity

Recover connectivity ambiguity

At each vertex associated to an apparent singularities, operate two steps

1st step

Identify opposite branches

2nd step

Modify the graph

44



Computing the topology of plane curves

Cylindrical algebraic decomposition

Decompose the plane into cylinders where the topology of the curve can be computed

Morse theory

Topology changes at x-critical values

45
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Complexity: Õ(δ5(δ + τ))
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Computing the topology of plane curves

Isolating critical boxes

Isolation roots of univariate polynomials with algebraic coefficients

Complexity: Õ(δ5(δ + τ))

[Kobel, Sagraloff; ’15][
D.Diatta, S.Diatta,

Rouiller, Roy, Sagraloff; ’22

]
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Complexity: Õ(δ5(δ + τ))

[Kobel, Sagraloff; ’15][
D.Diatta, S.Diatta,

Rouiller, Roy, Sagraloff; ’22

]
45



Computing the topology of plane curves

Isolating critical boxes

Isolation roots of univariate polynomials with algebraic coefficients

Complexity: Õ(δ5(δ + τ))
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Complexity: Õ(δ5(δ + τ))

[Kobel, Sagraloff; ’15][
D.Diatta, S.Diatta,

Rouiller, Roy, Sagraloff; ’22

]

45



Computing the topology of plane curves

Isolating critical boxes

Isolation roots of univariate polynomials with algebraic coefficients

Complexity: Õ(δ5(δ + τ))
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Quantitative bounds on algebraic sets

Real algebraic sets

VR = {f1 = · · · fp = 0} ⊂ Rn

where

(f1, . . . , fp) ⊂ R[x1, . . . , xn]

⇐⇒

Real trace of algebraic sets

VR = V ∩ Rn

where

V = {f1 = · · · fp = 0} ⊂ Cn

Irreducible decomposition

V = V1 ∪ · · · ∪ VM Vi irreducible

Dimension and degree

Consider H1, . . . ,Hn generic hyperplanes:

dimVi = smallest d ≤ n such that:

deg Vi = card
(
V ∩H1 ∩ . . . ∩Hd

)
< +∞

Union

dimV = max{dim V1, . . . , dim VM}
deg V = deg V1 + . . . + deg VM

Bézout Bound

deg V ≤
p∏

j=1

deg fj
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Reduction

Consider S =
{
x ∈ Rn | f(x) ̸= 0

}
Assumption 1: S is bounded. [Canny, 1988]

For r > 0 large enough,

RoadMap
(
S ∩ B(0, r)

)
= RoadMap(S)

Assumption 2: S is an algebraic set [Canny, 1993]

For ε > 0 small enough,

Roadmap
(
{f ≥ ε} ∩ B(0, r)

)
Roadmap

(
{f ̸= 0} ∩ B(0, r)

) ⋃
Roadmap

(
{f ≤ −ε} ∩ B(0, r)

)

Boundaries

Sufficient to compute the intersection of S ∩ B(0, r) with the roadmaps of

S+
ε = V (f − ε), S+

ε,r = V (f − ε, ||x||2 − r), S+
r = V (||x||2 − r)

and S−
ε = V (f + ε), S−

ε,r = V (f + ε, ||x||2 − r), S−
r = V (||x||2 − r).
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Computation of critical loci

Critical points

x critical point of πi on V ⇐⇒
{
x ∈ reg(V ) | πi(TxV ) ̸= Ci

}
=W ◦(πi, V )

An effective characterisation

x critical point of πi on V Ji = Jac(h, [xi+1, . . . , xn]) where h ∈ I(V ) ⊂ R[x1, . . . , xn]

{
x ∈ V | rank Ji(x) < c

}
All c-minors of Ji(x) vanish at x

(Lemma) c=n−dim(V )

Determinantal ideal

Torus of revolution axis directed by the vector −→x +−→z

Splitting in two sets =⇒ Degree reduction

48
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x critical point of πi on V Ji = Jac(h, [xi+1, . . . , xn]) where h ∈ I(V ) ⊂ R[x1, . . . , xn]

{
x ∈ V | rank Ji(x) < c

}
All c-minors of Ji(x) vanish at x

(Lemma) c=n−dim(V ) Determinantal ideal

Two kinds of critical points

x critical point of πi on V x ∈W2 (polar variety)

TxW2 ⊂ TxV is normal to Im(π1)

TxW2 is normal to Im(π1) or

TxW2 is normal to Im(π2) ⊃ Im(π1)

Splitting in two sets =⇒ Degree reduction
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First results on the PUMA-type robot

Parameters

Parameters (a2, a3, d3, d4, d5) = (114, 40, 40, 104, 6) (Generic in in {1, . . . , 128})

Thresholds

(ε, r) = (2−16, 29)

First step - computation of a parametrisation of critical locus over the algebraic sets

Alg. set Dimension Degree Real points Timings

S+
ε S+

ε,r S+
r S+

ε S+
ε,r S+

r S+
ε S+

ε,r S+
r msolve Maple

V 3 2 3 11 22 2 0.0min 0.0min

K(1, V ) 0 0 0 400 934 2 88 116 2 4.8min 84min

Kvert(2, V ) 0 0 0 354 924 0 8 66 0 5.3min 49min

K(2, V ) 1 1 1 220 182 2 77min 280min

Recursive step - critical locus over fibers of S+
ε .

There are 88 + 8 = 96 fibers. Timings

Alg. set Dimension Degree Real points One fiber All fibers

Fε 2 7 3 s 4.75min

K(1, Fε) 0 38 14 2 s 3.2min

Kvert(2, Fε) 0 0 0 0 s 0.0min

K(2, Fε) 1 21 3 s 4.8min

Roadmap

Degree: 8168

Time: 3h22

Library msolve https://msolve.lip6.fr

New library for solving zero-dimensional ideals.

Performances bring back the state-of-the art to the scope of laptops.
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Hyperlinks

Cuspidality

Slides: Cusp definition Cusp resolution

Bonus: Thom’s Correction Algorithm Application Sample Points Connectivity queries

Roadmap

Slides: Canny’s strategy Roadmap state-of-the-art Genericity assumptions Algorithm

Bonus: Proof of the new connectivity result

PUMA robot

Bonus: Reduction to alg. sets Splitting critical loci Computational details

Curves

Slides: Rational Parametrization State-of-the-art Algorithm

Bonus: Genericity assumptions App sing. identification Node resolution Plane topology

Misc

Slides: Main contributions Perspectives

Bonus: Quantitative bounds on alg. sets
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