KULEUVEN

Connectivity in real algebraic sets: algorithms and applications

$11^{\text {th }}$ March 2024

AROMATH Seminar

Rémi Prébet
Joint works with M. Safey El Din, É. Schost
SLides:
N. Islam, A. Poteaux
D.Chablat, D.Salunkhe, P. Wenger
rprebet.github.io/\#talks

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

2, $\square 4, \square 6, \square 8, \square 10$
Physics
[Le, Safey El Din; '22]

Computational geometry
[Le, Manevich, Plaumann; '21]

Biology
$\left[\begin{array}{l}\text { Yabo, Safey El Din, } \\ \text { Caillau, Gouzé; '23 }\end{array}\right]$

Robotics
$\left[\begin{array}{c}\text { Chablat, P., Safey El Din, } \\ \text { Salunkhe, Wenger; '22 }\end{array}\right]$

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of connected components

$$
\begin{aligned}
& 4 y+x^{3}-4 x^{2}-2 x-8=0 \\
& -2 \leq x \leq 0
\end{aligned}
$$

2, $\square 4, \square 6, \square 8, \square 10$
Physics
[Le, Safey El Din; '22]

Computational geometry
[Le, Manevich, Plaumann; '21]

Biology
$\left[\begin{array}{l}\text { Yabo, Safey El Din, } \\ \text { Caillau, Gouzé; '23 }\end{array}\right]$

Robotics
$\left[\begin{array}{c}\text { Chablat, P., Safey El Din, } \\ \text { Salunkhe, Wenger; '22 }\end{array}\right]$

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of connected components

Fundamental problems in computational real algebraic geometry
(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components

Computational real algebraic geometry

Semi-algebraic sets
Set of real solutions of systems of polynomial equations and inequalities

> Stability [Tarski-Seidenberg]
> The family of s.a. sets is stable by projection

Finiteness

Finite number of connected components

Fundamental problems in computational real algebraic geometry
(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components

2, ■4, ■6, $\square_{8, ~}^{\square} \boldsymbol{\square}_{10}$
Kuramoto oscillators

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of

Fundamental problems in computational real algebraic geometry
(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components

Dynamical systems

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of

[^0]

Cuspidality decision

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of connected components

Fundamental problems in computational real algebraic geometry

(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components

Cuspidality decision

Computational real algebraic geometry

Semi-algebraic sets

Set of real solutions of systems of polynomial equations and inequalities

Stability [Tarski-Seidenberg]

The family of s.a. sets is stable by projection

Finiteness

Finite number of
 connected components

Fundamental problems in computational real algebraic geometry

(P) compute a projection: one block quantifier elimination
(S) compute at least one point in each connected component
(C) decide if two points lie in the same connected component
(N) count the number of connected components

Cuspidality decision

General approach: complete description of the geometry

Input $S \subset \mathbb{R}^{n}$ s polynomials of $\operatorname{deg} \leq D$	Output
$\frac{\text { Complete and tractable }}{\text { andiption of the geometry of } S}$	
descript by	

General approach: complete description of the geometry

Input

$S \subset \mathbb{R}^{n}$ s.a. set defined by
s polynomials of $\operatorname{deg} \leq D$


```
Output
Complete and tractable description of the geometry of \(S\)
```


Cylindrical Algebraic Decomposition [Collins; 1975]

Partition of \mathbb{R}^{n} into semi-algebraic cells homeomorphic to $(0,1)^{i}$ and s.t. S is a union of these cells.

General approach: complete description of the geometry

Input

$S \subset \mathbb{R}^{n}$ s.a. set defined by s polynomials of $\operatorname{deg} \leq D$

Cylindrical Algebraic Decomposition [Collins; 1975]

Partition of \mathbb{R}^{n} into semi-algebraic cells homeomorphic to $(0,1)^{i}$ and s.t. S is a union of these cells.

Output
 Complete and tractable description of the geometry of S

Price of generality [Collins, Wüthrich; 1975-76]
High complexity: $(s D)^{2 O(n)}$

General approach: complete description of the geometry

Input

$S \subset \mathbb{R}^{n}$ s.a. set defined by
s polynomials of $\operatorname{deg} \leq D$

Cylindrical Algebraic Decomposition [Collins; 1975]

Partition of \mathbb{R}^{n} into semi-algebraic cells homeomorphic to $(0,1)^{i}$ and s.t. S is a union of these cells.

Output

Complete and tractable description of the geometry of S

Price of generality [Collins, Wüthrich; 1975-76]
High complexity: $(s D)^{2 O(n)}$

Oleinik-Petrovsky-Thom-Milnor's bound
[Gabrielov \& Vorobjov, 2009]
$\#\{$ Connected components of $S\} \leq O(s D)^{n}$

General approach: complete description of the geometry

Input

$S \subset \mathbb{R}^{n}$ s.a. set defined by
s polynomials of $\operatorname{deg} \leq D$

Cylindrical Algebraic Decomposition [Collins; 1975]

Partition of \mathbb{R}^{n} into semi-algebraic cells homeomorphic to $(0,1)^{i}$ and s.t. S is a union of these cells.

Output

Complete and tractable description of the geometry of S

Price of generality [Collins, Wüthrich; 1975-76]
High complexity: $(s D)^{2 O(n)}$

Oleinik-Petrovsky-Thom-Milnor's bound
[Gabrielov \& Vorobjov, 2009]
$\#\{$ Connected components of $S\} \leq O(s D)^{n}$

Change of paradigm

\rightsquigarrow Target specific problems:
e.g. solve connectivity queries

Contributions

Robotics applications

\Rightarrow First cuspidality decision algorithm with singly exponential bit-complexity

- Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

- Nearly optimal roadmap algorithm for unbounded algebraic sets
- Efficient algorithm for connectivity of real algebraic curves

We have efficient algorithms for analyzing connectivity of real algebraic sets

Contributions

Robotics applications

\Rightarrow First cuspidality decision algorithm with singly exponential bit-complexity

- Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

Nearly optimal roadmap algorithm for unbounded algebraic sets

- Efficient algorithm for connectivity of real algebraic curves

We have efficient algorithms for analyzing connectivity of real algebraic sets

Contributions

Robotics applications

\Rightarrow First cuspidality decision algorithm with singly exponential bit-complexity
p Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving
Nearly optimal roadmap algorithm for unbounded algebraic sets

- Efficient algorithm for connectivity of real algebraic curves

We have efficient algorithms for analyzing connectivity of real algebraic sets

Contributions

Robotics applications

We have efficient algorithms for analyzing connectivity of real algebraic sets

Cuspidality decision algorithm

joint work with D.Chablat, M.Safey El Din, D.Salunkhe and P.Wenger

A quick look at robotics

Kinematic map of a robot

$$
\begin{array}{rccc}
\mathcal{K}: & \mathbb{R}^{d} & \rightarrow & \mathbb{R}^{d} \\
(\boldsymbol{\ell}, \boldsymbol{\theta}) & \mapsto & \boldsymbol{z}=\left(z_{1}(\boldsymbol{\ell}, \boldsymbol{\theta}), \ldots, z_{d}(\boldsymbol{\ell}, \boldsymbol{\theta})\right)
\end{array}
$$

An Orthogonal 3R Serial Robot

A 3-RPR Planar Parallel Robot

A quick look at robotics

Kinematic map of a robot

$$
\begin{array}{rccc}
\mathcal{K}: & \mathbb{R}^{d} & \rightarrow & \mathbb{R}^{d} \\
(\boldsymbol{\ell}, \boldsymbol{\theta}) & \mapsto & \boldsymbol{z}=\left(z_{1}(\boldsymbol{\ell}, \boldsymbol{\theta}), \ldots, z_{d}(\boldsymbol{\ell}, \boldsymbol{\theta})\right)
\end{array}
$$

A quick look at robotics

Kinematic map of a robot

$$
\begin{array}{rccc}
\mathcal{K}: & \mathbb{R}^{d} & \rightarrow & \mathbb{R}^{d} \\
(\boldsymbol{\ell}, \boldsymbol{\theta}) & \mapsto & \boldsymbol{z}=\left(z_{1}(\boldsymbol{\ell}, \boldsymbol{\theta}), \ldots, z_{d}(\boldsymbol{\ell}, \boldsymbol{\theta})\right)
\end{array}
$$

A quick look at robotics

Kinematic map of a robot

$$
\begin{array}{rccc}
\mathcal{K}: & \mathbb{R}^{d} & \rightarrow & \mathbb{R}^{d} \\
(\boldsymbol{\ell}, \boldsymbol{\theta}) & \mapsto & \boldsymbol{z}=\left(z_{1}(\boldsymbol{\ell}, \boldsymbol{\theta}), \ldots, z_{d}(\boldsymbol{\ell}, \boldsymbol{\theta})\right)
\end{array}
$$

A quick look at robotics

Kinematic map of a robot

$$
\begin{array}{rccc}
\mathcal{K}: & \mathbb{R}^{d} & \rightarrow & \mathbb{R}^{d} \\
(\boldsymbol{\ell}, \boldsymbol{\theta}) & \mapsto & \boldsymbol{z}=\left(z_{1}(\boldsymbol{\ell}, \boldsymbol{\theta}), \ldots, z_{d}(\boldsymbol{\ell}, \boldsymbol{\theta})\right)
\end{array}
$$

Singular posture

Configurations $(\boldsymbol{\ell}, \boldsymbol{\theta})$ s.t. $\operatorname{Jac}_{\boldsymbol{\ell}, \boldsymbol{\theta}}(\mathcal{K})$ is rank deficient

Cuspidal robot

Theorem
[Borrel \& Liégeois, 1986]
A robot cannot move between two associated postures, without passing by a singular posture

Cuspidal robot

A robot cannot move between two associated postures, without passing by a singular posture
[Wenger, 1992] \rightarrow WRONG !

Cuspidal robot

Theorem
A robot cannot move between two associated postures, without passing by a singular posture

$$
\text { [Wenger, 1992] } \rightarrow \text { WRONG ! }
$$

Cuspidal robot

Cuspidal robots can move between two associated postures, without passing by a singular posture

Motivation

Cuspidal robots can induce problem for task planning

Open problem

Cuspidality decision for a general robot

Cuspidal robot

Theorem
A robot cannot move between two associated postures, without passing by a singular posture

$$
\text { [Wenger, 1992] } \rightarrow \text { WRONG ! }
$$

Cuspidal robot

Cuspidal robots can move between two associated postures, without passing by a singular posture

Motivation

Cuspidal robots can induce problem for task planning

Open problem

Cuspidality decision for a general robot

Contribution $\mathbb{N E W S}$

First general algorithm

Cuspidal robot

Theorem
A robot cannot move between two associated postures, without passing by a singular posture

$$
\text { [Wenger, 1992] } \rightarrow \text { WRONG ! }
$$

Cuspidal robot

Cuspidal robots can move between two associated postures, without passing by a singular posture

Motivation

Cuspidal robots can induce problem for task planning

Open problem

Cuspidality decision for a general robot

Contribution $\mathbb{N E W S}$

First general algorithm with singly exponential complexity

An algebro-geometric point of view

Kinematic map

$$
\begin{array}{cccc}
\mathcal{K}: & \mathbb{R}^{d} & \longrightarrow & \mathbb{R}^{d} \\
& (\boldsymbol{\ell}, \boldsymbol{\theta}) & \longmapsto & \boldsymbol{z}(\boldsymbol{\ell}, \boldsymbol{\theta})
\end{array}
$$

An algebro-geometric point of view

Kinematic map

$$
\begin{aligned}
\mathcal{K}: \quad \mathbb{R}^{d} & \longrightarrow \quad \mathbb{R}^{d} \\
(\boldsymbol{\ell}, \boldsymbol{\theta}) & \longmapsto \boldsymbol{z}(\boldsymbol{\ell}, \boldsymbol{\theta}) \\
\mathcal{K} \text { polynomial in } \boldsymbol{\ell}, c_{j} & =\cos \theta_{j} \text { and } s_{j}=\sin \theta_{j}
\end{aligned}
$$

An algebro-geometric point of view

Kinematic map

$$
\begin{array}{cccc}
\mathcal{K}: & \mathbb{R}^{d} & \longrightarrow & \mathbb{R}^{d} \\
& (\boldsymbol{\ell}, \boldsymbol{\theta}) & \longmapsto & \boldsymbol{z}(\boldsymbol{\ell}, \boldsymbol{\theta})
\end{array}
$$

\mathcal{K} polynomial in $\ell, c_{j}=\cos \theta_{j}$ and $s_{j}=\sin \theta_{j}$

介
Change of variables:

$$
r_{i}(\boldsymbol{\ell}, c, s)=z_{i}(\boldsymbol{\ell}, \boldsymbol{\theta})
$$

with constraints

$$
f_{j}(\boldsymbol{c}, \boldsymbol{s})=c_{j}^{2}+s_{j}^{2}-1=0
$$

An algebro-geometric point of view

Kinematic map

$$
\begin{array}{cccc}
\mathcal{K}: & \mathbb{R}^{d} & \longrightarrow & \mathbb{R}^{d} \\
& (\boldsymbol{\ell}, \boldsymbol{\theta}) & \longmapsto & \boldsymbol{z}(\boldsymbol{\ell}, \boldsymbol{\theta})
\end{array}
$$

\mathcal{K} polynomial in $\boldsymbol{\ell}, c_{j}=\cos \theta_{j}$ and $s_{j}=\sin \theta_{j}$

Change of variables:

$$
r_{i}(\boldsymbol{\ell}, \boldsymbol{c}, \boldsymbol{s})=z_{i}(\boldsymbol{\ell}, \boldsymbol{\theta})
$$

with constraints

$$
f_{j}(c, s)=c_{j}^{2}+s_{j}^{2}-1=0
$$

An algebro-geometric point of view

Kinematic map

$$
\begin{array}{cccc}
\mathcal{K}: & \mathbb{R}^{d} & \longrightarrow & \mathbb{R}^{d} \\
& (\boldsymbol{\ell}, \boldsymbol{\theta}) & \longmapsto & \boldsymbol{z}(\boldsymbol{\ell}, \boldsymbol{\theta})
\end{array}
$$

\mathcal{K} polynomial in $\ell, c_{j}=\cos \theta_{j}$ and $s_{j}=\sin \theta_{j}$

$$
\operatorname{sing} \mathrm{P}(\mathcal{K})=\left\{(\boldsymbol{\ell}, \boldsymbol{\theta}) \mid \mathrm{Jac}_{\boldsymbol{\ell}, \boldsymbol{\theta}} \mathcal{K} \text { is rank deficient }\right\}
$$

Change of variables:

$$
r_{i}(\ell, c, s)=z_{i}(\ell, \theta)
$$

with constraints

$$
f_{j}(c, s)=c_{j}^{2}+s_{j}^{2}-1=0
$$

$\operatorname{crit}(\mathcal{R}, V)=\left\{(\boldsymbol{\ell}, \boldsymbol{c}, \boldsymbol{s}) \mid \mathrm{Jac}_{\boldsymbol{\ell}, c, s}[\boldsymbol{f}, \mathcal{R}]\right.$ is rank deficient $\}$

The algebraic cuspidality problem

Data

Data: $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
Assumptions: $V=\boldsymbol{V}(\boldsymbol{f})$ is d-equidimensional and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \subsetneq \operatorname{sing}(V)$

The algebraic cuspidality problem

Data

Data: $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
Assumptions: $V=\boldsymbol{V}(\boldsymbol{f})$ is d-equidimensional and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \subsetneq \operatorname{sing}(V)$

The algebraic cuspidality problem

Data

Data: $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
Assumptions: $V=\boldsymbol{V}(\boldsymbol{f})$ is d-equidimensional and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \subsetneq \operatorname{sing}(V)$

Algebraic cuspidality problem

The restriction of \mathcal{R} to $V_{\mathbb{R}}$ is cuspidal if there is $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ such that

The algebraic cuspidality problem

Data

Data: $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
Assumptions: $V=\boldsymbol{V}(\boldsymbol{f})$ is d-equidimensional and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \subsetneq \operatorname{sing}(V)$

Algebraic cuspidality problem

The restriction of \mathcal{R} to $V_{\mathbb{R}}$ is cuspidal if there is $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ such that

1. $\mathcal{R}(\boldsymbol{y})=\mathcal{R}\left(\boldsymbol{y}^{\prime}\right)$

The algebraic cuspidality problem

Data

Data: $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
Assumptions: $V=\boldsymbol{V}(\boldsymbol{f})$ is d-equidimensional and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \subsetneq \operatorname{sing}(V)$

Algebraic cuspidality problem

The restriction of \mathcal{R} to $V_{\mathbb{R}}$ is cuspidal if there is $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ such that

1. $\mathcal{R}(\boldsymbol{y})=\mathcal{R}\left(\boldsymbol{y}^{\prime}\right)$
2. they are path-connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$

The algebraic cuspidality problem

Data

Data: $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
Assumptions: $V=\boldsymbol{V}(\boldsymbol{f})$ is d-equidimensional and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \subsetneq \operatorname{sing}(V)$

Algebraic cuspidality problem

The restriction of \mathcal{R} to $V_{\mathbb{R}}$ is cuspidal if there is $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ such that

1. $\mathcal{R}(\boldsymbol{y})=\mathcal{R}\left(\boldsymbol{y}^{\prime}\right)$
2. they are path-connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$
$\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}\right)$ is a cuspidal pair

The algebraic cuspidality problem

Data

Data: $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
Assumptions: $V=\boldsymbol{V}(\boldsymbol{f})$ is d-equidimensional and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \subsetneq \operatorname{sing}(V)$

Algebraic cuspidality problem

The restriction of \mathcal{R} to $V_{\mathbb{R}}$ is cuspidal if there is $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ such that

1. $\mathcal{R}(\boldsymbol{y})=\mathcal{R}\left(\boldsymbol{y}^{\prime}\right)$
2. they are path-connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$
($\boldsymbol{y}, \boldsymbol{y}^{\prime}$) is a cuspidal pair

Singular values of \mathcal{R}

$$
\operatorname{sval}(\mathcal{R}, V)=\mathcal{R}(\operatorname{crit}(\mathcal{R}, V))
$$

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type
\Downarrow

One fiber from each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ is enough

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type
\Downarrow
One fiber from each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ is enough

0 Main steps

1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V)=\mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type

\Downarrow

One fiber from each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ is enough

0 Main steps

1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V)=\mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
2. Compute a set \mathcal{Q} of representatives in each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type

\Downarrow

One fiber from each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ is enough

0 Main steps

1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V)=\mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
2. Compute a set \mathcal{Q} of representatives in each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$
3. Compute their preimages $\mathcal{P}=V \cap \mathcal{R}^{-1}(\mathcal{Q})$

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type

\Downarrow

One fiber from each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ is enough

0 Main steps

1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V)=\mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
2. Compute a set \mathcal{Q} of representatives in each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$
3. Compute their preimages $\mathcal{P}=V \cap \mathcal{R}^{-1}(\mathcal{Q})$
4. Search for cuspidal pairs in \mathcal{P} by connecting points in the same connected component of $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type
\Downarrow
One fiber from each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ is enough

0 Main steps

1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V)=\mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
2. Compute a set \mathcal{Q} of representatives in each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$
3. Compute their preimages $\mathcal{P}=V \cap \mathcal{R}^{-1}(\mathcal{Q})$
4. Search for cuspidal pairs in \mathcal{P} by connecting points in the same connected component of $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$

Algebraic set

$$
V=\boldsymbol{V}(\boldsymbol{f}) \subset \mathbb{C}^{n}
$$

Soft-O notation

$$
\operatorname{dim}(V)=d
$$

$$
\tilde{O}(N)=O\left(N \log ^{a} N\right)
$$

Magnitude

$\operatorname{degrees}(\boldsymbol{f}) \leq D \quad$ and $\quad|\operatorname{coeffs}(\boldsymbol{f})| \leq 2^{\tau}$

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type

\Downarrow

One fiber from each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ is enough

Algebraic set
$V=\boldsymbol{V}(\boldsymbol{f}) \subset \mathbb{C}^{n}$ $\operatorname{dim}(V)=d$

Soft-O notation

$$
\tilde{O}(N)=O\left(N \log ^{a} N\right)
$$

0 Main steps

1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V)=\mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
2. Compute a set \mathcal{Q} of representatives in each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$
3. Compute their preimages $\mathcal{P}=V \cap \mathcal{R}^{-1}(\mathcal{Q})$
4. Search for cuspidal pairs in \mathcal{P} by connecting points in the same connected component of $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$

Projection

$\tau(n D)^{O(n d)}$

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type

\Downarrow

One fiber from each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ is enough

Algebraic set

$$
V=\boldsymbol{V}(\boldsymbol{f}) \subset \mathbb{C}^{n}
$$

$$
\operatorname{dim}(V)=d
$$

Soft-O notation

$$
\tilde{O}(N)=O\left(N \log ^{a} N\right)
$$

0 Main steps

1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V)=\mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
2. Compute a set \mathcal{Q} of representatives in each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$
3. Compute their preimages $\mathcal{P}=V \cap \mathcal{R}^{-1}(\mathcal{Q})$
4. Search for cuspidal pairs in \mathcal{P} by connecting points in the same connected component of $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$

Projection

$\tau(n D)^{O(n d)}$
[Basu \& Pollack \& Roy, '16]
[Le \& Safey El Din, '21]

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type

\Downarrow

One fiber from each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ is enough

Algebraic set

$$
\begin{gathered}
V=\boldsymbol{V}(\boldsymbol{f}) \subset \mathbb{C}^{n} \\
\operatorname{dim}(V)=d
\end{gathered}
$$

Soft-O notation

$$
\tilde{O}(N)=O\left(N \log ^{a} N\right)
$$

Magnitude

$\operatorname{degrees}(\boldsymbol{f}) \leq D \quad$ and $\quad|\operatorname{coeffs}(\boldsymbol{f})| \leq 2^{\tau}$

0 Main steps

1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V)=\mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
2. Compute a set \mathcal{Q} of representatives in each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$
3. Compute their preimages $\mathcal{P}=V \cap \mathcal{R}^{-1}(\mathcal{Q})$
4. Search for cuspidal pairs in \mathcal{P} by connecting points in the same connected component of $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$

Projection

$\tau(n D)^{O(n d)}$

Sampling

$\tau(n D)^{O(n d)}$
[Basu \& Pollack \& Roy, '16]
[Le \& Safey El Din, '21]

Connectivity queries

$\tilde{O}(\tau)(n D)^{O\left(n^{2}\right)}$

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type

\Downarrow

One fiber from each connected componest of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ is enough

0 Main steps

1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V)=\mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
2. Compute a set \mathcal{Q} of representatives in each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$
3. Compute their preimages $\mathcal{P}=V \cap \mathcal{R}^{-1}(\mathcal{Q})$
4. Search for cuspidal pairs in \mathcal{P} by connecting points in the same connected component of $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$

Implementation

Prototype applied to two 3 R robots

Projection

$$
\tau(n D)^{O(n d)}
$$

Sampling

$\tau(n D)^{O(n d)}$

Connectivity queries

$$
\tilde{O}(\tau)(n D)^{O\left(n^{2}\right)}
$$

[Basu \& Pollack \& Roy, '00]

The cuspidality algorithm

Thom's First Isotopy Lemma

Fibers from the same connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ have the same type

\Downarrow

One fiber from each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$ is enough

0 Main steps

1. Compute polynomials defining $\operatorname{sval}(\mathcal{R}, V)=\mathcal{R}(\operatorname{crit}(\mathcal{R}, V))$
2. Compute a set \mathcal{Q} of representatives in each connected component of $\mathbb{R}^{d}-\operatorname{sval}(\mathcal{R}, V)$
3. Compute their preimages $\mathcal{P}=V \cap \mathcal{R}^{-1}(\mathcal{Q})$
4. Search for cuspidal pairs in \mathcal{P} by connecting points in the same connected component of $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$

Connectivity queries

$$
\tilde{O}(\tau)(n D)^{O\left(n^{2}\right)}
$$

[Basu \& Pollack \& Roy, '00]

Contributions

Robotics applications

First cuspidality decision algorithm with singly exponential bit-complexity

- Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

$\underline{\text { Nearly optimal roadmap algorithm for unbounded algebraic sets }}$

- Efficient algorithm for connectivity of real algebraic curves

We have efficient algorithms for analyzing connectivity of real algebraic sets

Computing connectivity properties: Roadmaps

[Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points $\left(q_{1}, \ldots, q_{N}\right)$ s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Computing connectivity properties: Roadmaps

[Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points $\left(q_{1}, \ldots, q_{N}\right)$ s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Computing connectivity properties: Roadmaps

[Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points $\left(q_{1}, \ldots, q_{N}\right)$ s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

q_{i} and q_{j} are path-connected in $S \Longleftrightarrow$ they are in \mathscr{R}

Problem reduction

Arbitrary dimension

Computing connectivity properties: Roadmaps

[Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points $\left(q_{1}, \ldots, q_{N}\right)$ s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

q_{i} and q_{j} are path-connected in $S \Longleftrightarrow$ they are in \mathscr{R}

Problem reduction

Arbitrary dimension $\underset{\text { ROADMAP }}{\Longrightarrow}$ Dimension 1

Roadmap algorithms for unbounded algebraic sets

joint work with M. Safey El Din and É. Schost

Canny's strategy

Canny's strategy

Projection through:

$$
\pi_{2}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, x_{2}\right)
$$

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Projection through:

$$
\pi_{2}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, x_{2}\right)
$$

$W\left(\pi_{2}, V\right)$ critical locus of π_{2}.

Intersects all the connected components of V

Canny's strategy

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Roadmap property

$\forall C$ connected component, $C \cap \mathscr{R}$ is non-empty and connected

Morse theory

"Scan" $W\left(\pi_{2}, V\right)$ at the critical values of π_{1}

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value

Canny's strategy

Canny's strategy

Canny's strategy

Theorem [Canny, 1988]
If V is bounded, $\boldsymbol{W}\left(\pi_{2}, \boldsymbol{V}\right) \bigcup \boldsymbol{F}$ has dimension $\operatorname{dim}(V)-1$ and satisfies the Roadmap property

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]
If V is bounded, $W\left(\pi_{2}, V\right) \cup F$ has dimension $d-1$ and satisfies the Roadmap property.

Author•s	Complexity	Assumptions
$[$ Schwartz \& Sharir, 1983]	$(s D)^{2^{O(n)}}$	

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]
If V is bounded, $W\left(\pi_{2}, V\right) \cup F$ has dimension $d-1$ and satisfies the Roadmap property.

Author•s	Complexity	Assumptions
$[$ Schwartz \& Sharir, 1983]	$(s D)^{2(n)}$	
$[$ Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]
If V is bounded, $W\left(\pi_{2}, V\right) \cup F$ has dimension $d-1$ and satisfies the Roadmap property.

Author•s	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2(n)}$	
$[$ Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]

If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Author•s	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2^{O(n)}}$	
[Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	
[Safey El Din \& Schost, 2011]	$(n D)^{O(n \sqrt{n})}$	Smooth, bounded algebraic sets

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey EI Din \& Schost, 2011]

If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Author•s	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2^{O(n)}}$	
[Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	
[Safey El Din \& Schost, 2011]	$(n D)^{O(n \sqrt{n})}$	Smooth, bounded algebraic sets
[Basu \& Roy \& Safey El Din		
\& Schost, 2014]	$(n D)^{O(n \sqrt{n})}$	Algebraic sets

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]

If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Author•s	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2^{O(n)}}$	
[Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	
[Safey El Din \& Schost, 2011]	$(n D)^{O(n \sqrt{n})}$	Smooth, bounded algebraic sets
[Basu \& Roy \& Safey El Din		
\& Schost, 2014]	$(n D)^{O(n \sqrt{n})}$	Algebraic sets
[Basu \& Roy, 2014]	$(n D)^{O\left(n \log ^{2} n\right)}$	Algebraic sets

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Author•s	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2^{O(n)}}$	
[Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	
[Safey El Din \& Schost, 2011]	$(n D)^{O(n \sqrt{n})}$	Smooth, bounded algebraic sets
[Basu \& Roy \& Safey El Din	$(n D)^{O(n \sqrt{n})}$	Algebraic sets
\& Schost, 2014]	$(n D)^{O\left(n \log ^{2} n\right)}$	Algebraic sets
[Basu \& Roy, 2014]	$\left(n^{2} D\right)^{6 n} \log _{2}(d)+O(n)$	Smooth, bounded algebraic sets

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Author•s	Complexity	Assumptions
[Schwartz \& Sharir, 1983]	$(s D)^{2^{O(n)}}$	
[Canny, 1993]	$(s D)^{O\left(n^{2}\right)}$	
[Basu \& Pollack \& Roy, 2000]	$s^{d+1} D^{O\left(n^{2}\right)}$	
[Safey El Din \& Schost, 2011]	$(n D)^{O(n \sqrt{n})}$	Smooth, bounded algebraic sets
[Basu \& Roy \& Safey El Din	$(n D)^{O(n \sqrt{n})}$	Algebraic sets
\& Schost, 2014]	$(n D)^{O\left(n \log ^{2} n\right)}$	Algebraic sets
[Sasu \& Roy, 2014]	$\left(n^{2} D\right)^{6 n \log _{2}(d)+O(n)}$	Smooth, bounded algebraic sets
[P. \& Safey El Din \& Schost, 2024]	$\left(n^{2} D\right)^{6 n \log _{2}(d)+O(n)}$	Smooth,

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
\rightarrow If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
\rightarrow If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Results based on a theorem in the bounded case
Assumptions

[Schwartz \& Sharir, 1983]			
[Canny, 1993] \leftarrow			
[Basu \& Pollack \& Roy, 2000] $>s^{d+1} D^{O\left(n^{2}\right)}$			
[Safey El Din \& Schost, 2011]	$(n D)^{O(n \sqrt{n})}$	Smooth, bounded algebraic sets	
[Basu \& Roy \& Safey El Din久 \& Schost, 2014]	$(n D)^{O(n \sqrt{n})}$	Algebraic sets	
[Basu \& Roy, 2014]<	$(n D)^{O\left(n \log ^{2} n\right)}$	Algebraic sets	
[Safey El Din \& Schost, 2017]	$\left(n^{2} D\right)^{6 n} \log _{2}(d)+O(n)$	Smooth, bounded algebraic sets	
[P. \& Safey El Din \& Schost, 2024]	$\left(n^{2} D\right)^{6 n \log _{2}(d)+O(n)}$	Smooth, algebraic sets	

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
\rightarrow If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Results based on a theorem in the bounded case Assumptions

Remove the boundedness assumption is a costly step

| $(n D)^{O(n \sqrt{n})}$Remove the boundedness
 assumption is a costly step
 $(n D)^{O(n \sqrt{n})}$ Algebraic sets
 $(n D)^{O\left(n \log ^{2} n\right)}$ Algebraic sets
 $\left(n^{2} D\right)^{6 n \log _{2}(d)+O(n)}$ Smooth, bounded algebraic sets
 $\left(n^{2} D\right)^{6 n} \log _{2}(d)+O(n)$ Smooth, betnded algebraic sets |
| :---: | :---: |

[Safey El Din \& Schost, 2011]
[Basu \& Roy \& Safey El Din久 \& Schost, 2014] [Basu \& Roy, 2014]
[Safey El Din \& Schost, 2017]
[P. \& Safey El Din \& Schost, 2024]

On the complexity of computing roadmaps

$S \subset \mathbb{R}^{n}$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din \& Schost, 2011]
\rightarrow If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

Results based on a theorem in the bounded case Assumptions

On the extension of Canny's result

Projection on 2 coordinates

```
\mp@subsup{\pi}{2}{}:}\mp@subsup{\mathbb{C}}{}{n}\quad->\quad\mp@subsup{\mathbb{C}}{}{2
    (\mp@subsup{x}{1}{},\ldots,\mp@subsup{\boldsymbol{x}}{n}{})\quad\mapsto}(\mp@subsup{\boldsymbol{x}}{1}{},\mp@subsup{\boldsymbol{x}}{2}{}
```

- $W\left(\pi_{2}, V\right)$ polar variety
- $F_{2}=\pi_{1}^{-1}\left(\pi_{1}(K)\right) \cap V$ critical fibers
- $K=$ critical points of π_{1} on $W\left(\pi_{2}, V\right)$

Connectivity result [Canny, 1988]

If V is bounded, $W\left(\pi_{2}, V\right) \cup F_{2}$ has dimension $d-1$ and satisfies the Roadmap property

On the extension of Canny's result

Projection on i coordinates

- $W\left(\pi_{i}, V\right)$ polar variety
- $F_{i}=\pi_{i-1}^{-1}\left(\pi_{i-1}(K)\right) \cap V$ critical fibers
- $K=$ critical points of π_{1} on $W\left(\pi_{i}, V\right)$

Connectivity result [Safey El Din \& Schost, 2011]
If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

On the extension of Canny's result

Projection on i coordinates

$$
\begin{array}{cccc}
\pi_{i}: & \mathbb{C}^{n} & \rightarrow & \mathbb{C}^{i} \\
& \left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) & \mapsto & \left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{i}\right)
\end{array}
$$

- $W\left(\pi_{i}, V\right)$ polar variety
- $F_{i}=\pi_{i-1}^{-1}\left(\pi_{i-1}(K)\right) \cap V$ critical fibers
- $K=$ critical points of π_{1} on $W\left(\pi_{i}, V\right)$

Connectivity result [Safey El Din \& Schost, 2011]

If V is bounded, $W\left(\pi_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

No critical points...

On the extension of Canny's result

Non-negative proper polynomial map

$$
\begin{array}{cccc}
\boldsymbol{\varphi}_{i}: & \mathbb{C}^{n} & \longrightarrow & \mathbb{C}^{i} \\
& \boldsymbol{x} & \mapsto & \left(\psi_{1}(\boldsymbol{x}), \ldots, \psi_{i}(\boldsymbol{x})\right)
\end{array}
$$

- $W\left(\boldsymbol{\varphi}_{i}, V\right)$ generalized polar variety
- $F_{i}=\boldsymbol{\varphi}_{i-1}^{-1}\left(\boldsymbol{\varphi}_{i-1}(K)\right) \cap V$ critical fibers.
- $K=$ critical points of $\boldsymbol{\varphi}_{1}$ on $W\left(\boldsymbol{\varphi}_{i}, V\right)$

Connectivity result [P. \& Safey El Din \& Schost, 2024] NEWS
If V is bounded, $W\left(\boldsymbol{\varphi}_{i}, V\right) \cup F_{i}$ has dimension $\max (i-1, d-i+1)$ and satisfies the Roadmap property

*

\rightsquigarrow Sard's lemma
\rightsquigarrow Thom's isotopy lemma
\rightsquigarrow Puiseux series

How to use it?

Assumptions to satisfy in the new result

$(\mathrm{R}) \operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below

For all $1 \leqslant i \leqslant \operatorname{dim}(V) / 2$,
(N) $\boldsymbol{\varphi}_{i-1}$ has finite fibers on W_{i}
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

How to use it?

Assumptions to satisfy in the new result

(R) $\operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below For all $1 \leqslant i \leqslant \operatorname{dim}(V) / 2$,
(N) $\boldsymbol{\varphi}_{i-1}$ has finite fibers on W_{i}
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

*

Assumption on the input

How to use it?

Assumptions to satisfy in the new result

$(\mathrm{R}) \operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below

For all $1 \leqslant i \leqslant \operatorname{dim}(V) / 2$,
(N) φ_{i-1} has finite fibers on W_{i}
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

A successful candidate

Choose generic $\left(\boldsymbol{a}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right) \in \mathbb{R}^{n^{2}}$ and:

$$
\boldsymbol{\varphi}=\left(\sum_{i=1}^{n}\left(x_{i}-a_{i}\right)^{2}, \boldsymbol{b}_{2}^{\top} \overrightarrow{\boldsymbol{x}}, \ldots, \boldsymbol{b}_{n}^{\top} \overrightarrow{\boldsymbol{x}}\right) \quad \text { where } \quad a_{i} \in \mathbb{R}, \quad \boldsymbol{b}_{i} \in \mathbb{R}^{n}
$$

It satisfies the assumptions! NEWB

How to use it?

Assumptions to satisfy in the new result

$(\mathrm{R}) \operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below

For all $1 \leqslant i \leqslant \operatorname{dim}(V) / 2$,
(N) φ_{i-1} has finite fibers on W_{i}
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

*

Generalization of Noether position from
[Safey El Din \& Schost, 2003]

A successful candidate

Choose generic $\left(\boldsymbol{a}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right) \in \mathbb{R}^{n^{2}}$ and:

$$
\boldsymbol{\varphi}=\left(\sum_{i=1}^{n}\left(x_{i}-a_{i}\right)^{2}, \boldsymbol{b}_{2}^{\top} \overrightarrow{\boldsymbol{x}}, \ldots, \boldsymbol{b}_{n}^{\top} \overrightarrow{\boldsymbol{x}}\right) \quad \text { where } \quad a_{i} \in \mathbb{R}, \quad \boldsymbol{b}_{i} \in \mathbb{R}^{n}
$$

It satisfies the assumptions! $\mathbb{N E W B}$

How to use it?

Assumptions to satisfy in the new result

$(\mathrm{R}) \operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below

For all $1 \leqslant i \leqslant \operatorname{dim}(V) / 2$,
(N) φ_{i-1} has finite fibers on W_{i}
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$

*

Jacobian criterion
\oplus
Thom's transversality theorem
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

A successful candidate

Choose generic $\left(\boldsymbol{a}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right) \in \mathbb{R}^{n^{2}}$ and:

$$
\boldsymbol{\varphi}=\left(\sum_{i=1}^{n}\left(x_{i}-a_{i}\right)^{2}, \boldsymbol{b}_{2}^{\top} \overrightarrow{\boldsymbol{x}}, \ldots, \boldsymbol{b}_{n}^{\top} \overrightarrow{\boldsymbol{x}}\right) \quad \text { where } \quad a_{i} \in \mathbb{R}, \quad \boldsymbol{b}_{i} \in \mathbb{R}^{n}
$$

It satisfies the assumptions! NEWB

How to use it?

Assumptions to satisfy in the new result

$(\mathrm{R}) \operatorname{sing}(V)$ is finite
(P) φ_{1} is a proper map bounded from below \qquad

*

Jacobian criterion

Noether position
(W) $\operatorname{dim} W_{i}=i-1$ and $\operatorname{sing}\left(W_{i}\right) \subset \operatorname{sing}(V)$
(F) $\operatorname{dim} F_{i}=n-d+1$ and $\operatorname{sing}\left(F_{i}\right)$ is finite

A successful candidate

Choose generic $\left(\boldsymbol{a}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right) \in \mathbb{R}^{n^{2}}$ and:

$$
\boldsymbol{\varphi}=\left(\sum_{i=1}^{n}\left(x_{i}-a_{i}\right)^{2}, \boldsymbol{b}_{2}^{\top} \overrightarrow{\boldsymbol{x}}, \ldots, \boldsymbol{b}_{n}^{\top} \overrightarrow{\boldsymbol{x}}\right) \quad \text { where } \quad a_{i} \in \mathbb{R}, \quad \boldsymbol{b}_{i} \in \mathbb{R}^{n}
$$

It satisfies the assumptions! NEWB

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Depth of recursion tree : τ
\Rightarrow complexity: $(n D)^{O(n \tau)}$

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Depth of recursion tree : d
\Rightarrow complexity: $(n D)^{O(n d)}$

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Depth of recursion tree : $\log _{2}(d)$
\Rightarrow complexity: $(n D)^{O\left(n \log _{2}(d)\right)}$

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Quantitative estimate

	Output size	Complexity
RoadmapBounded(fib $\left.\left(\boldsymbol{\varphi}_{1}\right)\right)$		
Compute $\operatorname{crit}\left(\boldsymbol{\varphi}_{2}\right) \& \operatorname{fib}\left(\boldsymbol{\varphi}_{1}\right)$		
Overall		

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Quantitative estimate

	Output size	Complexity
RoadmapBounded(fib $\left.\left(\boldsymbol{\varphi}_{1}\right)\right)$ Compute crit $\left(\boldsymbol{\varphi}_{2}\right) \& \operatorname{fib}\left(\boldsymbol{\varphi}_{1}\right)$	$\left(n^{2} D\right)^{4 n \log _{2} d+O(n)}$	$\left(n^{2} D\right)^{6 n \log _{2} d+O(n)}$
Overall		

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Quantitative estimate

	Output size	Complexity
RoadmapBounded $\left(\mathrm{fib}\left(\boldsymbol{\varphi}_{1}\right)\right)$	$\left(n^{2} D\right)^{4 n \log _{2} d+O(n)}$	$\left(n^{2} D\right)^{6 n \log _{2} d+O(n)}$
Compute $\operatorname{crit}\left(\boldsymbol{\varphi}_{2}\right) \& \operatorname{fib}\left(\boldsymbol{\varphi}_{1}\right)$	$(n D)^{O(n)}$	$(n D)^{O(n)}$
Overall		

An algorithm for unbounded algebraic set

Consider an algebraic set $V \subset \mathbb{C}^{n}$ with dimension d

Quantitative estimate

	Output size	Complexity
RoadmapBounded $\left(\operatorname{fib}\left(\varphi_{1}\right)\right)$	$\left(n^{2} D\right)^{4 n \log _{2} d+O(n)}$	$\left(n^{2} D\right)^{6 n} \log _{2} d+O(n)$
Compute crit $\left(\varphi_{2}\right) \& \operatorname{fib}\left(\varphi_{1}\right)$	$(n D)^{O(n)}$	$(n D)^{O(n)}$
Overall	$\left(n^{2} D\right)^{4 n \log _{2} d+O(n)}$	$\left(n^{2} D\right)^{6 n} \log _{2} d+O(n)$

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension	$\xrightarrow{\text { ROADMAP }}$	Dimension: 1	$\xrightarrow{\text { Topology }}$ \downarrow	Finite graph \mathscr{G}

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension	$\xrightarrow{\text { Roadmap }}$	Dimension: 1 Size: $(n D)^{O(n \log (n))}$	$\xrightarrow{\text { Topology }}$	Finite graph \mathscr{G}
\downarrow				
	$(n D)^{O\left(n \log ^{2}(n)\right)}$	$\mathrm{g}^{2}(n)$)		
	[Basu, Roy	2014]		

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension	$\xrightarrow{\downarrow}$	Dimension: 1$\text { Size: }(n D)^{O(n \log (n))}$		$\xrightarrow{\text { Topology }}$ \downarrow	Finite graph \mathscr{G}
	$(n D)^{O\left(n \log ^{2}(n)\right)}$		$(\text { Size })^{O(1)}=(n D)^{O(n \log (n))}$		
	[Basu, Roy; 2014]		[Safey El Din, Schost; 2011]		

Connectivity reduction process - now

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension	$\xrightarrow{\downarrow}$	Dimension: 1 Size: $(n D)^{O(n \log (n))}$		$\xrightarrow{\text { Topology }}$ \downarrow	Finite graph \mathscr{G}
	$(n D)^{O\left(n \log ^{2}(n)\right)}$		$(\text { Size })^{O(1)}=(n D)^{O(n \log (n))}$		
	[Basu, Roy; 2014]		[Safey El Din, Schost; 2011]		

Connectivity reduction process - now

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Connectivity reduction process - now

Computing roadmaps in unbounded smooth real algebraic sets I: connectivity results, 2024 with M. Safey El Din and É. Schost
四 Computing roadmaps in unbounded smooth real algebraic sets II: algorithm and complexity, 2024 with M. Safey El Din and É. Schost

Contributions

Robotics applications

First cuspidality decision algorithm with singly exponential bit-complexity
Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving
Nearly optimal roadmap algorithm for unbounded algebraic sets
\rightsquigarrow Complexity: $\left(n^{2} D\right)^{6 n \log _{2} d+O(n)} \rightsquigarrow$ Output size: $\left(n^{2} D\right)^{4 n \log _{2} d+O(n)}$

- Efficient algorithm for connectivity of real algebraic curves

We have efficient algorithms for analyzing connectivity of real algebraic sets

Analysis of the kinematic singularities of a PUMA robot

with J.Capco, M.Safey El Din and P.Wenger

Canny's strategy

Canny's strategy

Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist
$\left[\begin{array}{cccccc}\left(v_{3}+v_{2}\right)\left(1-v_{2} v_{3}\right) & 0 & A(\boldsymbol{v}) & d_{3} A(\boldsymbol{v}) & a_{2}\left(v_{3}^{2}+1\right)\left(v_{2}^{2}-1\right)-a_{3} A(\boldsymbol{v}) & 2 d_{3}\left(v_{3}+v_{2}\right)\left(v_{2} v_{3}-1\right) \\ 0 & v_{3}^{2}+1 & 0 & 2 a_{2} v_{3} & 0 & \left(a_{3}-a_{2}\right) v_{3}^{2}+a_{2}+2 a_{3} \\ 0 & 1 & 0 & 0 & 0 & 2 a_{3} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ v_{4} & 1-v_{4}^{2} & 0 & d_{4}\left(1-v_{4}^{2}\right) & -2 d_{4} v_{4} & 0 \\ \left(v_{4}^{2}-1\right) v_{5} & 4 v_{4} v_{5} & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}+1\right) & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}-1\right) d_{5}+4 d_{4} v_{4} v_{5} & 2 d_{5} v_{4}\left(1-v_{5}^{2}\right)+2 d_{4} v_{5}\left(1-v_{4}^{2}\right) & -2 d_{5} v_{5}\left(v_{4}^{2}+1\right)\end{array}\right]$

$$
S=\left\{\boldsymbol{v} \in \mathbb{R}^{4} \mid \operatorname{det}(M(\boldsymbol{v})) \neq 0\right\}
$$

https://msolve.lip6.fr
\rightsquigarrow Multivariate system solving
\rightsquigarrow Real roots isolation

Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist
$\left[\begin{array}{cccccc}\left(v_{3}+v_{2}\right)\left(1-v_{2} v_{3}\right) & 0 & A(\boldsymbol{v}) & d_{3} A(\boldsymbol{v}) & a_{2}\left(v_{3}^{2}+1\right)\left(v_{2}^{2}-1\right)-a_{3} A(\boldsymbol{v}) & 2 d_{3}\left(v_{3}+v_{2}\right)\left(v_{2} v_{3}-1\right) \\ 0 & v_{3}^{2}+1 & 0 & 2 a_{2} v_{3} & 0 & \left(a_{3}-a_{2}\right) v_{3}^{2}+a_{2}+2 a_{3} \\ 0 & 1 & 0 & 0 & 0 & 2 a_{3} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ v_{4} & 1-v_{4}^{2} & 0 & d_{4}\left(1-v_{4}^{2}\right) & -2 d_{4} v_{4} & 0 \\ \left(v_{4}^{2}-1\right) v_{5} & 4 v_{4} v_{5} & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}+1\right) & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}-1\right) d_{5}+4 d_{4} v_{4} v_{5} & 2 d_{5} v_{4}\left(1-v_{5}^{2}\right)+2 d_{4} v_{5}\left(1-v_{4}^{2}\right) & -2 d_{5} v_{5}\left(v_{4}^{2}+1\right)\end{array}\right]$

$$
S=\left\{\boldsymbol{v} \in \mathbb{R}^{4} \mid \operatorname{det}(M(v)) \neq 0\right\}
$$

First step

Max. deg without splitting: 1858

Locus	Degrees	\mathbb{R}-roots	Tot. time
Critical points	$400 \& 934$	$96 \& 182$	9.7 min
Critical curves	$182 \& 220$	∞	3 h 46

Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist
$\left[\begin{array}{cccccc}\left(v_{3}+v_{2}\right)\left(1-v_{2} v_{3}\right) & 0 & A(\boldsymbol{v}) & d_{3} A(\boldsymbol{v}) & a_{2}\left(v_{3}^{2}+1\right)\left(v_{2}^{2}-1\right)-a_{3} A(\boldsymbol{v}) & 2 d_{3}\left(v_{3}+v_{2}\right)\left(v_{2} v_{3}-1\right) \\ 0 & v_{3}^{2}+1 & 0 & 2 a_{2} v_{3} & 0 & \left(a_{3}-a_{2}\right) v_{3}^{2}+a_{2}+2 a_{3} \\ 0 & 1 & 0 & 0 & 0 & 2 a_{3} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ v_{4} & 1-v_{4}^{2} & 0 & d_{4}\left(1-v_{4}^{2}\right) & -2 d_{4} v_{4} & 0 \\ \left(v_{4}^{2}-1\right) v_{5} & 4 v_{4} v_{5} & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}+1\right) & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}-1\right) d_{5}+4 d_{4} v_{4} v_{5} & 2 d_{5} v_{4}\left(1-v_{5}^{2}\right)+2 d_{4} v_{5}\left(1-v_{4}^{2}\right) & -2 d_{5} v_{5}\left(v_{4}^{2}+1\right)\end{array}\right]$

$$
S=\left\{\boldsymbol{v} \in \mathbb{R}^{4} \mid \operatorname{det}(M(\boldsymbol{v})) \neq 0\right\}
$$

First step

Max. deg without splitting: 1858

Locus	Degrees	\mathbb{R}-roots	Tot. time
Critical points	$400 \& 934$	$96 \& 182$	9.7 min
Critical curves	$182 \& 220$	∞	3 h 46

Recursive step over 95 fibers

Data are for one fiber

Locus	Degrees	\mathbb{R}-roots	Total time
Critical points	38	14	6.4 min
Critical curves	21	∞	9.6 min

Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist
$\left[\begin{array}{cccccc}\left(v_{3}+v_{2}\right)\left(1-v_{2} v_{3}\right) & 0 & A(\boldsymbol{v}) & d_{3} A(\boldsymbol{v}) & a_{2}\left(v_{3}^{2}+1\right)\left(v_{2}^{2}-1\right)-a_{3} A(\boldsymbol{v}) & 2 d_{3}\left(v_{3}+v_{2}\right)\left(v_{2} v_{3}-1\right) \\ 0 & v_{3}^{2}+1 & 0 & 2 a_{2} v_{3} & 0 & \left(a_{3}-a_{2}\right) v_{3}^{2}+a_{2}+2 a_{3} \\ 0 & 1 & 0 & 0 & 0 & 2 a_{3} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ v_{4} & 1-v_{4}^{2} & 0 & d_{4}\left(1-v_{4}^{2}\right) & -2 d_{4} v_{4} & 0 \\ \left(v_{4}^{2}-1\right) v_{5} & 4 v_{4} v_{5} & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}+1\right) & \left(1-v_{5}^{2}\right)\left(v_{4}^{2}-1\right) d_{5}+4 d_{4} v_{4} v_{5} & 2 d_{5} v_{4}\left(1-v_{5}^{2}\right)+2 d_{4} v_{5}\left(1-v_{4}^{2}\right) & -2 d_{5} v_{5}\left(v_{4}^{2}+1\right)\end{array}\right]$

$$
S=\left\{\boldsymbol{v} \in \mathbb{R}^{4} \mid \operatorname{det}(M(\boldsymbol{v})) \neq 0\right\}
$$

A PUMA 560 [Unimation, 1984]

First step

Max. deg without splitting: 1858

Locus	Degrees	\mathbb{R}-roots	Tot. time
Critical points	$400 \& 934$	$96 \& 182$	9.7 min
Critical curves	$182 \& 220$	∞	3 h 46

Recursive step over 95 fibers

Data are for one fiber

Locus	Degrees	\mathbb{R}-roots	Total time
Critical points	38	14	6.4 min
Critical curves	21	∞	9.6 min

Output degree: $\mathbf{4 8 4 7}$
Time: 4h10 (msolve)

Contributions

Robotics applications

We have efficient algorithms for analyzing connectivity of real algebraic sets

Computing connectivity properties: Roadmaps

\mathbb{Q} [Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points $\left(q_{1}, \ldots, q_{N}\right)$ s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

q_{i} and q_{j} are path-connected in $S \Longleftrightarrow$ they are in \mathscr{R}

Problem reduction

$$
\text { Arbitrary dimension } \underset{\text { ROADMAP }}{\Longrightarrow} \text { Dimension } 1
$$

Computing connectivity properties: Roadmaps

[Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points $\left(q_{1}, \ldots, q_{N}\right)$ s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

q_{i} and q_{j} are path-connected in $S \Longleftrightarrow$ they are in $\mathscr{R} \Longleftrightarrow$ they are in \mathscr{G}

Problem reduction

Arbitrary dimension $\underset{\text { ROADMAP }}{\Longrightarrow}$ Dimension $1 \quad \underset{\text { Topology }}{\Longrightarrow}$ Finite graph \mathscr{G}

Computing connectivity properties: Roadmaps

[Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

A semi-algebraic curve $\mathscr{R} \subset S$, containing query points $\left(q_{1}, \ldots, q_{N}\right)$ s.t. for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

q_{i} and q_{j} are path-connected in $S \Longleftrightarrow$ they are in $\mathscr{R} \Longleftrightarrow$ they are in \mathscr{G}

Problem reduction

Arbitrary dimension $\underset{\text { ROADMAP }}{\Longrightarrow}$ Dimension $1 \underset{\text { Connectivity }}{\Longrightarrow}$ Finite graph \mathscr{G}

Algorithm for connectivity queries on real algebraic curves

joint work with Md N.Islam and A.Poteaux

Data representation and quantitative estimate

Theorem

In a generic system of coordinates,
V is birational to a hypersurface of \mathbb{C}^{d+1} through:

$$
\pi_{d+1}:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \mapsto\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d+1}\right)
$$

```
V equidimensional
    of dimension d
```


Data representation and quantitative estimate

Theorem

In a generic system of coordinates,
V is birational to a hypersurface of \mathbb{C}^{d+1} through:

$$
\pi_{d+1}:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \mapsto\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d+1}\right)
$$

Zero-dimensional parametrization of $\mathcal{P} \subset \mathbb{C}^{n}$ finite
$\left(\lambda, \vartheta_{2}, \ldots, \vartheta_{n}\right) \subset \mathbb{Z}\left[x_{1}\right]$ s.t.

$$
\mathcal{P}=\left\{\left(\boldsymbol{x}_{1}, \frac{\vartheta_{2}\left(\boldsymbol{x}_{1}\right)}{\lambda^{\prime}\left(\boldsymbol{x}_{1}\right)}, \ldots, \frac{\vartheta_{n}\left(\boldsymbol{x}_{1}\right)}{\lambda^{\prime}\left(\boldsymbol{x}_{1}\right)}\right) \text { s.t. } \lambda\left(\boldsymbol{x}_{1}\right)=0\right\}
$$

Data representation and quantitative estimate

Theorem

In a generic system of coordinates,
V is birational to a hypersurface of \mathbb{C}^{d+1} through:

$$
\pi_{d+1}:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \mapsto\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d+1}\right)
$$

Zero-dimensional parametrization of $\mathcal{P} \subset \mathbb{C}^{n}$ finite
$\left(\lambda, \vartheta_{2}, \ldots, \vartheta_{n}\right) \subset \mathbb{Z}\left[x_{1}\right]$ s.t.

$$
\mathcal{P}=\left\{\left(\boldsymbol{x}_{1}, \frac{\vartheta_{2}\left(\boldsymbol{x}_{1}\right)}{\lambda^{\prime}\left(\boldsymbol{x}_{1}\right)}, \ldots, \frac{\vartheta_{n}\left(\boldsymbol{x}_{1}\right)}{\lambda^{\prime}\left(\boldsymbol{x}_{1}\right)}\right) \text { s.t. } \lambda\left(\boldsymbol{x}_{1}\right)=0\right\}
$$

One-dimensional parametrization of $\mathscr{C} \subset \mathbb{C}^{n}$ algebraic curve

$$
\left(\omega, \rho_{3}, \ldots, \rho_{n}\right) \subset \mathbb{Z}\left[x_{1}, x_{2}\right] \text { s.t. }
$$

$$
\mathscr{C}=\left\{\begin{array}{c}
\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \frac{\rho_{3}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}{\partial_{x_{2}} \omega\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}, \ldots, \frac{\rho_{n}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}{\partial_{x_{2}} \omega\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}\right) \\
\text { s.t. } \omega\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=0 \quad \text { and } \quad \partial_{x_{2}} \omega\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \neq 0
\end{array}\right\}^{Z}
$$

Data representation and quantitative estimate

Theorem

In a generic system of coordinates,
V is birational to a hypersurface of \mathbb{C}^{d+1} through:

$$
\pi_{d+1}:\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \mapsto\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d+1}\right)
$$

Zero-dimensional parametrization of $\mathcal{P} \subset \mathbb{C}^{n}$ finite
$\left(\lambda, \vartheta_{2}, \ldots, \vartheta_{n}\right) \subset \mathbb{Z}\left[x_{1}\right]$ s.t.

$$
\mathcal{P}=\left\{\left(\boldsymbol{x}_{1}, \frac{\vartheta_{2}\left(\boldsymbol{x}_{1}\right)}{\lambda^{\prime}\left(\boldsymbol{x}_{1}\right)}, \ldots, \frac{\vartheta_{n}\left(\boldsymbol{x}_{1}\right)}{\lambda^{\prime}\left(\boldsymbol{x}_{1}\right)}\right) \text { s.t. } \lambda\left(\boldsymbol{x}_{1}\right)=0\right\}
$$

One-dimensional parametrization of $\mathscr{C} \subset \mathbb{C}^{n}$ algebraic curve

$$
\left(\omega, \rho_{3}, \ldots, \rho_{n}\right) \subset \mathbb{Z}\left[x_{1}, x_{2}\right] \text { s.t. }
$$

$$
\mathscr{C}=\left\{\begin{array}{c}
\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \frac{\rho_{3}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}{\partial_{x_{2}} \omega\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}, \ldots, \frac{\rho_{n}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}{\partial_{x_{2}} \omega\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}\right) \\
\text { s.t. } \omega\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=0 \quad \text { and } \quad \partial_{x_{2}} \omega\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \neq 0
\end{array}\right\}^{Z}
$$

Magnitude of a polynomial
$\boldsymbol{f} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ has magnitude (δ, τ) if $\operatorname{deg}(\boldsymbol{f}) \leq \delta \quad$ and $\quad|\operatorname{coeffs}(\boldsymbol{f})| \leq 2^{\tau}$

Soft-O notation

$$
\tilde{O}(N)=O\left(N \log (N)^{a}\right)
$$

Results

Data

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology

Ambient dimension	Bit complexity	Reference
$n=2$	$\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$	[Kobel, Sagraloff; '15] [K. $\left.\begin{array}{c}\text { D.Diatta, S.Diatta, } \\ \text { Rouiller, Roy, Sagraloff; '22 }\end{array}\right]$

Cylindrical Algebraic Decomposition [Collins, '75] [Kerber, Sagraloff; '12]

Multiple projections [Seidel, Wolpert; '05]

Subdivision

Results

Data

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{\boldsymbol{n}}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology

$\left.\begin{array}{|c|c|c|}\hline \text { Ambient dimension } & \text { Bit complexity } & \text { Reference } \\ \hline n=2 & \tilde{O}\left(\delta^{5}(\delta+\tau)\right) & \left.\begin{array}{c}\text { [Kobel, Sagraloff; '15] } \\ \text { [敦 D.Diatta, S.Diatta, } \\ \text { Rouiller, Roy, Sagraloff; '22 }\end{array}\right] \\ \hline n=3 & \tilde{O}\left(\delta^{17}(\delta+\tau)\right) & \text { [Cheng, Jin, Pouget, Wen, Zhang; '21] }\end{array}\right]$

Results

Data

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{\boldsymbol{n}}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology

Ambient dimension	Bit complexity	Reference
$n=2$	$\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$	$\begin{gathered} \text { [Kobel, Sagraloff; '15] } \\ {\left[\begin{array}{c} \text { D.Diatta, S.Diatta, } \\ \text { Rouiller, Roy, Sagraloff; '} 22 \end{array}\right]} \end{gathered}$
$n=3$	$\tilde{O}\left(\delta^{17}(\delta+\tau)\right)$	[Cheng, Jin, Pouget, Wen, Zhang; '21]
$n>3$	$\tilde{O}\left(\delta^{O(1)}(\delta+\tau)\right)$	[Safey El Din, Schost; '11]

Results

Data

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology

Ambient dimension	Bit complexity	Reference
$n=2$	$\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$	[Kobel, Sagraloff; '15] [K.D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22 $]$ $n=3$$\tilde{O}\left(\delta^{17}(\delta+\tau)\right)$
[Cheng, Jin, Pouget, Wen, Zhang; '21]		
$n>3$	$\tilde{O}\left(\delta^{O(1)}(\delta+\tau)\right)$	[Safey El Din, Schost; '11]

Results

Data

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology

Ambient dimension	Bit complexity	Reference
$n=2$	$\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$	[Kobel, Sagraloff; '15] [K.D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22 $]$ $n=3$$\tilde{O}\left(\delta^{17}(\delta+\tau)\right)$
[Cheng, Jin, Pouget, Wen, Zhang; '21]		
$n>3$	$\tilde{O}\left(\delta^{O(1)}(\delta+\tau)\right)$	[Safey El Din, Schost; '11]

Results

Data

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology

Ambient dimension	Bit complexity	Reference
$n=2$	$\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$	[Kobel, Sagraloff; '15] [敦 D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22 $]$
$n=3$	$\tilde{O}\left(\delta^{17}(\delta+\tau)\right)$	[Cheng, Jin, Pouget, Wen, Zhang; '21]
$n>3$	$\tilde{O}\left(\delta^{O(1)}(\delta+\tau)\right)$	[Safey El Din, Schost; '11]

Results

Data

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology

Ambient dimension	Bit complexity	Reference
$n=2$	$\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$	$\begin{gathered} \text { [Kobel, Sagraloff; '15] } \\ {\left[\begin{array}{c} \text { D.Diatta, S.Diatta, } \\ \text { Rouiller, Roy, Sagraloff; ' } 22 \end{array}\right]} \end{gathered}$
$n=3$	$\tilde{O}\left(\delta^{17}(\delta+\tau)\right)$	[Cheng, Jin, Pouget, Wen, Zhang; '21]
$n>3$	$\tilde{O}\left(\delta^{O(1)}(\delta+\tau)\right)$	[Safey El Din, Schost; '11]

Results

Data

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology

Ambient dimension	Bit complexity	Reference
$n=2$	$\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$	$\begin{gathered} \text { [Kobel, Sagraloff; '15] } \\ {\left[\begin{array}{c} \text { D.Diatta, S.Diatta, } \\ \text { Rouiller, Roy, Sagraloff; '22 } \end{array}\right]} \end{gathered}$
$n=3$	$\tilde{O}\left(\delta^{17}(\delta+\tau)\right)$	[Cheng, Jin, Pouget, Wen, Zhang; '21]
$n>3$	$\tilde{O}\left(\delta^{O(1)}(\delta+\tau)\right)$	[Safey El Din, Schost; '11]

Results

Data

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology

Ambient dimension	Bit complexity	Reference
$n=2$	$\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$	[Kobel, Sagraloff; '15] [敦 D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22 $]$
$n=3$	$\tilde{O}\left(\delta^{17}(\delta+\tau)\right)$	[Cheng, Jin, Pouget, Wen, Zhang; '21]
$n>3$	$\tilde{O}\left(\delta^{O(1)}(\delta+\tau)\right)$	[Safey El Din, Schost; '11]

Results

Data

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology

Ambient dimension	Bit complexity	Reference
$n=2$	$\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$	$\begin{gathered} \text { [Kobel, Sagraloff; '15] } \\ {\left[\begin{array}{c} \text { D.Diatta, S.Diatta, } \\ \text { Rouiller, Roy, Sagraloff; ' } 22 \end{array}\right]} \end{gathered}$
$n=3$	$\tilde{O}\left(\delta^{17}(\delta+\tau)\right)$	[Cheng, Jin, Pouget, Wen, Zhang; '21]
$n>3$	$\tilde{O}\left(\delta^{O(1)}(\delta+\tau)\right)$	[Safey El Din, Schost; '11]

Computing connectivity - Main Result $\mathbb{N E W S}$

Ambient dimension	Bit complexity	Reference
$n \geq 2$	$\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$	[Islam, Poteaux, P.; 2023]

Avoid computation of the complete topology!

Apparent singularities: key idea

Apparent singularities: key idea

Key idea

Local connectivity does not depend on the relative position

Only two cases to consider!

Algorithm

Input

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- \mathscr{C} satisfies genericity assumptions w.r.t. \mathcal{P}

Output

A partition of $\mathcal{P} \cap \mathbb{R}^{n}$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^{n}$.

1. $\mathscr{D}, \mathscr{Q} \leftarrow \operatorname{Proj} 2 \mathrm{D}(\mathscr{R}), \operatorname{Proj} 2 \mathrm{D}(\mathscr{P})$;
2. $\mathscr{G} \leftarrow \operatorname{Topo2D}(\mathscr{D}, \mathscr{Q})$;
3. $\mathscr{Q}_{\text {app }} \leftarrow$ ApparentSingularities (\mathscr{R});

4. $\left.\mathscr{G}^{\prime} \leftarrow \operatorname{NodeResolution(~} \mathscr{G}, \mathscr{Q}_{\text {app }}\right)$;
5. return ConnectGraph ($\left.\mathscr{Q}, \mathscr{G}^{\prime}\right)$;

Algorithm

Input

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- \mathscr{C} satisfies genericity assumptions w.r.t. \mathcal{P}

Output

A partition of $\mathcal{P} \cap \mathbb{R}^{n}$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^{n}$.

1. $\mathscr{D}, \mathscr{Q} \leftarrow \operatorname{Proj} 2 \mathrm{D}(\mathscr{R}), \operatorname{Proj} 2 \mathrm{D}(\mathscr{P})$;
2. $\mathscr{G} \leftarrow \operatorname{Topo2D}(\mathscr{D}, \mathscr{Q})$;
3. $\mathscr{Q}_{\text {app }} \leftarrow$ ApparentSingularities (\mathscr{R});
4. $\mathscr{G}^{\prime} \leftarrow \operatorname{NodeResolution}\left(\mathscr{G}, \mathscr{Q}_{\text {app }}\right)$;
5. return ConnectGraph ($\left.\mathscr{Q}, \mathscr{G}^{\prime}\right)$;

Algorithm

Input

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- \mathscr{C} satisfies genericity assumptions w.r.t. \mathcal{P}

Output

A partition of $\mathcal{P} \cap \mathbb{R}^{n}$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^{n}$.

1. $\mathscr{D}, \mathscr{Q} \leftarrow \operatorname{Proj} 2 \mathrm{D}(\mathscr{R}), \operatorname{Proj} 2 \mathrm{D}(\mathscr{P})$;
2. $\mathscr{G} \leftarrow \operatorname{Topo2D}(\mathscr{D}, \mathscr{Q})$;
3. $\mathscr{Q}_{\text {app }} \leftarrow$ ApparentSingularities (\mathscr{R});
4. $\left.\mathscr{G}^{\prime} \leftarrow \operatorname{NodeResolution(~} \mathscr{G}, \mathscr{Q}_{\mathrm{app}}\right)$;
5. return ConnectGraph ($\left.\mathscr{Q}, \mathscr{G}^{\prime}\right)$;

Planar topology

$\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$

Algorithm

Input

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- \mathscr{C} satisfies genericity assumptions w.r.t. \mathcal{P}

Output

A partition of $\mathcal{P} \cap \mathbb{R}^{n}$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^{n}$.

1. $\mathscr{D}, \mathscr{Q} \leftarrow \operatorname{Proj} 2 \mathrm{D}(\mathscr{R}), \operatorname{Proj} 2 \mathrm{D}(\mathscr{P})$;
2. $\mathscr{G} \leftarrow \operatorname{Topo2D}(\mathscr{D}, \mathscr{Q})$;
3. $\mathscr{Q}_{\text {app }} \leftarrow$ ApparentSingularities (\mathscr{R});
4. $\left.\mathscr{G}^{\prime} \leftarrow \operatorname{NodeResolution(~} \mathscr{G}, \mathscr{Q}_{\text {app }}\right)$;
5. return ConnectGraph ($\left.\mathscr{Q}, \mathscr{G}^{\prime}\right)$;

Algorithm

Input

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- \mathscr{C} satisfies genericity assumptions w.r.t. \mathcal{P}

Output

A partition of $\mathcal{P} \cap \mathbb{R}^{n}$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^{n}$.

1. $\mathscr{D}, \mathscr{Q} \leftarrow \operatorname{Proj} 2 \mathrm{D}(\mathscr{R}), \operatorname{Proj} 2 \mathrm{D}(\mathscr{P})$;
2. $\mathscr{G} \leftarrow \operatorname{Topo2D}(\mathscr{D}, \mathscr{Q})$;
3. $\mathscr{Q}_{\text {app }} \leftarrow$ ApparentSingularities (\mathscr{R});
4. $\left.\mathscr{G}^{\prime} \leftarrow \operatorname{NodeResolution(~} \mathscr{G}, \mathscr{Q}_{\mathrm{app}}\right)$;
5. return ConnectGraph ($\left.\mathscr{Q}, \mathscr{G}^{\prime}\right)$;

0

\rightsquigarrow subresultant seqs
\rightsquigarrow GCD computations
\rightsquigarrow multi-modularization

$$
\begin{aligned}
& \begin{array}{c}
\text { Apparent sing. } \\
\text { identification }
\end{array} \\
& \tilde{O}\left(\delta^{5}(\delta+\tau)\right)
\end{aligned}
$$

Apparent sing.

Algorithm

Input

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- \mathscr{C} satisfies genericity assumptions w.r.t. \mathcal{P}

Output

A partition of $\mathcal{P} \cap \mathbb{R}^{n}$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^{n}$.

1. $\mathscr{D}, \mathscr{Q} \leftarrow \operatorname{Proj} 2 \mathrm{D}(\mathscr{R}), \operatorname{Proj} 2 \mathrm{D}(\mathscr{P})$;
2. $\mathscr{G} \leftarrow \operatorname{Topo2D}(\mathscr{D}, \mathscr{Q})$;
3. $\mathscr{Q}_{\text {app }} \leftarrow$ ApparentSingularities (\mathscr{R});
4. $\mathscr{G}^{\prime} \leftarrow$ NodeResolution $\left(\mathscr{G}, \mathscr{Q}_{\text {app }}\right)$;
5. return ConnectGraph ($\left.\mathscr{Q}, \mathscr{G}^{\prime}\right)$;

Algorithm

Input

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- \mathscr{C} satisfies genericity assumptions w.r.t. \mathcal{P}

Output

A partition of $\mathcal{P} \cap \mathbb{R}^{n}$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^{n}$.

1. $\mathscr{D}, \mathscr{Q} \leftarrow \operatorname{Proj} 2 \mathrm{D}(\mathscr{R}), \operatorname{Proj} 2 \mathrm{D}(\mathscr{P})$;
2. $\mathscr{G} \leftarrow \operatorname{Topo2D}(\mathscr{D}, \mathscr{Q})$;
3. $\mathscr{Q}_{\text {app }} \leftarrow$ ApparentSingularities (\mathscr{R});
4. $\mathscr{G}^{\prime} \leftarrow \operatorname{NodeResolution}\left(\mathscr{G}, \mathscr{Q}_{\mathrm{app}}\right)$;
5. return ConnectGraph ($\left.\mathscr{Q}, \mathscr{G}^{\prime}\right)$;

Algorithm

Input

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- \mathscr{C} satisfies genericity assumptions w.r.t. \mathcal{P}

Output

A partition of $\mathcal{P} \cap \mathbb{R}^{n}$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^{n}$.

1. $\mathscr{D}, \mathscr{Q} \leftarrow \operatorname{Proj} 2 \mathrm{D}(\mathscr{R}), \operatorname{Proj} 2 \mathrm{D}(\mathscr{P})$;
2. $\mathscr{G} \leftarrow \operatorname{Topo2D}(\mathscr{D}, \mathscr{Q})$;
3. $\mathscr{Q}_{\text {app }} \leftarrow$ ApparentSingularities (\mathscr{R});
4. $\mathscr{G}^{\prime} \leftarrow \operatorname{NodeResolution}\left(\mathscr{G}, \mathscr{Q}_{\mathrm{app}}\right)$;
5. return ConnectGraph ($\left.\mathscr{Q}, \mathscr{G}^{\prime}\right)$;

\mathscr{C}

\mathscr{G}^{\prime}

Algorithm

Input

- $\mathscr{R} \subset \mathbb{Z}\left[x_{1}, x_{2}\right]$ of magnitude (δ, τ), encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^{n}$;
- $\mathscr{P} \subset \mathbb{Z}\left[x_{1}\right]$ of magnitude (δ, τ), encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- \mathscr{C} satisfies genericity assumptions w.r.t. \mathcal{P}

Output

A partition of $\mathcal{P} \cap \mathbb{R}^{n}$ w.r.t. the connected components of $\mathscr{C} \cap \mathbb{R}^{n}$.

1. $\mathscr{D}, \mathscr{Q} \leftarrow \operatorname{Proj} 2 \mathrm{D}(\mathscr{R}), \operatorname{Proj} 2 \mathrm{D}(\mathscr{P})$;
2. $\mathscr{G} \leftarrow \operatorname{Topo2D}(\mathscr{D}, \mathscr{Q})$;
3. $\mathscr{Q}_{\text {app }} \leftarrow$ ApparentSingularities (\mathscr{R});
4. $\left.\mathscr{G}^{\prime} \leftarrow \operatorname{NodeResolution(~} \mathscr{G}, \mathscr{Q}_{\text {app }}\right)$;
5. return ConnectGraph ($\left.\mathscr{Q}, \mathscr{G}^{\prime}\right)$;

Overall Complexity

$$
\tilde{O}\left(\delta^{5}(\delta+\tau)\right)
$$

\mathscr{G}^{\prime}

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Connectivity reduction process - now

Summary

Input

Polynomials in $\mathbb{Q}\left[x_{1}, \ldots x_{n}\right]$ of max degree D defining a smooth algebraic set of dim. d

Connectivity reduction process - before

Arbitrary dimension	$\xrightarrow{\downarrow}$	Dimension: 1 Size: $(n D)^{O(n \log (n)}$		$\xrightarrow{\text { Topology }}$	Finite grap
				\downarrow	
	$(n D)^{O\left(n \log ^{2}(n)\right)}$		$(\text { Size })^{O(1)}=(n D)^{O(n \log (n))}$		
	[Basu, Roy; 2014]		[Safey El Din, Schost; 2011]		

Connectivity reduction process - now

Algorithm for connectivity queries on real algebraic curves, 2023 with Md N. Islam and A. Poteaux

Contributions

Robotics applications

First cuspidality decision algorithm with singly exponential bit-complexity
\checkmark Roadmap computation for a challenging robotics problem

Computational real algebraic geometry can solve actual problems in robotics

Improve connectivity queries solving

\checkmark Nearly optimal roadmap algorithm for unbounded algebraic sets \rightsquigarrow Complexity: $\left(n^{2} D\right)^{6 n \log _{2} d+O(n)} \rightsquigarrow$ Output size: $\left(n^{2} D\right)^{4 n \log _{2} d+O(n)}$

Efficient algorithm for connectivity of real algebraic curves
\rightsquigarrow Complexity: $\tilde{O}\left(\delta^{6}\right)$

We have efficient algorithms for analyzing connectivity of real algebraic sets

Perspectives

Algorithms

Roadmap algorithms:

| Adapt the algorithms to structured systems: quadratic case (J.A.K.Elliott, M.Safey El Din, É.Schost)
| Reduce the size of the roadmap by taking fewer fibers
(M.Safey El Din, É.Schost)
| Generalize the connectivity result to semi-algebraic sets
\downarrow Design optimal roadmap algorithms with complexity exponential in $O(n)$
Connectivity of s.a. curves:
| Obtain a deterministic version of the algorithm
| Adapt to algebraic curves given as union
| Generalize to semi-algebraic curves
\downarrow Investigate the connectivity of plane curves

Applications

| Analyze challenging class of robots
| Algorithms for rigidity and program verification problems
\downarrow Obtain practical version of modern roadmap algorithms

Software

| Connectivity of curves: subresultant/GCD computations deg ~ 100 (now) $\rightarrow \sim 200$ (target)
| Build a Julia library for computational real algebraic geometry (C.Eder, R.Mohr)
\downarrow Implement a ready-to-use toolbox for roboticians

Union of curves

- Expected additional cost: compute all intersection points between curves, including these points as control points.

Reduce data size

Structured systems

$\operatorname{deg}\left(W\left(\pi_{1}, V\right)\right) \leq\binom{ n-1}{p-1} D^{p}(D-1)^{n-p}$
If $D=2$ then, the bound becomes $\binom{n-1}{p-1} 2^{p}$
We expect then a complexity $(n D)^{p \log _{2}(n-p)}$ for computing roadmaps

Toward roadmap algorithms for s.a. sets

Semi-algebraic sets

A strategy to tackle unbounded semi-algebraic sets:
$f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
u new variable

$$
\begin{aligned}
& f \neq 0 \longrightarrow f \cdot u-1=0 \\
& f \geq 0 \longrightarrow f-u^{2}=0 \\
& f>0 \longrightarrow f \cdot u^{2}-1=0
\end{aligned}
$$

Thom's isotopy lemma

Set of proper points $\operatorname{prop}(\mathcal{R}, V)$

\boldsymbol{y} proper point of $\mathcal{R}_{\mid V}$ if there exists a ball $B \ni \boldsymbol{y}$ s.t. $\mathcal{R}^{-1}(B) \cap V$ is closed and bounded

Atypical Values

$$
\operatorname{atyp}(\mathcal{R}, V)=\operatorname{sval}(\mathcal{R}, V) \cup\left[\mathbb{C}^{d}-\operatorname{prop}(\mathcal{R}, V)\right]
$$

Special Points

$$
\operatorname{spec}(\mathcal{R}, V)=\mathcal{R}^{-1}(\operatorname{atyp}(\mathcal{R}, V)) \cap V
$$

Thom's isotopy lemma

Set of proper points $\operatorname{prop}(\mathcal{R}, V)$

\boldsymbol{y} proper point of $\mathcal{R}_{\mid V}$ if there exists a ball $B \ni \boldsymbol{y}$ s.t. $\mathcal{R}^{-1}(B) \cap V$ is closed and bounded

Atypical Values

$$
\operatorname{atyp}(\mathcal{R}, V)=\operatorname{sval}(\mathcal{R}, V) \cup\left[\mathbb{C}^{d}-\operatorname{prop}(\mathcal{R}, V)\right]
$$

Special Points

$$
\operatorname{spec}(\mathcal{R}, V)=\mathcal{R}^{-1}(\operatorname{atyp}(\mathcal{R}, V)) \cap V
$$

For any open connected subset $U \subset \mathbb{R}^{d}$ s.t $U \cap$ $\operatorname{atyp}(\mathcal{R}, V)=\emptyset$

Thom's isotopy lemma

Set of proper points $\operatorname{prop}(\mathcal{R}, V)$

\boldsymbol{y} proper point of $\mathcal{R}_{\mid V}$ if there exists a ball $B \ni \boldsymbol{y}$ s.t. $\mathcal{R}^{-1}(B) \cap V$ is closed and bounded

Atypical Values

$$
\operatorname{atyp}(\mathcal{R}, V)=\operatorname{sval}(\mathcal{R}, V) \cup\left[\mathbb{C}^{d}-\operatorname{prop}(\mathcal{R}, V)\right]
$$

Special Points

$$
\operatorname{spec}(\mathcal{R}, V)=\mathcal{R}^{-1}(\operatorname{atyp}(\mathcal{R}, V)) \cap V
$$

For any open connected subset $U \subset \mathbb{R}^{d}$ s.t $U \cap$ $\operatorname{atyp}(\mathcal{R}, V)=\emptyset$ and for any $\boldsymbol{q} \in U$,

Thom's isotopy lemma

Set of proper points $\operatorname{prop}(\mathcal{R}, V)$

\boldsymbol{y} proper point of $\mathcal{R}_{\mid V}$ if there exists a ball $B \ni \boldsymbol{y}$ s.t. $\mathcal{R}^{-1}(B) \cap V$ is closed and bounded

Atypical Values

$$
\operatorname{atyp}(\mathcal{R}, V)=\operatorname{sval}(\mathcal{R}, V) \cup\left[\mathbb{C}^{d}-\operatorname{prop}(\mathcal{R}, V)\right]
$$

Special Points

$$
\operatorname{spec}(\mathcal{R}, V)=\mathcal{R}^{-1}(\operatorname{atyp}(\mathcal{R}, V)) \cap V
$$

Semi-algebraic Thom's isotopy lemma [Coste \& Shiota, 1995]
For any open connected subset $U \subset \mathbb{R}^{d}$ s.t $U \cap$ $\operatorname{atyp}(\mathcal{R}, V)=\emptyset$ and for any $\boldsymbol{q} \in U$, there exists a homeomorphism

$$
\Psi:\left[\mathcal{R}^{-1}(U) \cap V_{\mathbb{R}}\right] \rightarrow
$$

Thom's isotopy lemma

Set of proper points $\operatorname{prop}(\mathcal{R}, V)$

\boldsymbol{y} proper point of $\mathcal{R}_{\mid V}$ if there exists a ball $B \ni \boldsymbol{y}$ s.t. $\mathcal{R}^{-1}(B) \cap V$ is closed and bounded

Atypical Values

$$
\operatorname{atyp}(\mathcal{R}, V)=\operatorname{sval}(\mathcal{R}, V) \cup\left[\mathbb{C}^{d}-\operatorname{prop}(\mathcal{R}, V)\right]
$$

Special Points

$$
\operatorname{spec}(\mathcal{R}, V)=\mathcal{R}^{-1}(\operatorname{atyp}(\mathcal{R}, V)) \cap V
$$

Semi-algebraic Thom's isotopy lemma [Coste \& Shiota, 1995]
For any open connected subset $U \subset \mathbb{R}^{d}$ s.t $U \cap$ $\operatorname{atyp}(\mathcal{R}, V)=\emptyset$ and for any $\boldsymbol{q} \in U$, there exists a homeomorphism

$$
\Psi:\left[\mathcal{R}^{-1}(U) \cap V_{\mathbb{R}}\right] \rightarrow\left[\mathcal{R}^{-1}(\boldsymbol{q}) \cap V_{\mathbb{R}}\right] \times U
$$

Thom's isotopy lemma

Set of proper points $\operatorname{prop}(\mathcal{R}, V)$

\boldsymbol{y} proper point of $\mathcal{R}_{\mid V}$ if there exists a ball $B \ni \boldsymbol{y}$ s.t. $\mathcal{R}^{-1}(B) \cap V$ is closed and bounded

Atypical Values

$$
\operatorname{atyp}(\mathcal{R}, V)=\operatorname{sval}(\mathcal{R}, V) \cup\left[\mathbb{C}^{d}-\operatorname{prop}(\mathcal{R}, V)\right]
$$

Special Points

$$
\operatorname{spec}(\mathcal{R}, V)=\mathcal{R}^{-1}(\operatorname{atyp}(\mathcal{R}, V)) \cap V
$$

Semi-algebraic Thom's isotopy lemma [Coste \& Shiota, 1995]
For any open connected subset $U \subset \mathbb{R}^{d}$ s.t $U \cap$ $\operatorname{atyp}(\mathcal{R}, V)=\emptyset$ and for any $\boldsymbol{q} \in U$, there exists a homeomorphism

$$
\Psi:\left[\mathcal{R}^{-1}(U) \cap V_{\mathbb{R}}\right] \rightarrow\left[\mathcal{R}^{-1}(\boldsymbol{q}) \cap V_{\mathbb{R}}\right] \times U
$$

such that the following diagram commutes

$$
\left[\mathcal{R}^{-1}(U) \cap V_{\mathbb{R}}\right] \xrightarrow{\xrightarrow{\Psi}\left[\mathcal{R}^{-1}(\boldsymbol{q}) \cap V_{\mathbb{R}}\right]} \times \underset{ }{\qquad} \underset{\sim}{\downarrow}
$$

Cuspidality graph

Cuspidality graph

$\mathscr{G}=(\mathcal{P}, \mathcal{E})$ is a cuspidality graph of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following holds

1. \mathcal{P} intersects every connected component of $V_{\mathbb{R}}-\operatorname{spec}(\mathcal{R}, V)$
2. Let $\boldsymbol{p} \in \mathcal{P}$, then

$$
\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}
$$

3. $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$ are

$$
\begin{gathered}
\text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
\hat{\Downarrow} \\
\text { connected in } \mathscr{G}
\end{gathered}
$$

Proposition: cuspidality graph characterization

There exist $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ s.t. \quad 1. $\mathcal{R}(\boldsymbol{y})=\mathcal{R}\left(\boldsymbol{y}^{\prime}\right) \quad$ 2. $\boldsymbol{y}, \boldsymbol{y}^{\prime}$ connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$ §
There exist $\boldsymbol{p} \neq \boldsymbol{p}^{\prime} \in \mathcal{P}$ s.t.

1. $\mathcal{R}(\boldsymbol{p})=\mathcal{R}\left(\boldsymbol{p}^{\prime}\right)$
2. $\boldsymbol{p}, \boldsymbol{p}^{\prime}$ connected in \mathscr{G}

Cuspidality graph

Cuspidality graph

$\mathscr{G}=(\mathcal{P}, \mathcal{E})$ is a cuspidality graph of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following holds

1. \mathcal{P} intersects every connected component of $V_{\mathbb{R}}-\operatorname{spec}(\mathcal{R}, V)$
2. Let $\boldsymbol{p} \in \mathcal{P}$, then

$$
\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}
$$

3. $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$ are

$$
\begin{gathered}
\text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
\mathbb{\Downarrow} \\
\text { connected in } \mathscr{G}
\end{gathered}
$$

Proposition: cuspidality graph characterization

There exist $y \neq y^{\prime} \in V_{\mathbb{R}}$ s.t.	1. $\mathcal{R}(y)=\mathcal{R}\left(y^{\prime}\right)$	2. y, y^{\prime} connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$
	$\Uparrow \substack{ \\ \text { There exist } \boldsymbol{p} \neq \boldsymbol{p}^{\prime} \in \mathcal{P} \text { s.t. } \\ \\ \text { 1. } \mathcal{R}(\boldsymbol{p})=\mathcal{R}\left(\boldsymbol{p}^{\prime}\right)}$	2. $\boldsymbol{p}, \boldsymbol{p}^{\prime}$ connected in \mathscr{G}

Cuspidality graph

Cuspidality graph

$\mathscr{G}=(\mathcal{P}, \mathcal{E})$ is a cuspidality graph of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following holds

1. \mathcal{P} intersects every connected component of $V_{\mathbb{R}}-\operatorname{spec}(\mathcal{R}, V)$
2. Let $\boldsymbol{p} \in \mathcal{P}$, then

$$
\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}
$$

3. $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$ are

$$
\begin{gathered}
\text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
\widehat{\sharp} \\
\text { connected in } \mathscr{G}
\end{gathered}
$$

Proposition: cuspidality graph characterization

There exist $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ s.t.	1. $\mathcal{R}(\boldsymbol{y})=\underset{\mathcal{R}}{\mathcal{\mathcal { R }}\left(\boldsymbol{y}^{\prime}\right)}$	2. $\boldsymbol{y}, \boldsymbol{y}^{\prime}$ connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$
	\Downarrow	
There exist $p \neq p^{\prime} \in \mathcal{P}$ s.t.	1. $\mathcal{R}(p)=\mathcal{R}\left(p^{\prime}\right)$	2. p, p^{\prime} connected in \mathscr{G}

Cuspidality graph

Cuspidality graph

$\mathscr{G}=(\mathcal{P}, \mathcal{E})$ is a cuspidality graph of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following holds

1. \mathcal{P} intersects every connected component of $V_{\mathbb{R}}-\operatorname{spec}(\mathcal{R}, V)$
2. Let $\boldsymbol{p} \in \mathcal{P}$, then

$$
\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}
$$

3. $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$ are

$$
\begin{gathered}
\text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
\widehat{\sharp} \\
\text { connected in } \mathscr{G}
\end{gathered}
$$

Proposition: cuspidality graph characterization

There exist $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ s.t.	1. $\mathcal{R}(\boldsymbol{y})=\underset{\mathcal{R}}{\boldsymbol{\mathcal { R }}\left(\boldsymbol{y}^{\prime}\right)}$	2. $\boldsymbol{y}, \boldsymbol{y}^{\prime}$ connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$
	\Downarrow	
There exist $p \neq p^{\prime} \in \mathcal{P}$ s.t.	1. $\mathcal{R}(p)=\mathcal{R}\left(p^{\prime}\right)$	2. p, p^{\prime} connected in \mathscr{G}

Cuspidality graph

Cuspidality graph

$\mathscr{G}=(\mathcal{P}, \mathcal{E})$ is a cuspidality graph of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following holds

1. \mathcal{P} intersects every connected component of $V_{\mathbb{R}}-\operatorname{spec}(\mathcal{R}, V)$
2. Let $\boldsymbol{p} \in \mathcal{P}$, then

$$
\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}
$$

3. $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$ are

$$
\begin{gathered}
\text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
\hat{\mathbb{}} \\
\text { connected in } \mathscr{G}
\end{gathered}
$$

Proposition: cuspidality graph characterization

There exist $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ s.t.	1. $\mathcal{R}(\boldsymbol{y})=\underset{\sim}{\mathcal{R}}\left(\boldsymbol{y}^{\prime}\right)$	2. $\boldsymbol{y}, \boldsymbol{y}^{\prime}$ connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$
	\Downarrow	
There exist $p \neq p^{\prime} \in \mathcal{P}$ s.t.	1. $\mathcal{R}(p)=\mathcal{R}\left(p^{\prime}\right)$	2. p, p^{\prime} connected in \mathscr{G}

Cuspidality graph

Cuspidality graph

$\mathscr{G}=(\mathcal{P}, \mathcal{E})$ is a cuspidality graph of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following holds

1. \mathcal{P} intersects every connected component of $V_{\mathbb{R}}-\operatorname{spec}(\mathcal{R}, V)$
2. Let $\boldsymbol{p} \in \mathcal{P}$, then

$$
\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}
$$

3. $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$ are

$$
\begin{gathered}
\text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
\hat{\mathbb{}} \\
\text { connected in } \mathscr{G}
\end{gathered}
$$

Proposition: cuspidality graph characterization

There exist $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ s.t.	1. $\mathcal{R}(\boldsymbol{y})=\underset{\mathcal{R}}{\boldsymbol{\mathcal { R }}\left(\boldsymbol{y}^{\prime}\right)}$	2. $\boldsymbol{y}, \boldsymbol{y}^{\prime}$ connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$
	\Downarrow	
There exist $p \neq p^{\prime} \in \mathcal{P}$ s.t.	1. $\mathcal{R}(p)=\mathcal{R}\left(p^{\prime}\right)$	2. p, p^{\prime} connected in \mathscr{G}

Cuspidality graph

Cuspidality graph

$\mathscr{G}=(\mathcal{P}, \mathcal{E})$ is a cuspidality graph of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following holds

1. \mathcal{P} intersects every connected component of $V_{\mathbb{R}}-\operatorname{spec}(\mathcal{R}, V)$
2. Let $\boldsymbol{p} \in \mathcal{P}$, then

$$
\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}
$$

3. $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$ are

$$
\begin{gathered}
\text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
\hat{\mathbb{}} \\
\text { connected in } \mathscr{G}
\end{gathered}
$$

Proposition: cuspidality graph characterization

| There exist $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ s.t. | 1. $\mathcal{R}(\boldsymbol{y})=\underset{\substack{\mathcal{R} \\ \Downarrow}}{ }$$\Downarrow$ $\left.\boldsymbol{y}^{\prime}\right)$ 2. $\boldsymbol{y}, \boldsymbol{y}^{\prime}$ connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$
 There exist $p \neq p^{\prime} \in \mathcal{P}$ s.t. 1. $\mathcal{R}(p)=\mathcal{R}\left(p^{\prime}\right)$ 2. p, p^{\prime} connected in \mathscr{G} |
| :--- | :--- | :--- |

Cuspidality graph

Cuspidality graph

$\mathscr{G}=(\mathcal{P}, \mathcal{E})$ is a cuspidality graph of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following holds

1. \mathcal{P} intersects every connected component of $V_{\mathbb{R}}-\operatorname{spec}(\mathcal{R}, V)$
2. Let $\boldsymbol{p} \in \mathcal{P}$, then

$$
\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}
$$

3. $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$ are

$$
\begin{gathered}
\text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
\hat{\mathbb{}} \\
\text { connected in } \mathscr{G}
\end{gathered}
$$

Proposition: cuspidality graph characterization

| There exist $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ s.t. | 1. $\mathcal{R}(\boldsymbol{y})=\underset{\substack{\mathcal{R} \\ \Downarrow}}{ }$$\Downarrow$ $\left.\boldsymbol{y}^{\prime}\right)$ 2. $\boldsymbol{y}, \boldsymbol{y}^{\prime}$ connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$
 There exist $p \neq p^{\prime} \in \mathcal{P}$ s.t. 1. $\mathcal{R}(p)=\mathcal{R}\left(p^{\prime}\right)$ 2. p, p^{\prime} connected in \mathscr{G} |
| :--- | :--- | :--- |

Cuspidality graph

Cuspidality graph

$\mathscr{G}=(\mathcal{P}, \mathcal{E})$ is a cuspidality graph of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following holds

1. \mathcal{P} intersects every connected component of $V_{\mathbb{R}}-\operatorname{spec}(\mathcal{R}, V)$
2. Let $\boldsymbol{p} \in \mathcal{P}$, then

$$
\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}
$$

3. $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$ are

$$
\begin{gathered}
\text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
\hat{\mathbb{}} \\
\text { connected in } \mathscr{G}
\end{gathered}
$$

Proposition: cuspidality graph characterization

There exist $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ s.t.	1. $\mathcal{R}(\boldsymbol{y})=\underset{\mathcal{R}}{\mathcal{\mathcal { R }}\left(\boldsymbol{y}^{\prime}\right)}$	2. $\boldsymbol{y}, \boldsymbol{y}^{\prime}$ connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$
	\Downarrow	
There exist $p \neq p^{\prime} \in \mathcal{P}$ s.t.	1. $\mathcal{R}(p)=\mathcal{R}\left(p^{\prime}\right)$	2. p, p^{\prime} connected in \mathscr{G}

Cuspidality graph

Cuspidality graph

$\mathscr{G}=(\mathcal{P}, \mathcal{E})$ is a cuspidality graph of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following holds

1. \mathcal{P} intersects every connected component of $V_{\mathbb{R}}-\operatorname{spec}(\mathcal{R}, V)$
2. Let $\boldsymbol{p} \in \mathcal{P}$, then

$$
\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}
$$

3. $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$ are

$$
\begin{gathered}
\text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
\hat{\sharp} \\
\text { connected in } \mathscr{G}
\end{gathered}
$$

Proposition: cuspidality graph characterization

There exist $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ s.t.	1. $\mathcal{R}(\boldsymbol{y})=\underset{\mathcal{R}}{\mathcal{\mathcal { R }}\left(\boldsymbol{y}^{\prime}\right)}$	2. $\boldsymbol{y}, \boldsymbol{y}^{\prime}$ connected in $V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V)$
	\Downarrow	
There exist $p \neq p^{\prime} \in \mathcal{P}$ s.t.	1. $\mathcal{R}(p)=\mathcal{R}\left(p^{\prime}\right)$	2. p, p^{\prime} connected in \mathscr{G}

Cuspidality graph

Cuspidality graph

$\mathscr{G}=(\mathcal{P}, \mathcal{E})$ is a cuspidality graph of the restriction of \mathcal{R} to $V_{\mathbb{R}}$ if the following holds

1. \mathcal{P} intersects every connected component of $V_{\mathbb{R}}-\operatorname{spec}(\mathcal{R}, V)$
2. Let $\boldsymbol{p} \in \mathcal{P}$, then

$$
\mathcal{R}^{-1}(\mathcal{R}(\boldsymbol{p})) \cap V_{\mathbb{R}} \subset \mathcal{P}
$$

3. $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$ are

$$
\begin{gathered}
\text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
\mathbb{\Downarrow} \\
\text { connected in } \mathscr{G}
\end{gathered}
$$

Proposition: cuspidality graph characterization

There exist $\boldsymbol{y} \neq \boldsymbol{y}^{\prime} \in V_{\mathbb{R}}$ s.t.

$$
\begin{aligned}
& \text { 1. } \mathcal{R}(\boldsymbol{y})=\mathcal{R}\left(\boldsymbol{y}^{\prime}\right) \\
& \text { 2. } \boldsymbol{y}, \boldsymbol{y}^{\prime} \text { connected in } V_{\mathbb{R}}-\operatorname{crit}(\mathcal{R}, V) \\
& \Downarrow
\end{aligned}
$$

There exist $\boldsymbol{p} \neq \boldsymbol{p}^{\prime} \in \mathcal{P}$ s.t.

1. $\mathcal{R}(\boldsymbol{p})=\mathcal{R}\left(\boldsymbol{p}^{\prime}\right)$
2. $\boldsymbol{p}, \boldsymbol{p}^{\prime}$ connected in \mathscr{G}

Sample points algorithms

Semi-algebraic sets

$$
S \subset \mathbb{R}^{d} \text { semi-algebraic set }
$$

Solution set of a finite system of polynomial equations \boldsymbol{g} and inequalities \boldsymbol{h}

$$
S \text { has a finite number of connected components }
$$

Sample points algorithms

Semi-algebraic sets

$$
S \subset \mathbb{R}^{d} \text { semi-algebraic set }
$$

Solution set of a finite system of polynomial equations \boldsymbol{g} and inequalities \boldsymbol{h}

$$
S \text { has a finite number of connected components }
$$

Sample points algorithms

Semi-algebraic sets

$$
S \subset \mathbb{R}^{d} \text { semi-algebraic set }
$$

Solution set of a finite system of polynomial equations \boldsymbol{g} and inequalities \boldsymbol{h}

$$
S \text { has a finite number of connected components }
$$

Sample points algorithms

Semi-algebraic sets

$$
S \subset \mathbb{R}^{d} \text { semi-algebraic set }
$$

Solution set of a finite system of polynomial equations \boldsymbol{g} and inequalities \boldsymbol{h}

$$
S \text { has a finite number of connected components }
$$

Theorem

[Basu \& Pollack \& Roy, 2016] [Le \& Safey EI Din, 2022]

- $S \subset \mathbb{R}^{d}$ defined by $g_{1}=\cdots=g_{s}=0 \quad$ and $\quad h_{1}>0, \ldots, h_{t}>0$
- $D=\max (\operatorname{deg}(\boldsymbol{g}), \operatorname{deg}(\boldsymbol{h}))$
- $\tau=\max \{b i t s i z e ~ o f ~ t h e ~ i n p u t ~ c o e f f i c i e n t s\} ~$

There exists an algorithm SamplePoints s.t. if $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\boldsymbol{f}, \boldsymbol{g})$ then

1. $\mathcal{Q} \subset S$ is finite
2. \mathcal{Q} meets every connected component of S
3. $\operatorname{card}(\mathcal{Q}) \leq D^{O(d)}$

Bit complexity of SamplePoints: $\tau(t D)^{O(d)}$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
[Basu \& Pollack \& Roy, $\left.{ }^{\prime} 16\right] \Rightarrow \tau(s D)^{O(n d)}$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;
[Basu \& Pollack \& Roy, ' 16] $\Rightarrow \tau(s D)^{O(n d)}$
[Basu \& Pollack \& Roy, $\left.{ }^{\prime} 16\right] \Rightarrow \tau n^{O\left(d^{2}\right)} D^{O(n d)}$
[Le \& Safey El Din, '21][Jelonek \& Kurdyka, '05] $\pi /$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;
3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q})$;
[Le \& Safey El Din, '21][Jelonek \& Kurdyka, '05] π
[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau(s D)^{O(n d)}$
[Basu \& Pollack \& Roy, $\left.{ }^{\prime} 16\right] \Rightarrow \tau n^{O\left(d^{2}\right)} D^{O(n d)}$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;
3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q}) ; \quad$ [Le \& Safey El Din, '21][Jelonek \& Kurdyka, '05] गフ
4. $\Delta \leftarrow \operatorname{Crit}(\mathcal{R}, \boldsymbol{f})$;
[Basu \& Pollack \& Roy, ' 16] $\Rightarrow \tau(s D)^{O(n d)}$
[Basu \& Pollack \& Roy, $\left.{ }^{\prime} 16\right] \Rightarrow \tau n^{O\left(d^{2}\right)} D^{O(n d)}$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;

3. $\Delta \leftarrow \operatorname{Crit}(\mathcal{R}, \boldsymbol{f})$;
4. $\mathscr{R} \leftarrow \operatorname{RoADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}) ; \quad\left[\right.$ Basu \& Pollack \& Roy, $\left.{ }^{\prime} 00\right] \Rightarrow \tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;
3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q}) ; \quad$ [Le \& Safey El Din, '21][Jelonek \& Kurdyka, '05] π
4. $\Delta \leftarrow \operatorname{Crit}(\mathcal{R}, \boldsymbol{f})$;
5. $\mathscr{R} \leftarrow \operatorname{RoADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}) ; \quad\left[\right.$ Basu \& Pollack \& Roy, $\left.{ }^{\prime} 00\right] \Rightarrow \tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}$
6. $\mathscr{G}=(\mathcal{P}, \mathcal{E}) \leftarrow \operatorname{GraphIsotop}(\mathscr{R}, \pm \Delta, \mathcal{P})$;
[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau(s D)^{O(n d)}$
[Basu \& Pollack \& Roy, ' 16] $\Rightarrow \tau n^{O\left(d^{2}\right)} D^{O(n d)}$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;
3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q}) ; \quad$ [Le \& Safey El Din, '21][Jelonek \& Kurdyka, '05] π
4. $\Delta \leftarrow \operatorname{Crit}(\mathcal{R}, \boldsymbol{f})$;
5. $\mathscr{R} \leftarrow \operatorname{RoADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}) ; \quad\left[\right.$ Basu \& Pollack \& Roy, $\left.{ }^{\prime} 00\right] \Rightarrow \tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}$
6. $\mathscr{G}=(\mathcal{P}, \mathcal{E}) \leftarrow \operatorname{GraphIsotop}(\mathscr{R}, \pm \Delta, \mathcal{P})$;
7. for $\boldsymbol{q} \in \mathcal{Q}$ do
[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau(s D)^{O(n d)}$
[Basu \& Pollack \& Roy, ' 16] $\Rightarrow \tau n^{O\left(d^{2}\right)} D^{O(n d)}$

-

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;
3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q}) ; \quad$ [Le \& Safey El Din, '21][Jelonek \& Kurdyka, '05] π
4. $\Delta \leftarrow \operatorname{Crit}(\mathcal{R}, \boldsymbol{f})$;
5. $\mathscr{R} \leftarrow \operatorname{RoADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}) ; \quad\left[\right.$ Basu \& Pollack \& Roy, $\left.{ }^{\prime} 00\right] \Rightarrow \tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}$
6. $\mathscr{G}=(\mathcal{P}, \mathcal{E}) \leftarrow \operatorname{Graphisotop}(\mathscr{R}, \pm \Delta, \mathcal{P})$;
7. for $\boldsymbol{q} \in \mathcal{Q}$ do
8. for $\boldsymbol{v}_{1} \neq \boldsymbol{v}_{2} \in \mathcal{P} \cap \mathcal{R}^{-1}(\boldsymbol{q})$ do
[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau(s D)^{O(n d)}$
[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau n^{O\left(d^{2}\right)} D^{O(n d)}$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;

3. $\Delta \leftarrow \operatorname{Crit}(\mathcal{R}, \boldsymbol{f})$;
4. $\mathscr{R} \leftarrow \operatorname{Roadmap}(\boldsymbol{f}, \pm \Delta, \mathcal{P}) ; \quad$ [Basu \& Pollack \& Roy, $\left.{ }^{\prime} 00\right] \Rightarrow \tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}$
5. $\mathscr{G}=(\mathcal{P}, \mathcal{E}) \leftarrow$ Graphisotop $(\mathscr{R}, \pm \Delta, \mathcal{P})$;
6. for $\boldsymbol{q} \in \mathcal{Q}$ do
7. for $\boldsymbol{v}_{1} \neq \boldsymbol{v}_{2} \in \mathcal{P} \cap \mathcal{R}^{-1}(\boldsymbol{q})$ do
8. if $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ are connected in \mathscr{G} then
[Basu \& Pollack \& Roy, ' 16] $\Rightarrow \tau(s D)^{O(n d)}$
[Basu \& Pollack \& Roy, $\left.{ }^{\prime} 16\right] \Rightarrow \tau n^{O\left(d^{2}\right)} D^{O(n d)}$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;

3. $\Delta \leftarrow \operatorname{Crit}(\mathcal{R}, \boldsymbol{f})$;
4. $\mathscr{R} \leftarrow \operatorname{RoADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}) ; \quad\left[\right.$ Basu \& Pollack \& Roy, $\left.{ }^{\prime} 00\right] \Rightarrow \tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}$
5. $\mathscr{G}=(\mathcal{P}, \mathcal{E}) \leftarrow$ Graphisotop $(\mathscr{R}, \pm \Delta, \mathcal{P})$;
6. for $\boldsymbol{q} \in \mathcal{Q}$ do
7. for $\boldsymbol{v}_{1} \neq \boldsymbol{v}_{2} \in \mathcal{P} \cap \mathcal{R}^{-1}(\boldsymbol{q})$ do
8. if $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ are connected in \mathscr{G} then
9. return True;

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;
3. $\mathcal{P} \leftarrow \mathcal{R}^{-1}(\mathcal{Q}) ; \quad[$ Le \& Safey El Din, '21][Jelonek \& Kurdyka, '05] π
4. $\Delta \leftarrow \operatorname{Crit}(\mathcal{R}, \boldsymbol{f})$;
5. $\mathscr{R} \leftarrow \operatorname{Roadmap}(\boldsymbol{f}, \pm \Delta, \mathcal{P}) ; \quad$ [Basu \& Pollack \& Roy, $\left.{ }^{\prime} 00\right] \Rightarrow \tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}$
6. $\mathscr{G}=(\mathcal{P}, \mathcal{E}) \leftarrow \operatorname{Graphisotop}(\mathscr{R}, \pm \Delta, \mathcal{P})$;
7. for $\boldsymbol{q} \in \mathcal{Q}$ do
8. for $\boldsymbol{v}_{1} \neq \boldsymbol{v}_{2} \in \mathcal{P} \cap \mathcal{R}^{-1}(\boldsymbol{q})$ do
9. if $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ are connected in \mathscr{G} then
10. return True;
11. return False;
[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau(s D)^{O(n d)}$
[Basu \& Pollack \& Roy, ' 16] $\Rightarrow \tau n^{O\left(d^{2}\right)} D^{O(n d)}$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;

3. $\Delta \leftarrow \operatorname{CRIT}(\mathcal{R}, \boldsymbol{f})$;
4. $\mathscr{R} \leftarrow \operatorname{RoADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}) ; \quad\left[\right.$ Basu \& Pollack \& Roy, $\left.{ }^{\prime} 00\right] \Rightarrow \tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}$
5. $\mathscr{G}=(\mathcal{P}, \mathcal{E}) \leftarrow \operatorname{Graphisotop}(\mathscr{R}, \pm \Delta, \mathcal{P})$;
6. for $\boldsymbol{q} \in \mathcal{Q}$ do
7. for $\boldsymbol{v}_{1} \neq \boldsymbol{v}_{2} \in \mathcal{P} \cap \mathcal{R}^{-1}(\boldsymbol{q})$ do
8. if $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ are connected in \mathscr{G} then

Total bit complexity bound

$$
\tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}
$$

10. return True;
11. return False;
[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau(s D)^{O(n d)}$
[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau n^{O\left(d^{2}\right)} D^{O(n d)}$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;

3. $\Delta \leftarrow \operatorname{Crit}(\mathcal{R}, \boldsymbol{f})$;
4. $\mathscr{R} \leftarrow \operatorname{RoADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}) ; \quad\left[\right.$ Basu \& Pollack \& Roy, $\left.{ }^{\prime} 00\right] \Rightarrow \tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}$
5. $\mathscr{G}=(\mathcal{P}, \mathcal{E}) \leftarrow$ Graphisotop $(\mathscr{R}, \pm \Delta, \mathcal{P})$;
6. for $\boldsymbol{q} \in \mathcal{Q}$ do
7. for $\boldsymbol{v}_{1} \neq \boldsymbol{v}_{2} \in \mathcal{P} \cap \mathcal{R}^{-1}(\boldsymbol{q})$ do
8. if $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ are connected in \mathscr{G} then

Total bit complexity bound

$$
\tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}
$$

10. return True;

11. return False;
[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau(s D)^{O(n d)}$
[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau n^{O\left(d^{2}\right)} D^{O(n d)}$

The cuspidality decision algorithm

Input

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ and $\mathcal{R}=\left(r_{1}, \ldots, r_{d}\right)$ polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- $V=\boldsymbol{V}(\boldsymbol{f})$ and $V_{\mathbb{R}}=V \cap \mathbb{R}^{n}$ are equidimensional of dimension d
- $D=\max \{\operatorname{deg} \boldsymbol{f}, \operatorname{deg} \mathcal{R}\} \quad \tau=\max \{$ bitsize of the input coefficients $\}$

Output

A decision, True or False, on the cuspidality of the restriction of \mathcal{R} to $V_{\mathbb{R}}$.
10. return True;
11. return False;

1. $\boldsymbol{g} \leftarrow \operatorname{AtypicalValues}(\mathcal{R}, \boldsymbol{f})$;
2. $\mathcal{Q} \leftarrow \operatorname{SamplePoints}(\pm \boldsymbol{g})$;

3. $\Delta \leftarrow \operatorname{Crit}(\mathcal{R}, \boldsymbol{f})$;
4. $\mathscr{R} \leftarrow \operatorname{RoADMAP}(\boldsymbol{f}, \pm \Delta, \mathcal{P}) ; \quad\left[\right.$ Basu \& Pollack \& Roy, $\left.{ }^{\prime} 00\right] \Rightarrow \tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}$
5. $\mathscr{G}=(\mathcal{P}, \mathcal{E}) \leftarrow \operatorname{Graphisotop}(\mathscr{R}, \pm \Delta, \mathcal{P})$;
6. for $\boldsymbol{q} \in \mathcal{Q}$ do
7. for $\boldsymbol{v}_{1} \neq \boldsymbol{v}_{2} \in \mathcal{P} \cap \mathcal{R}^{-1}(\boldsymbol{q})$ do
8. if $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ are connected in \mathscr{G} then

Total bit complexity bound

$$
\tilde{O}(\tau) \cdot((s+d) D)^{O\left(n^{2}\right)}
$$

[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau(s D)^{O(n d)}$
[Basu \& Pollack \& Roy, '16] $\Rightarrow \tau n^{O\left(d^{2}\right)} D^{O(n d)}$

Connectivity queries: algorithms

Data

- $S \subset \mathbb{R}^{n}$ defined by $g_{1}=\cdots=g_{s}=0 \quad$ and $\quad h_{1}>0, \ldots, h_{t}>0$
- $D=\max (\operatorname{deg}(\boldsymbol{g}), \operatorname{deg}(\boldsymbol{h}))$ and $\tau=\max \{$ bitsize of the input coefficients $\}$
- $\mathcal{P} \subset V_{\mathbb{R}}$ of cardinality δ

Connectivity queries: algorithms

Data

- $S \subset \mathbb{R}^{n}$ defined by $g_{1}=\cdots=g_{s}=0 \quad$ and $\quad h_{1}>0, \ldots, h_{t}>0$
- $D=\max (\operatorname{deg}(\boldsymbol{g}), \operatorname{deg}(\boldsymbol{h}))$ and $\tau=\max \{$ bitsize of the input coefficients $\}$
- $\mathcal{P} \subset V_{\mathbb{R}}$ of cardinality δ

Theorem

[Basu \& Pollack \& Roy, 2000]
There exists an algorithm ROADMAP s.t if $\mathscr{R} \leftarrow \operatorname{Roadmap}(\boldsymbol{g}, \boldsymbol{h}, \mathcal{P})$ then

1. $\mathscr{R} \subset S$ is a roadmap of (S, \mathcal{P});
2. polynomials defining \mathscr{R} have degrees $\leq t^{n+1} \delta D^{O\left(n^{2}\right)}$

Bit complexity of Roadmap:

$$
\leq \tilde{O}(\tau) \cdot t^{O(n)} \delta D^{O\left(n^{2}\right)}
$$

Connectivity queries: algorithms

Data

- $S \subset \mathbb{R}^{n}$ defined by $g_{1}=\cdots=g_{s}=0 \quad$ and $\quad h_{1}>0, \ldots, h_{t}>0$
- $D=\max (\operatorname{deg}(\boldsymbol{g}), \operatorname{deg}(\boldsymbol{h}))$ and $\tau=\max \{$ bitsize of the input coefficients $\}$
- $\mathcal{P} \subset V_{\mathbb{R}}$ of cardinality δ

Theorem

[Basu \& Pollack \& Roy, 2000]
There exists an algorithm ROADMAP s.t if $\mathscr{R} \leftarrow \operatorname{Roadmap}(\boldsymbol{g}, \boldsymbol{h}, \mathcal{P})$ then

1. $\mathscr{R} \subset S$ is a roadmap of (S, \mathcal{P});
2. polynomials defining \mathscr{R} have degrees $\leq t^{n+1} \delta D^{O\left(n^{2}\right)}$

Bit complexity of Roadmap:

$$
\leq \tilde{O}(\tau) \cdot t^{O(n)} \delta D^{O\left(n^{2}\right)}
$$

Theorem [Diatta \& Mourrain \& Ruatta, 2012]

[Cheng \& Jin \& Lazard, 2013] [Jin \& Cheng, 2021]
There exists an algorithm Graphisotop s.t if $\mathscr{G} \leftarrow \operatorname{Graphisotop}(\mathscr{R}, \boldsymbol{h}, \mathcal{P})$ then

1. $\mathscr{G}=(\widetilde{\mathcal{P}}, \mathcal{E})$ is a graph s.t. $\mathcal{P} \subset \widetilde{\mathcal{P}}$
2. \mathscr{G} is isotopy equivalent to $\mathscr{R} \cap S$

Bit complexity of Graphisotop:

$$
\leq \tilde{O}(\tau) \cdot(\delta \operatorname{deg}(\mathscr{R}))^{O(1)}
$$

Connectivity queries: algorithms

Data

- $S \subset \mathbb{R}^{n}$ defined by $g_{1}=\cdots=g_{s}=0 \quad$ and $\quad h_{1}>0, \ldots, h_{t}>0$
- $D=\max (\operatorname{deg}(\boldsymbol{g}), \operatorname{deg}(\boldsymbol{h}))$ and $\tau=\max \{$ bitsize of the input coefficients $\}$
- $\mathcal{P} \subset V_{\mathbb{R}}$ of cardinality δ

Theorem

[Basu \& Pollack \& Roy, 2000]
There exists an algorithm Roadmap s.t if $\mathscr{R} \leftarrow \operatorname{Roadmap}(\boldsymbol{g}, \boldsymbol{h}, \mathcal{P})$ then

1. $\mathscr{R} \subset S$ is a roadmap of (S, \mathcal{P});
2. polynomials defining \mathscr{R} have degrees $\leq t^{n+1} \delta D^{O\left(n^{2}\right)}$

Bit complexity of Roadmap:

$$
\leq \tilde{O}(\tau) \cdot t^{O(n)} \delta D^{O\left(n^{2}\right)}
$$

Theorem [Diatta \& Mourrain \& Ruatta, 2012]

[Cheng \& Jin \& Lazard, 2013] [Jin \& Cheng, 2021]
There exists an algorithm Graphisotop s.t if $\mathscr{G} \leftarrow \operatorname{GraphIsotop}(\mathscr{R}, \boldsymbol{h}, \mathcal{P})$ then

1. $\mathscr{G}=(\widetilde{\mathcal{P}}, \mathcal{E})$ is a graph s.t. $\mathcal{P} \subset \widetilde{\mathcal{P}}$
2. \mathscr{G} is isotopy equivalent to $\mathscr{R} \cap S$

Bit complexity of Graphisotop:

$$
\leq \tilde{O}(\tau) \cdot(\delta \operatorname{deg}(\mathscr{R}))^{O(1)}
$$

Connecting $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in \mathcal{P}$

$$
\text { path-connected in } S \Longleftrightarrow \text { path-connected in } \mathscr{R} \cap S \Longleftrightarrow \text { connected in } \mathscr{G}
$$

A basic cuspidal example

$$
z_{1}=\frac{1}{2} c_{1} c_{2}\left(3 c_{3}+4\right)-\frac{1}{2} s_{1}\left(3 s_{3}+2\right)+c_{1}
$$

$$
\begin{array}{cccc}
\mathcal{K}: \quad \boldsymbol{R}^{3} & \longrightarrow & \boldsymbol{R}^{3} \\
\boldsymbol{\theta} & \longmapsto & \left(z_{1}(\boldsymbol{\theta}), z_{2}(\boldsymbol{\theta}), z_{3}(\boldsymbol{\theta})\right)
\end{array}
$$

$$
z_{2}=\frac{1}{2} s_{1} c_{2}\left(3 c_{3}+4\right)+\frac{1}{2} c_{1}\left(3 s_{3}+2\right)+s_{1}
$$

$$
z_{3}=-\frac{1}{2} s_{2}\left(3 c_{3}+4\right)
$$

A basic cuspidal example

$$
\begin{array}{cccc}
\mathcal{K}: & \boldsymbol{R}^{3} & \longrightarrow & \boldsymbol{R}^{3} \\
\boldsymbol{\theta} & \longmapsto & \left(z_{1}(\boldsymbol{\theta}), z_{2}(\boldsymbol{\theta}), z_{3}(\boldsymbol{\theta})\right)
\end{array}
$$

$$
\begin{aligned}
& z_{1}=\frac{1}{2} c_{1} c_{2}\left(3 c_{3}+4\right)-\frac{1}{2} s_{1}\left(3 s_{3}+2\right)+c_{1} \\
& z_{2}=\frac{1}{2} s_{1} c_{2}\left(3 c_{3}+4\right)+\frac{1}{2} c_{1}\left(3 s_{3}+2\right)+s_{1} \\
& z_{3}=-\frac{1}{2} s_{2}\left(3 c_{3}+4\right)
\end{aligned}
$$

A basic cuspidal example

$$
\begin{array}{cccc}
\mathcal{K}: \quad \boldsymbol{R}^{3} & \longrightarrow & \boldsymbol{R}^{3} \\
\boldsymbol{\theta} & \longmapsto & \left(z_{1}(\boldsymbol{\theta}), z_{2}(\boldsymbol{\theta}), z_{3}(\boldsymbol{\theta})\right)
\end{array}
$$

$$
\begin{aligned}
& z_{1}=\frac{1}{2} c_{1} c_{2}\left(3 c_{3}+4\right)-\frac{1}{2} s_{1}\left(3 s_{3}+2\right)+c_{1} \\
& z_{2}=\frac{1}{2} s_{1} c_{2}\left(3 c_{3}+4\right)+\frac{1}{2} c_{1}\left(3 s_{3}+2\right)+s_{1} \\
& z_{3}=-\frac{1}{2} s_{2}\left(3 c_{3}+4\right)
\end{aligned}
$$

A basic cuspidal example

$$
z_{1}=\frac{1}{2} c_{1} c_{2}\left(3 c_{3}+4\right)-\frac{1}{2} s_{1}\left(3 s_{3}+2\right)+c_{1}
$$

$$
\begin{array}{cccc}
\mathcal{K}: \quad \boldsymbol{R}^{3} & \longrightarrow & \boldsymbol{R}^{3} \\
\boldsymbol{\theta} & \longmapsto & \left(z_{1}(\boldsymbol{\theta}), z_{2}(\boldsymbol{\theta}), z_{3}(\boldsymbol{\theta})\right)
\end{array}
$$

$$
z_{2}=\frac{1}{2} s_{1} c_{2}\left(3 c_{3}+4\right)+\frac{1}{2} c_{1}\left(3 s_{3}+2\right)+s_{1}
$$

$$
z_{3}=-\frac{1}{2} s_{2}\left(3 c_{3}+4\right)
$$

A basic cuspidal example

$$
z_{1}=\frac{1}{2} c_{1} c_{2}\left(3 c_{3}+4\right)-\frac{1}{2} s_{1}\left(3 s_{3}+2\right)+c_{1}
$$

$$
\begin{array}{rlcc}
\mathcal{K}: \quad \boldsymbol{R}^{3} & \longrightarrow & \boldsymbol{R}^{3} \\
\boldsymbol{\theta} & \longmapsto & \left(z_{1}(\boldsymbol{\theta}), z_{2}(\boldsymbol{\theta}), z_{3}(\boldsymbol{\theta})\right)
\end{array}
$$

$$
z_{2}=\frac{1}{2} s_{1} c_{2}\left(3 c_{3}+4\right)+\frac{1}{2} c_{1}\left(3 s_{3}+2\right)+s_{1}
$$

$$
z_{3}=-\frac{1}{2} s_{2}\left(3 c_{3}+4\right)
$$

$\xrightarrow{\text { K }}$

A basic non-cuspidal example

$z_{1}=\frac{1}{10} c_{1} c_{2}\left(15 c_{3}+11\right)-\frac{1}{10} s_{1}\left(15 s_{3}+13\right)+3 c_{1}$
$z_{2}=\frac{1}{10} s_{1} c_{2}\left(15 c_{3}+11\right)+\frac{1}{10} c_{1}\left(15 s_{3}+13\right)+3 s_{1}$

$$
z_{3}=-\frac{1}{10} s_{2}\left(15 c_{3}+11\right)
$$

A basic non-cuspidal example

$$
z_{1}=\frac{1}{10} c_{1} c_{2}\left(15 c_{3}+11\right)-\frac{1}{10} s_{1}\left(15 s_{3}+13\right)+3 c_{1}
$$

$$
\begin{array}{cccc}
\mathcal{K}: \quad \boldsymbol{R}^{3} & \longrightarrow & \boldsymbol{R}^{3} \\
\boldsymbol{\theta} & \longmapsto & \left(z_{1}(\boldsymbol{\theta}), z_{2}(\boldsymbol{\theta}), z_{3}(\boldsymbol{\theta})\right)
\end{array}
$$

$$
z_{2}=\frac{1}{10} s_{1} c_{2}\left(15 c_{3}+11\right)+\frac{1}{10} c_{1}\left(15 s_{3}+13\right)+3 s_{1}
$$

$$
z_{3}=-\frac{1}{10} s_{2}\left(15 c_{3}+11\right)
$$

A basic non-cuspidal example

$$
\begin{array}{rlrl}
\mathcal{K}: \quad \boldsymbol{R}^{3} & \longrightarrow & =\frac{1}{10} c_{1} c_{2}\left(15 c_{3}+11\right)-\frac{1}{10} s_{1}\left(15 s_{3}+13\right)+3 c_{1} \\
\boldsymbol{\theta} & \longmapsto & \boldsymbol{R}^{3} & \left(z_{1}(\boldsymbol{\theta}), z_{2}(\boldsymbol{\theta}), z_{3}(\boldsymbol{\theta})\right) \\
z_{2} & =\frac{1}{10} s_{1} c_{2}\left(15 c_{3}+11\right)+\frac{1}{10} c_{1}\left(15 s_{3}+13\right)+3 s_{1} \\
& & z_{3} & =-\frac{1}{10} s_{2}\left(15 c_{3}+11\right)
\end{array}
$$

Proof of the new connectivity result

Non-negative proper polynomial map

$$
\begin{array}{cccc}
\boldsymbol{\varphi}_{i}: & \mathbb{C}^{n} & \longrightarrow & \mathbb{C}^{i} \\
& \boldsymbol{x} & \mapsto & \left(\psi_{1}(\boldsymbol{x}), \ldots, \psi_{i}(\boldsymbol{x})\right)
\end{array}
$$

- $W\left(\boldsymbol{\varphi}_{i}, V\right)$ generalized polar variety
- $F_{i}=\boldsymbol{\varphi}_{i-1}^{-1}\left(\boldsymbol{\varphi}_{i-1}(K)\right) \cap V$ critical fibers.
- $K=$ critical points of $\boldsymbol{\varphi}_{1}$ on $W\left(\boldsymbol{\varphi}_{i}, V\right)$

Roadmap property RM:

For all connected components C of V $C \cap\left(F_{i} \cup W\left(\boldsymbol{\varphi}_{i}, V\right)\right)$ is non-empty and connected

Proof of the new connectivity result

Non-negative proper polynomial map

$$
\begin{array}{rccc}
\boldsymbol{\varphi}_{i}: & \mathbb{C}^{n} & \longrightarrow & \mathbb{C}^{i} \\
& \boldsymbol{x} & \mapsto & \left(\psi_{1}(\boldsymbol{x}), \ldots, \psi_{i}(\boldsymbol{x})\right)
\end{array}
$$

- $W\left(\boldsymbol{\varphi}_{i}, V\right)$ generalized polar variety
- $F_{i}=\boldsymbol{\varphi}_{i-1}^{-1}\left(\boldsymbol{\varphi}_{i-1}(K)\right) \cap V$ critical fibers.
- $K=$ critical points of $\boldsymbol{\varphi}_{1}$ on $W\left(\boldsymbol{\varphi}_{i}, V\right)$

"Graded" roadmap property $\mathrm{RM}(x)$:

For all connected components C of $V \cap \boldsymbol{R}^{n} \cap \varphi_{1}^{-1}((-\infty, x])$ $C \cap\left(F_{i} \cup W\left(\boldsymbol{\varphi}_{i}, V\right)\right)$ is non-empty and connected

Morse theory

Two disjoint cases: $x \in \varphi_{1}^{-1}(K)$ or not

Sard's lemma

$$
\varphi_{1}^{-1}(K) \text { is finite }
$$

Proof of the new connectivity result

Non-negative proper polynomial map

$$
\begin{array}{cccc}
\boldsymbol{\varphi}_{i}: & \mathbb{C}^{n} & \longrightarrow & \mathbb{C}^{i} \\
& \boldsymbol{x} & \mapsto & \left(\psi_{1}(\boldsymbol{x}), \ldots, \psi_{i}(\boldsymbol{x})\right)
\end{array}
$$

- $W\left(\boldsymbol{\varphi}_{i}, V\right)$ generalized polar variety
- $F_{i}=\boldsymbol{\varphi}_{i-1}^{-1}\left(\boldsymbol{\varphi}_{i-1}(K)\right) \cap V$ critical fibers.
- $K=$ critical points of $\boldsymbol{\varphi}_{1}$ on $W\left(\boldsymbol{\varphi}_{i}, V\right)$

"Graded" roadmap property $\mathrm{RM}(x)$:

For all connected components C of $V \cap \boldsymbol{R}^{n} \cap \varphi_{1}^{-1}((-\infty, x])$ $C \cap\left(F_{i} \cup W\left(\boldsymbol{\varphi}_{i}, V\right)\right)$ is non-empty and connected

Thom's isotopy Lemma

Proof of the new connectivity result

Non-negative proper polynomial map

$$
\begin{array}{cccc}
\boldsymbol{\varphi}_{i}: & \mathbb{C}^{n} & \longrightarrow & \mathbb{C}^{i} \\
& \boldsymbol{x} & \mapsto & \left(\psi_{1}(\boldsymbol{x}), \ldots, \psi_{i}(\boldsymbol{x})\right)
\end{array}
$$

- $W\left(\boldsymbol{\varphi}_{i}, V\right)$ generalized polar variety
- $F_{i}=\boldsymbol{\varphi}_{i-1}^{-1}\left(\boldsymbol{\varphi}_{i-1}(K)\right) \cap V$ critical fibers.
- $K=$ critical points of $\boldsymbol{\varphi}_{1}$ on $W\left(\boldsymbol{\varphi}_{i}, V\right)$

"Graded" roadmap property $\mathrm{RM}(x)$:

For all connected components C of $V \cap \boldsymbol{R}^{n} \cap \varphi_{1}^{-1}((-\infty, x])$ $C \cap\left(F_{i} \cup W\left(\boldsymbol{\varphi}_{i}, V\right)\right)$ is non-empty and connected

Algebraic Puiseux Series

Proof of the new connectivity result

Non-negative proper polynomial map

$$
\begin{array}{cccc}
\boldsymbol{\varphi}_{i}: & \mathbb{C}^{n} & \longrightarrow & \mathbb{C}^{i} \\
& \boldsymbol{x} & \mapsto & \left(\psi_{1}(\boldsymbol{x}), \ldots, \psi_{i}(\boldsymbol{x})\right)
\end{array}
$$

- $W\left(\boldsymbol{\varphi}_{i}, V\right)$ generalized polar variety
- $F_{i}=\boldsymbol{\varphi}_{i-1}^{-1}\left(\boldsymbol{\varphi}_{i-1}(K)\right) \cap V$ critical fibers.
- $K=$ critical points of $\boldsymbol{\varphi}_{1}$ on $W\left(\boldsymbol{\varphi}_{i}, V\right)$

"Graded" roadmap property $\mathrm{RM}(x)$:

For all connected components C of $V \cap \boldsymbol{R}^{n} \cap \varphi_{1}^{-1}((-\infty, x])$ $C \cap\left(F_{i} \cup W\left(\boldsymbol{\varphi}_{i}, V\right)\right)$ is non-empty and connected

Proof of the new connectivity result

Non-negative proper polynomial map

$$
\begin{array}{cccc}
\boldsymbol{\varphi}_{i}: & \mathbb{C}^{n} & \longrightarrow & \mathbb{C}^{i} \\
& \boldsymbol{x} & \mapsto & \left(\psi_{1}(\boldsymbol{x}), \ldots, \psi_{i}(\boldsymbol{x})\right)
\end{array}
$$

- $W\left(\boldsymbol{\varphi}_{i}, V\right)$ generalized polar variety
- $F_{i}=\boldsymbol{\varphi}_{i-1}^{-1}\left(\boldsymbol{\varphi}_{i-1}(K)\right) \cap V$ critical fibers.
- $K=$ critical points of $\boldsymbol{\varphi}_{1}$ on $W\left(\boldsymbol{\varphi}_{i}, V\right)$
"Graded" roadmap property $\mathrm{RM}(\mathrm{x})$:
For all connected components C of $V \cap \boldsymbol{R}^{n} \cap \varphi_{1}^{-1}((-\infty, x])$ $C \cap\left(F_{i} \cup W\left(\boldsymbol{\varphi}_{i}, V\right)\right)$ is non-empty and connected

Proof of the new connectivity result

Non-negative proper polynomial map

$$
\begin{array}{cccc}
\boldsymbol{\varphi}_{i}: & \mathbb{C}^{n} & \longrightarrow & \mathbb{C}^{i} \\
& \boldsymbol{x} & \mapsto & \left(\psi_{1}(\boldsymbol{x}), \ldots, \psi_{i}(\boldsymbol{x})\right)
\end{array}
$$

- $W\left(\boldsymbol{\varphi}_{i}, V\right)$ generalized polar variety
- $F_{i}=\boldsymbol{\varphi}_{i-1}^{-1}\left(\boldsymbol{\varphi}_{i-1}(K)\right) \cap V$ critical fibers.
- $K=$ critical points of $\boldsymbol{\varphi}_{1}$ on $W\left(\boldsymbol{\varphi}_{i}, V\right)$

Roadmap property RM:

For all connected components C of V $C \cap\left(F_{i} \cup W\left(\boldsymbol{\varphi}_{i}, V\right)\right)$ is non-empty and connected

Genericity assumptions

Data

$\mathscr{C} \subset \mathbb{C}^{n}$ algebraic curve
$\pi_{3}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{3}$ projection on a generic 3D space
$\pi_{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{2}$ projection on a generic plane

Genericity assumptions

Genericity assumptions

Data

$\mathscr{C} \subset \mathbb{C}^{n}$ algebraic curve
$\pi_{3}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{3}$ projection on a generic 3 D space $\pi_{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{2}$ projection on a generic plane

Genericity assumptions

$\left(\mathrm{H}_{1}\right) \pi_{2}: \mathscr{C} \rightarrow \pi_{2}(\mathscr{C})$ is birational
$\left(\mathrm{H}_{2}\right) \pi_{3}: \mathscr{C} \rightarrow \pi_{3}(\mathscr{C})$ bijective

Genericity assumptions

Data

$\mathscr{C} \subset \mathbb{C}^{n}$ algebraic curve
$\pi_{3}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{3}$ projection on a generic 3 D space $\pi_{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{2}$ projection on a generic plane

Genericity assumptions

$\left(\mathrm{H}_{1}\right) \pi_{2}: \mathscr{C} \rightarrow \pi_{2}(\mathscr{C})$ is birational
$\left(\mathrm{H}_{2}\right) \pi_{3}: \mathscr{C} \rightarrow \pi_{3}(\mathscr{C})$ bijective

[Shafarevich, '13]

Genericity assumptions

Data

$\mathscr{C} \subset \mathbb{C}^{n}$ algebraic curve
$\pi_{3}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{3}$ projection on a generic 3 D space $\pi_{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{2}$ projection on a generic plane

Genericity assumptions

$\left(\mathrm{H}_{1}\right) \pi_{2}: \mathscr{C} \rightarrow \pi_{2}(\mathscr{C})$ is birational
$\left(\mathrm{H}_{2}\right) \pi_{3}: \mathscr{C} \rightarrow \pi_{3}(\mathscr{C})$ bijective
$\left(\mathrm{H}_{3}\right)$ Overlaps involve at most two points
$\left(\mathrm{H}_{4}\right)$ Overlaps introduce only nodes

Genericity assumptions

Data

$\mathscr{C} \subset \mathbb{C}^{n}$ algebraic curve
$\pi_{3}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{3}$ projection on a generic 3 D space $\pi_{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{2}$ projection on a generic plane

Genericity assumptions

$\left(\mathrm{H}_{1}\right) \pi_{2}: \mathscr{C} \rightarrow \pi_{2}(\mathscr{C})$ is birational
$\left(\mathrm{H}_{2}\right) \pi_{3}: \mathscr{C} \rightarrow \pi_{3}(\mathscr{C})$ bijective
$\left(\mathrm{H}_{3}\right)$ Overlaps involve at most two points
$\left(\mathrm{H}_{4}\right)$ Overlaps introduce only nodes

TriSecants are exceptional secants
Proof: Trisecant lemma for singular projective curves

$\left[\begin{array}{l}\text { Kaminski } \\ \text { Kanel-Belov } \\ \text { Teicher; '08 }\end{array}\right]$

Genericity assumptions

Data

$\mathscr{C} \subset \mathbb{C}^{n}$ algebraic curve
$\pi_{3}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{3}$ projection on a generic 3 D space $\pi_{2}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{2}$ projection on a generic plane

Genericity assumptions

$\left(\mathrm{H}_{1}\right) \pi_{2}: \mathscr{C} \rightarrow \pi_{2}(\mathscr{C})$ is birational
$\left(\mathrm{H}_{2}\right) \pi_{3}: \mathscr{C} \rightarrow \pi_{3}(\mathscr{C})$ bijective
$\left(\mathrm{H}_{3}\right)$ Overlaps involve at most two points
$\left(\mathrm{H}_{4}\right)$ Overlaps introduce only nodes

Secants with coplanar tangents are exceptional secants
Proof: Generalize results from literature

Witness apparent singularities

- $\mathscr{R}=\left(\omega, \rho_{3}, \ldots, \rho_{n}\right) \subset \mathbb{Z}[x, y]$ encoding $\mathscr{C} \subset \mathbb{C}^{n}$ in generic position;
- $\mathcal{A}(x, y)=\partial_{x_{2}}^{2} \omega \cdot \partial_{x_{1}} \rho_{3}-\partial_{x_{1} x_{2}}^{2} \omega \cdot \partial_{x_{2}} \rho_{3} \in \mathbb{Z}[x, y]$

Witness apparent singularities

- $\mathscr{R}=\left(\omega, \rho_{3}, \ldots, \rho_{n}\right) \subset \mathbb{Z}[x, y]$ encoding $\mathscr{C} \subset \mathbb{C}^{n}$ in generic position;
- $\mathcal{A}(x, y)=\partial_{x_{2}}^{2} \omega \cdot \partial_{x_{1}} \rho_{3}-\partial_{x_{1} x_{2}}^{2} \omega \cdot \partial_{x_{2}} \rho_{3} \in \mathbb{Z}[x, y]$

Proposition - Generalization of [El Kahoui; '08]

A node (α, β) is an apparent singularity if and only if $\mathcal{A}(\alpha, \beta) \neq 0$

Witness apparent singularities

- $\mathscr{R}=\left(\omega, \rho_{3}, \ldots, \rho_{n}\right) \subset \mathbb{Z}[x, y]$ encoding $\mathscr{C} \subset \mathbb{C}^{n}$ in generic position;
- $\mathcal{A}(x, y)=\partial_{x_{2}}^{2} \omega \cdot \partial_{x_{1}} \rho_{3}-\partial_{x_{1} x_{2}}^{2} \omega \cdot \partial_{x_{2}} \rho_{3} \in \mathbb{Z}[x, y]$

Proposition - Generalization of [El Kahoui; '08]

A node (α, β) is an apparent singularity if and only if $\mathcal{A}(\alpha, \beta) \neq 0$

Computational aspect 8

1. Non-vanishing can be tested using gcd computations
2. Gcd computations can be done modulo prime numbers

Lift connectivity

Recover connectivity ambiguity

At each vertex associated to an apparent singularities, operate two steps

$1^{\text {st }}$ step
Identify opposite branches

Computing the topology of plane curves

Computing the topology of plane curves

Cylindrical algebraic decomposition
Decompose the plane into cylinders where the topology of the curve can be computed

Computing the topology of plane curves

Cylindrical algebraic decomposition
Decompose the plane into cylinders where the topology of the curve can be computed

Morse theory

Topology changes at x-critical values

Computing the topology of plane curves

Isolating critical values
Isolation roots of the resultant of two bivariate polynomials

$$
\begin{array}{|cc|}
\hline \text { Complexity: } \tilde{O}\left(\delta^{5}(\delta+\tau)\right) & \left.\begin{array}{c}
\text { [Kobel, Sagraloff; '15] } \\
\text { D.Diatta, S.Diatta, } \\
\text { Rouiller, Roy, Sagraloff; }
\end{array}\right]
\end{array}
$$

Computing the topology of plane curves

Isolating critical values
Isolation roots of the resultant of two bivariate polynomials

$$
\left.\begin{array}{|cc|}
\hline \text { Complexity: } \tilde{O}\left(\delta^{5}(\delta+\tau)\right)
\end{array} \begin{array}{c}
{[\text { Kobel, Sagraloff; '15] }} \\
\text { D.Diatta, S.Diatta, } \\
\text { Rouiller, Roy, Sagraloff; '22 }
\end{array}\right]
$$

Computing the topology of plane curves

Isolating critical values
Isolation roots of the resultant of two bivariate polynomials

$$
\text { Complexity: } \tilde{O}\left(\delta^{5}(\delta+\tau)\right)
$$

[Kobel, Sagraloff; '15]
$\left[\begin{array}{c}\text { D.Diatta, S.Diatta, } \\ \text { Rouiller, Roy, Sagraloff; } \\ \text { '22 }\end{array}\right]$

Computing the topology of plane curves

Isolating critical values
Isolation roots of the resultant of two bivariate polynomials

$$
\text { Complexity: } \tilde{O}\left(\delta^{5}(\delta+\tau)\right)
$$

[Kobel, Sagraloff; '15]
$\left[\begin{array}{c}\text { D.Diatta, S.Diatta, } \\ \text { Rouiller, Roy, Sagraloff; } \\ \text { '22 }\end{array}\right]$

Computing the topology of plane curves

Isolating critical values
Isolation roots of the resultant of two bivariate polynomials
Complexity: $\tilde{O}\left(\delta^{5}(\delta+\tau)\right)$
[Kobel, Sagraloff; '15]
$\left[\begin{array}{c}\text { D.Diatta, S.Diatta, } \\ \text { Rouiller, Roy, Sagraloff; } \\ \text { '22 }\end{array}\right]$

Computing the topology of plane curves

Isolating critical boxes

Isolation roots of univariate polynomials with algebraic coefficients

$$
\text { Complexity: } \tilde{O}\left(\delta^{5}(\delta+\tau)\right)
$$

Computing the topology of plane curves

Isolating critical boxes

Isolation roots of univariate polynomials with algebraic coefficients

$$
\text { Complexity: } \tilde{O}\left(\delta^{5}(\delta+\tau)\right)
$$

Computing the topology of plane curves

Isolating critical boxes

Isolation roots of univariate polynomials with algebraic coefficients

$$
\text { Complexity: } \tilde{O}\left(\delta^{5}(\delta+\tau)\right)
$$

Computing the topology of plane curves

Isolating critical boxes

Isolation roots of univariate polynomials with algebraic coefficients

$$
\text { Complexity: } \tilde{O}\left(\delta^{5}(\delta+\tau)\right)
$$

Computing the topology of plane curves

Isolating critical boxes

Isolation roots of univariate polynomials with algebraic coefficients

$$
\text { Complexity: } \tilde{O}\left(\delta^{5}(\delta+\tau)\right)
$$

Computing the topology of plane curves

Isolating critical boxes

Isolation roots of univariate polynomials with algebraic coefficients

$$
\text { Complexity: } \tilde{O}\left(\delta^{5}(\delta+\tau)\right)
$$

Computing the topology of plane curves

Isolating critical boxes
Isolation roots of univariate polynomials with algebraic coefficients

$$
\text { Complexity: } \tilde{O}\left(\delta^{5}(\delta+\tau)\right)
$$

Computing the topology of plane curves

Computing the topology of plane curves

Quantitative bounds on algebraic sets

Real algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{R}^{n} \\
\text { where } \\
\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
\end{gathered}
$$

Real trace of algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \\
\text { where } \\
V=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{C}^{n}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Irreducible decomposition } \\
& \qquad V=V_{1} \cup \cdots \cup V_{M} \quad V_{i} \text { irreducible }
\end{aligned}
$$

Quantitative bounds on algebraic sets

Real algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{R}^{n} \\
\text { where } \\
\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
\end{gathered}
$$

$$
\Longleftrightarrow
$$

Real trace of algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \\
\text { where } \\
V=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{C}^{n}
\end{gathered}
$$

Irreducible decomposition

$$
V=V_{1} \cup \cdots \cup V_{M} \quad V_{i} \text { irreducible }
$$

Dimension and degree

Consider $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}$ generic hyperplanes:
$\operatorname{dim} V_{i}=$ smallest $d \leq n$ such that:
$\operatorname{deg} V_{i}=\operatorname{card}\left(V \cap \mathcal{H}_{1} \cap \ldots \cap \mathcal{H}_{d}\right)<+\infty$

Quantitative bounds on algebraic sets

Real algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{R}^{n} \\
\text { where } \\
\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
\end{gathered}
$$

Real trace of algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \\
\text { where } \\
V=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{C}^{n}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Irreducible decomposition } \\
& \qquad V=V_{1} \cup \cdots \cup V_{M} \quad V_{i} \text { irreducible }
\end{aligned}
$$

```
Dimension and degree
Consider }\mp@subsup{\mathcal{H}}{1}{},\ldots,\mp@subsup{\mathcal{H}}{n}{}\mathrm{ generic hyperplanes:
dim}\mp@subsup{V}{i}{}=\mathrm{ smallest d}\leqn\mathrm{ such that:
deg}\mp@subsup{V}{i}{}=\operatorname{card}(V\cap\mp@subsup{\mathcal{H}}{1}{}\cap\ldots\cap\mp@subsup{\mathcal{H}}{d}{})<+
```

```
Union
dim}V=\operatorname{max}{\operatorname{dim}\mp@subsup{V}{1}{},\ldots,\operatorname{dim}\mp@subsup{V}{M}{}
deg}V=\operatorname{deg}\mp@subsup{V}{1}{}+\ldots+\operatorname{deg}\mp@subsup{V}{M}{
```


Quantitative bounds on algebraic sets

Real algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{R}^{n} \\
\text { where } \\
\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
\end{gathered}
$$

Real trace of algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \\
\text { where } \\
V=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{C}^{n}
\end{gathered}
$$

Irreducible decomposition

$$
V=V_{1} \cup \cdots \cup V_{M} \quad V_{i} \text { irreducible }
$$

```
Dimension and degree
Consider }\mp@subsup{\mathcal{H}}{1}{},\ldots,\mp@subsup{\mathcal{H}}{n}{}\mathrm{ generic hyperplanes:
dim}\mp@subsup{V}{i}{}=\mathrm{ smallest d}\leqn\mathrm{ such that:
deg}\mp@subsup{V}{i}{}=\operatorname{card}(V\cap\mp@subsup{\mathcal{H}}{1}{}\cap\ldots\cap\mp@subsup{\mathcal{H}}{d}{})<+
```


Union

$\operatorname{dim} V=\max \left\{\operatorname{dim} V_{1}, \ldots, \operatorname{dim} V_{M}\right\}$
$\operatorname{deg} V=\operatorname{deg} V_{1}+\ldots+\operatorname{deg} V_{M}$

$$
\begin{gathered}
V=\left\{p_{1}, \ldots, p_{15}\right\} \\
\operatorname{deg} V=15
\end{gathered}
$$

Quantitative bounds on algebraic sets

Real algebraic sets

$V_{\mathbb{R}}=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{R}^{n}$
where
$\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

Real trace of algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \\
\text { where } \\
V=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{C}^{n}
\end{gathered}
$$

Irreducible decomposition

$$
V=V_{1} \cup \cdots \cup V_{M} \quad V_{i} \text { irreducible }
$$

Dimension and degree
 Consider $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}$ generic hyperplanes:
 $\operatorname{dim} V_{i}=$ smallest $d \leq n$ such that:
 $\operatorname{deg} V_{i}=\operatorname{card}\left(V \cap \mathcal{H}_{1} \cap \ldots \cap \mathcal{H}_{d}\right)<+\infty$

Union

$\operatorname{dim} V=\max \left\{\operatorname{dim} V_{1}, \ldots, \operatorname{dim} V_{M}\right\}$
$\operatorname{deg} V=\operatorname{deg} V_{1}+\ldots+\operatorname{deg} V_{M}$

$$
\begin{aligned}
& \boldsymbol{V}\left(x^{2}+y^{2}-1, z\right) \\
& \quad \Rightarrow \operatorname{deg} V=2
\end{aligned}
$$

Quantitative bounds on algebraic sets

Real algebraic sets

$V_{\mathbb{R}}=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{R}^{n}$
where
$\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

Real trace of algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \\
\text { where } \\
V=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{C}^{n}
\end{gathered}
$$

Irreducible decomposition

$$
V=V_{1} \cup \cdots \cup V_{M} \quad V_{i} \text { irreducible }
$$

Dimension and degree

Consider $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}$ generic hyperplanes:
$\operatorname{dim} V_{i}=$ smallest $d \leq n$ such that:
$\operatorname{deg} V_{i}=\operatorname{card}\left(V \cap \mathcal{H}_{1} \cap \ldots \cap \mathcal{H}_{d}\right)<+\infty$

Union

$\operatorname{dim} V=\max \left\{\operatorname{dim} V_{1}, \ldots, \operatorname{dim} V_{M}\right\}$
$\operatorname{deg} V=\operatorname{deg} V_{1}+\ldots+\operatorname{deg} V_{M}$

Bézout Bound

$$
\operatorname{deg} V \leq \prod_{j=1}^{p} \operatorname{deg} f_{j}
$$

$$
\begin{gathered}
\boldsymbol{V}\left(x^{2}+y^{2}-1,2 z^{2}-x-1\right) \\
\Rightarrow \operatorname{deg} V=4
\end{gathered}
$$

Quantitative bounds on algebraic sets

Real algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{R}^{n} \\
\text { where } \\
\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
\end{gathered}
$$

Real trace of algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \\
\text { where } \\
V=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{C}^{n}
\end{gathered}
$$

Irreducible decomposition

$$
V=V_{1} \cup \cdots \cup V_{M} \quad V_{i} \text { irreducible }
$$

Dimension and degree

Consider $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}$ generic hyperplanes:
$\operatorname{dim} V_{i}=$ smallest $d \leq n$ such that:
$\operatorname{deg} V_{i}=\operatorname{card}\left(V \cap \mathcal{H}_{1} \cap \ldots \cap \mathcal{H}_{d}\right)<+\infty$

```
Union
dim}V=\operatorname{max}{\operatorname{dim}\mp@subsup{V}{1}{},\ldots,\operatorname{dim}\mp@subsup{V}{M}{}
deg}V=\operatorname{deg}\mp@subsup{V}{1}{}+\ldots+\operatorname{deg}\mp@subsup{V}{M}{
```


Bézout Bound

$$
\operatorname{deg} V \leq \prod_{j=1}^{p} \operatorname{deg} f_{j}
$$

$$
\boldsymbol{V}\left(\left(x^{2}+y^{2}+z^{2}+\alpha\right)^{2}-\beta\left(x^{2}+y^{2}\right)\right)
$$

Quantitative bounds on algebraic sets

Real algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{R}^{n} \\
\text { where } \\
\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
\end{gathered}
$$

Real trace of algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \\
\text { where } \\
V=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{C}^{n}
\end{gathered}
$$

Irreducible decomposition

$$
V=V_{1} \cup \cdots \cup V_{M} \quad V_{i} \text { irreducible }
$$

Dimension and degree

Consider $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}$ generic hyperplanes:
$\operatorname{dim} V_{i}=$ smallest $d \leq n$ such that:
$\operatorname{deg} V_{i}=\operatorname{card}\left(V \cap \mathcal{H}_{1} \cap \ldots \cap \mathcal{H}_{d}\right)<+\infty$

Union

$\operatorname{dim} V=\max \left\{\operatorname{dim} V_{1}, \ldots, \operatorname{dim} V_{M}\right\}$
$\operatorname{deg} V=\operatorname{deg} V_{1}+\ldots+\operatorname{deg} V_{M}$

Bézout Bound

$$
\operatorname{deg} V \leq \prod_{j=1}^{p} \operatorname{deg} f_{j}
$$

$$
\boldsymbol{V}\left(\left(x^{2}+y^{2}+z^{2}+\alpha\right)^{2}-\beta\left(x^{2}+y^{2}\right)\right)
$$

Quantitative bounds on algebraic sets

Real algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{R}^{n} \\
\text { where } \\
\left(f_{1}, \ldots, f_{p}\right) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
\end{gathered}
$$

Real trace of algebraic sets

$$
\begin{gathered}
V_{\mathbb{R}}=V \cap \mathbb{R}^{n} \\
\text { where } \\
V=\left\{f_{1}=\cdots f_{p}=0\right\} \subset \mathbb{C}^{n}
\end{gathered}
$$

Irreducible decomposition

$$
V=V_{1} \cup \cdots \cup V_{M} \quad V_{i} \text { irreducible }
$$

Dimension and degree

Consider $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}$ generic hyperplanes:
$\operatorname{dim} V_{i}=$ smallest $d \leq n$ such that:
$\operatorname{deg} V_{i}=\operatorname{card}\left(V \cap \mathcal{H}_{1} \cap \ldots \cap \mathcal{H}_{d}\right)<+\infty$

Union

$\operatorname{dim} V=\max \left\{\operatorname{dim} V_{1}, \ldots, \operatorname{dim} V_{M}\right\}$
$\operatorname{deg} V=\operatorname{deg} V_{1}+\ldots+\operatorname{deg} V_{M}$

Bézout Bound

$$
\operatorname{deg} V \leq \prod_{j=1}^{p} \operatorname{deg} f_{j}
$$

$$
\begin{gathered}
\boldsymbol{V}\left(\left(x^{2}+y^{2}+z^{2}+\alpha\right)^{2}-\beta\left(x^{2}+y^{2}\right)\right) \\
\quad \Rightarrow \operatorname{deg} V=4
\end{gathered}
$$

Reduction

$$
\text { Consider } S=\left\{\boldsymbol{x} \in \boldsymbol{R}^{n} \mid f(\boldsymbol{x}) \neq 0\right\}
$$

Assumption 1: S is bounded.

For $r>0$ large enough,

$$
\operatorname{RoadMap}(S \cap \overline{\mathcal{B}}(0, r))=\operatorname{RoadMap}(S)
$$

Assumption 2: S is an algebraic set

[Canny, 1993]
For $\varepsilon>0$ small enough,

$$
\begin{gathered}
\operatorname{Roadmap}(\{f \geq \varepsilon\} \cap \overline{\mathcal{B}}(0, r)) \\
\bigcup \\
\text { Roadmap }(\{f \leq-\varepsilon\} \cap \overline{\mathcal{B}}(0, r))
\end{gathered}
$$

Boundaries

Sufficient to compute the intersection of $S \cap \overline{\mathcal{B}}(0, r)$ with the roadmaps of

$$
\begin{aligned}
S_{\varepsilon}^{+} & =\boldsymbol{V}(f-\varepsilon), \quad S_{\varepsilon, r}^{+}=\boldsymbol{V}\left(f-\varepsilon,\|\boldsymbol{x}\|^{2}-r\right), \quad S_{r}^{+}=\boldsymbol{V}\left(\|\boldsymbol{x}\|^{2}-r\right) \\
\text { and } \quad S_{\varepsilon}^{-} & =\boldsymbol{V}(f+\varepsilon), \quad S_{\varepsilon, r}^{-}=\boldsymbol{V}\left(f+\varepsilon,\|\boldsymbol{x}\|^{2}-r\right), \quad S_{r}^{-}=\boldsymbol{V}\left(\|\boldsymbol{x}\|^{2}-r\right) .
\end{aligned}
$$

Computation of critical loci

Critical points

\boldsymbol{x} critical point of π_{i} on $V \Longleftrightarrow\left\{\boldsymbol{x} \in \operatorname{reg}(V) \mid \pi_{i}\left(T_{\boldsymbol{x}} V\right) \neq \boldsymbol{C}^{i}\right\}=W^{\circ}\left(\pi_{i}, V\right)$

An effective characterisation

\boldsymbol{x} critical point of π_{i} on $V \quad J_{i}=\operatorname{Jac}\left(\boldsymbol{h},\left[x_{i+1}, \ldots, x_{n}\right]\right)$ where $\boldsymbol{h} \in \boldsymbol{I}(V) \subset \boldsymbol{R}\left[x_{1}, \ldots, x_{n}\right]$ (Lemma) $\downarrow c=n-\operatorname{dim}(V)$
$\left\{\boldsymbol{x} \in V \mid \operatorname{rank} J_{i}(\boldsymbol{x})<c\right\} \longrightarrow$ All c-minors of $J_{i}(\boldsymbol{x})$ vanish at \boldsymbol{x}

Computation of critical loci

Critical points

\boldsymbol{x} critical point of π_{i} on $V \Longleftrightarrow\left\{\boldsymbol{x} \in \operatorname{reg}(V) \mid \pi_{i}\left(T_{\boldsymbol{x}} V\right) \neq \boldsymbol{C}^{i}\right\}=W^{\circ}\left(\pi_{i}, V\right)$

An effective characterisation

$$
\begin{aligned}
& \boldsymbol{x} \text { critical point of } \pi_{i} \text { on } V J_{i}=\operatorname{Jac}\left(\boldsymbol{h},\left[x_{i+1}, \ldots, x_{n}\right]\right) \text { where } \boldsymbol{h} \in \boldsymbol{I}(V) \subset \boldsymbol{R}\left[x_{1}, \ldots, x_{n}\right] \\
& \text { (Lemma) } \downarrow \\
& \downarrow \text { Determinantal ideal } \\
&\left\{\boldsymbol{x} \in V \mid \operatorname{rank} J_{i}(\boldsymbol{x})<c\right\} \text { All c-minors of } J_{i}(\boldsymbol{x}) \text { vanish at } \boldsymbol{x}
\end{aligned}
$$

Computation of critical loci

Critical points

\boldsymbol{x} critical point of π_{i} on $V \Longleftrightarrow\left\{\boldsymbol{x} \in \operatorname{reg}(V) \mid \pi_{i}\left(T_{\boldsymbol{x}} V\right) \neq \boldsymbol{C}^{i}\right\}=W^{\circ}\left(\pi_{i}, V\right)$

An effective characterisation

$$
\boldsymbol{x} \text { critical point of } \pi_{i} \text { on } V \quad J_{i}=\operatorname{Jac}\left(\boldsymbol{h},\left[x_{i+1}, \ldots, x_{n}\right]\right) \text { where } \boldsymbol{h} \in \boldsymbol{I}(V) \subset \boldsymbol{R}\left[x_{1}, \ldots, x_{n}\right]
$$

$$
\begin{aligned}
\text { (Lemma) } \downarrow c=n-\operatorname{dim}(V) & \text { Determinantal ideal } \\
\left\{\boldsymbol{x} \in V \mid \operatorname{rank} J_{i}(\boldsymbol{x})<c\right\} & \text { All } c \text {-minors of } J_{i}(\boldsymbol{x}) \text { vanish at } \boldsymbol{x}
\end{aligned}
$$

Computation of critical loci

Critical points

\boldsymbol{x} critical point of π_{i} on $V \Longleftrightarrow\left\{\boldsymbol{x} \in \operatorname{reg}(V) \mid \pi_{i}\left(T_{\boldsymbol{x}} V\right) \neq \boldsymbol{C}^{i}\right\}=W^{\circ}\left(\pi_{i}, V\right)$

An effective characterisation

$$
\begin{aligned}
& \boldsymbol{x} \text { critical point of } \pi_{i} \text { on } V J_{i}=\operatorname{Jac}\left(\boldsymbol{h},\left[x_{i+1}, \ldots, x_{n}\right]\right) \text { where } \boldsymbol{h} \in \boldsymbol{I}(V) \subset \boldsymbol{R}\left[x_{1}, \ldots, x_{n}\right] \\
& \text { (Lemma) } \downarrow c=n-\operatorname{dim}(V) \\
&\left\{\boldsymbol{x} \in V \mid \operatorname{rank} J_{i}(\boldsymbol{x})<c\right\} \text { Determinantal ideal } \\
& \hline \text { All } c \text {-minors of } J_{i}(\boldsymbol{x}) \text { vanish at } \boldsymbol{x}
\end{aligned}
$$

Two kinds of critical points

Splitting in two sets \Longrightarrow Degree reduction

First results on the PUMA-type robot

Parameters

Parameters $\left(a_{2}, a_{3}, d_{3}, d_{4}, d_{5}\right)=(114,40,40,104,6) \quad($ Generic in in $\{1, \ldots, 128\})$

Thresholds

$(\varepsilon, r)=\left(2^{-16}, 2^{9}\right)$

First step - computation of a parametrisation of critical locus over the algebraic sets

Alg. set	Dimension				Degree			Real points			Timings	
	S_{ε}^{+}	$S_{\varepsilon, r}^{+}$	S_{r}^{+}	S_{ε}^{+}	$S_{\varepsilon, r}^{+}$	S_{r}^{+}	S_{ε}^{+}	$S_{\varepsilon, r}^{+}$	S_{r}^{+}	msolve	MAPLE	
V	3	2	3	11	22	2				0.0 min	0.0 min	
$K(1, V)$	0	0	0	400	934	2	88	116	2	4.8 min	84 min	
$K_{\text {vert }}(2, V)$	0	0	0	354	924	0	8	66	0	5.3 min	49 min	
$K(2, V)$	1	1	1	220	182	2				77 min	280 min	

Library msolve

New library for solving zero-dimensional ideals.
Performances bring back the state-of-the art to the scope of laptops.

First results on the PUMA-type robot

Parameters

Parameters $\left(a_{2}, a_{3}, d_{3}, d_{4}, d_{5}\right)=(114,40,40,104,6) \quad($ Generic in in $\{1, \ldots, 128\})$

Thresholds

$$
(\varepsilon, r)=\left(2^{-16}, 2^{9}\right)
$$

First step - computation of a parametrisation of critical locus over the algebraic sets with msolve

Alg. set	Dimension			Degree			Real points			Timings (min.)		
	S_{ε}^{+}	$S_{\varepsilon, r}^{+}$	S_{r}^{+}									
V	3	2	3	11	22	2				0	0	0
$K(1, V)$	0	0	0	400	934	2	88	116	2	1.8	3.1	0
$K_{\text {vert }}(2, V)$	0	0	0	354	924	0	8	66	0	1.9	3.4	0
$K(2, V)$	1	1	1	220	182	2				108	39	0

Library msolve

New library for solving zero-dimensional ideals.
Performances bring back the state-of-the art to the scope of laptops.

First results on the PUMA-type robot

Parameters

Parameters $\left(a_{2}, a_{3}, d_{3}, d_{4}, d_{5}\right)=(114,40,40,104,6) \quad($ Generic in in $\{1, \ldots, 128\})$

Thresholds

$$
(\varepsilon, r)=\left(2^{-16}, 2^{9}\right)
$$

First step - computation of a parametrisation of critical locus over the algebraic sets with msolve

Alg. set	Dimension				Degree				Real points			
Timings (min.)												
	S_{ε}^{+}	$S_{\varepsilon, r}^{+}$	S_{r}^{+}									
V	3	2	3	11	22	2				0	0	0
$K(1, V)$	0	0	0	400	934	2	88	116	2	1.8	3.1	0
$K_{\text {vert }}(2, V)$	0	0	0	354	924	0	8	66	0	1.9	3.4	0
$K(2, V)$	1	1	1	220	182	2				108	39	0

Recursive step - critical locus over fibers of S_{ε}^{+}.

	There are $88+8=\mathbf{9 6}$ fibers.			Timings	
Alg. set	Dimension	Degree	Real points	One fiber	All fibers
F_{ε}	2	7		3 s	4.75 min
$K\left(1, F_{\varepsilon}\right)$	0	38	14	2 s	3.2 min
$K_{\text {vert }}\left(2, F_{\varepsilon}\right)$	0	0	0	0 s	0.0 min
$K\left(2, F_{\varepsilon}\right)$	1	21		3 s	4.8 min

Library msolve

https://msolve.lip6.fr
New library for solving zero-dimensional ideals.
Performances bring back the state-of-the art to the scope of laptops.

First results on the PUMA-type robot

Parameters

Parameters $\left(a_{2}, a_{3}, d_{3}, d_{4}, d_{5}\right)=(114,40,40,104,6) \quad($ Generic in in $\{1, \ldots, 128\})$

Thresholds

$$
(\varepsilon, r)=\left(2^{-16}, 2^{9}\right)
$$

First step - computation of a parametrisation of critical locus over the algebraic sets with msolve

Alg. set	Dimension			Degree				Real points				Timings (min.)		
	S_{ε}^{+}	$S_{\varepsilon, r}^{+}$	S_{r}^{+}											
V	3	2	3	11	22	2				0	0	0		
$K(1, V)$	0	0	0	400	934	2	88	116	2	1.8	3.1	0		
$K_{\text {vert }}(2, V)$	0	0	0	354	924	0	8	66	0	1.9	3.4	0		
$K(2, V)$	1	1	1	220	182	2				108	39	0		

Recursive step - critical locus over fibers of S_{ε}^{+}.

	There are $88+8=\mathbf{9 6}$ fibers.	Timings			
Alg. set	Dimension	Degree	Real points	One fiber	All fibers
F_{ε}	2	7		3 s	4.75 min
$K\left(1, F_{\varepsilon}\right)$	0	38	14	2 s	3.2 min
$K_{\text {vert }}\left(2, F_{\varepsilon}\right)$	0	0	0	0 s	0.0 min
$K\left(2, F_{\varepsilon}\right)$	1	21		3 s	4.8 min

Roadmap
Degree: $\mathbf{8 1 6 8}$
Time: $\mathbf{3 h 2 2}$

Library msolve

https://msolve.lip6.fr
New library for solving zero-dimensional ideals.
Performances bring back the state-of-the art to the scope of laptops.

Hyperlinks

Cuspidality

```
Slides: Cusp definition Cusp resolution
Bonus: Thom's Correction Algorithm Application Sample Points Connectivity queries
```


Roadmap

Slides: Canny's strategy Roadmap state-of-the-art Genericity assumptions Algorithm

Bonus: Proof of the new connectivity result

PUMA robot

Bonus: Reduction to alg. sets Splitting critical loci Computational details

Curves

| Slides: Rational Parametrization | State-of-the-art Algorithm |
| :--- | :--- | :--- |
| Bonus: Genericity assumptions | App sing. identification Node resolution Plane topology |

Misc

Slides: Main contributions Perspectives

Bonus: Quantitative bounds on alg. sets

[^0]: Fundamental problems in computational real algebraic geometry
 (P) compute a projection: one block quantifier elimination
 (S) compute at least one point in each connected component
 (C) decide if two points lie in the same connected component
 (N) count the number of connected components

