

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirements

Software Engineering

Computer Science 520/620
Includes material Adapted from Prof. Leon Osterweil,

Prof. Bertrand Meyer and IEEE 830-1998 Standard

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirements Specification

“The hardest single part of building a software system is

deciding precisely what to build. No other part of the

conceptual work is as difficult as establishing the

detailed technical requirements, including all the

interfaces to people, to machines, and to other software

systems. No other part of the work so cripples the

resulting system if done wrong. No other part is more

difficult to rectify later.”

• Fred Brooks: No Silver Bullet - Essence and Accident in Software Engineering, in

Computer (IEEE), vol. 20, no. 4, pages 10-19, April 1987.

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Recall

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Barry W. Boehm: Software Engineering Economics, Prentice

Hall, 1981.

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirements Spec.

Test Plan

Test Results must
match required behavior

Design

Characteristics of
System to be
 built must
match required
characteristics

Hi Level

Low
level

Code

Code must
implement
design

Hi level design must
show HOW requirements
can be met

consistent
views

Test plan
exercises
this code

This is the anchor

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirements: Goals and Purposes

• Clarify needs before plunging into design

–Customer “knows” what is wanted

–But usually doesn't know how to say it

–Weak sense of what can be achieved

• Clarify acceptance criteria

–How to know it really delivers what was wanted

–Decide what the system should not do

• Serve as guide to developers, testers, customers,
maintainers

–“Baselining” requirements

Why “do requirements”?

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirements Spec.

Test Plan

Test Results must
match required behavior

Design

Characteristics of
System to be
 built must
match required
characteristics

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirements Spec.
Design

Functional Safety

Performance

Robustness

Accuracy

Modules

Components

Design Decisions

Components

Constraints

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirements Spec.
Design

Characteristics
of system to be
 built must
match required
characteristics

Functional Safety

Performance

Robustness

Accuracy

Modules

Components

Design Decisions

Components

Constraints

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirements

Functional Safety

Performance

Robustness

Accuracy

Testplan

Outputs
Timing

Setup

Knockdown

Timing limit
must meet
performance
requirement

Inputs

Test input/output
behavior must
match functional
requirements

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirements Specification Driven By
Stakeholders and their Questions

• Customers

– What must it do?

• Developers (eg. designers)

– What do I have to get it to do?

• Testers

– What is it supposed to be doing?

– How would I know it if I saw it?

• Users

– What is it supposed to do?

• Others???

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirements Specification Parts

• Introduction/Background

• Functional

• Environmental

• Performance

• Accuracy

• Robustness

• Security

• Safety

Help stakeholders organize their thoughts about needs
by decomposing requirements specification into categories
needs and desires.

 Some examples:

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Background/Introduction

Purpose: Give background/context out of which the
problem arises, and directions in which it is likely to go

Should contain glossary, references

Should give intuition about problem, domain, existing
 solutions, components

Probably best written mostly in natural language

Example: UMass has 20,000 students, slow growth
 next few years
 Semester system
 Existing system that works, but is not great
 Define: FTE, fulltime load, etc.

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Functional

Purpose: Indicate the functional transformations that
 the system will have to compute

Likely to be large and complex, therefore aids to easier
and clearer comprehension are needed

Important to state WHAT the functions are and not HOW
they are to be computed

Promising formalisms: dataflow diag., FSM’s, UML UC

Usually the chief focus of a requirements specification,
 and of requirements formalisms--but non-functional
 requirements are often at least as important

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Environmental

Purpose: Indicate the environment in which the software
 will have to operate

• On which hardware and software will the software run?

• What will be the nature of the user community it will
 have to support?

• With what other manual and automated systems will
 it have to interface correctly?

Example: System is to be interactive
 Most users to be students
 Must run using cellphones, PDAs
 Must print reports on existing forms (?)
 Must interface successfully with existing
 student and administrative databases

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Performance

Purpose: Specify how much computer and human
 resource can be allocated to support the
 execution of the software

How much computer memory can the software use?

How fast must response time be?
 --average case
 --worst case

How long will users wait for batch runs to terminate?

Example: 2 second response time
 overnight printing of all reports
 128 Mbytes available on PDAs
 500 GBytes of disk available

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Accuracy

Purpose: Specify how much tolerance (if any)
 is acceptable in the results

Most important in numerical computations, but...

Often where "optimality" is defined
 eg: what is a "good" game of chess?

Example: Reject scheduling constraints that cause
 more than 10% of all student requests to
 be denied

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Robustness

Purpose: Specify what sorts of abuse the software will
 have to resist, and how it will respond

What kinds of "illegal" inputs might be expected, and what
 should be done about them?

What abnormal environmental conditions might be
 expected?

Example: System must never corrupt any database
 --even after a crash
 System must deny illegal requests politely
 System must not crash due to
 --lack of storage
 --user overload

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Security
Purpose: Specify which data must be protected, in what
 ways, from whom, etc.

Usually there are classes of users--what are they?
 How to distinguish among the users?

Categories of data too.

Matrix (?) to specify what accesses and permissions
 different classes and users will have?

Example: Students cannot:
 --change course assignments
 --cancel courses
 --access data on other students
 Faculty cannot:
 --cancel courses
 --change course assignments
 Faculty can: access some student data: which?
 Administrators can: do pretty much anything...

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Safety

Purpose: Specify what hazards must be avoided

Specify what the software must NEVER be allowed to do

Has some elements of an inverse or negated set of
 requirements

Example: System must never divulge credit card data

 System must never divulge phone contact data

 System must never divulge address or
 data to unauthorized parties

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Not All Go Into All Requirements Specs.

• Some of these may be omitted; some
 emphasized/deemphasized

• Other sorts of requirements may be added/substituted
 eg: reliability, flexibility, portability.......

• Requirements specification provides information needed
 to satisfy needs of all stakeholders

• Different stakeholder mixes determine choices of what goes
 into the requirements spec.
 SOME EXAMPLES OF THESE UNDERLYING NEEDS:

 • Communication
 • Testability
 • Precision
 • Clarity
 • Completeness

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirement Specification Challenges
• Is it Complete? (to the extent required)

– Ultimately impossible to be sure about this

• Is it Consistent? (no internal contradictions)

– Many possible interpretations of this

• Is it unambiguous ? (possible multiple interpretations)

• Is it sufficently precise?

– It is possible to be too precise too

• Is it Feasible?

– If it asks the impossible it would be good to know it

• Is it Even? (consistent levels of detail)

• Is it Understandable? (what does that mean?)

– by all stakeholder groups!

• Is there an implementation bias?

• Is there a good basis for proceeding to design?

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

A Requirement Specification
Is Never Perfect in All (Any?) Aspects

• Imperfections are often understandable, tolerable,
 unavoidable

• Look at real underlying stakeholder needs for the
 requirements specification (communication, clarity,
 precision, modifiability....??)

• Plan requirements content, structure, relations to meet
 these needs

• Requirements specification medium is crucial in helping
 assure needs are met

• Select requirements specification medium to address
 needs

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Natural Language Prose
Requirements Specification

• Write requirements in "plain English"
• Build upon universal base of understanding of natural
 language
• Possible to augment with defined terms
• Use of punctuation for clarification
• Text and word processing systems help automate/
 maintain/alter
Examples:

 All input data sets will be terminated with an end of file record
 System will respond to service requests within 2 seconds
 System will have a friendly user interface
 System will never go into an infinite loop

Problem: How to reason about a natural language reqts. spec?

 How to determine: completeness, unambiguity, etc.?

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Disciplined Use of Natural Language

• Natural response to problems of:
 --imprecision
 --ambiguity
 --consistency (especially when due to size)

• Familiar approaches:
 --Restricted use of defined terms
 --Introduction of structuring (paragraph numbering,
 outline form, templates, etc.)

• Other, earlier examples of disciplined use of natural
 language:
 --Legal documents
 --Recipes

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Data Base Approaches

• Requirement items stored as database entries

• Queries to retrieve information

• Database tools to check for consistency

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

PSL (Relational Database Organization)

DESCRIPTION:
 this process performs those actions needed to interpret
 time cards to produce a pay statement for each hourly employee.;
KEYWORDS: independent;
ATTRIBUTES ARE:
 complexity-level high;
GENERATES: pay-statement, error-listing;
RECEIVES: time-card;
SUBPARTS ARE: hourly-paycheck-validation, hourly-emp-update,
 h-report-entry-generates, hourly-paycheck-production;
PART OF: payroll-processing;
DERIVES: pay-statement;
USING: time-card, hourly-employee-record;
DERIVES: hourly-employee-report;
USING: time-card, hourly-employee-record;
DERIVES: error-listing;
USING: time-card, hourly-employee-record;
PROCEDURE: <<not usually included in a requirements spec.>>
HAPPENS: number-of-payments TIMES-PER pay-period;
TRIGGERED BY: hourly-emp-processing-event;
TERMINATION-CAUSES: new-employee-processing-event;
SECURITY IS: company-only;

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Hierarchical Decomposition Organization

• Requirements Specification as hypertext

• Structure (DAG) of Requirements Elements
 • Child element represents part-of relation

• Requirement Element is a record

• Requirement Element fields carry information as:

• Instances of preset types
• Instances related to others by relations
 -- express consistency rules
 -- define consistency determination
 -- define inconsistency remediation
• Relations among
 -- Requirement elements
 -- Requirement elements and parts of other artifacts
 (e.g., testplan elements, other rqts. representations)

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Functional
Decomposition Rqts. DAG

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Requirement Element:
An Example Structure

NAME

DATE

PARENTS

CHILDREN

ACCURACY

TIMING

FUNCTIONALITY

ROBUSTNESS

LOCAL
DATA

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Multirepresentation Systems

• Have seen that different representations are of different
uses

• One diagram may be useful in different ways to
different stakeholders

• But most stakeholders require a variety of diagrams

• Several different diagrams can be expected to be
needed to satisfy the different stakeholders

• Problems with different views/diagrams

– Are they all representing the same software
product?

– How to assure that they are all consistent with each
other?

– If the product changes, then ALL views must change
correspondingly

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Artifacts are needed in order to
specify functional/behavioral requirements

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Deliverables of the Requirement Phase

• Requirement document

• Development plan

• Test Plan (at least a draft)

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

The IEEE 830-1998 Standard

• ”IEEE Recommended Practice for Software Requirements
Specifications”

• Approved 25 June 1998 (revision of earlier standard)

• Descriptions of the content and the qualities of a good
software requirements specification (SRS).

• Goal: “The SRS should be correct, unambiguous, complete,

consistent, ranked for importance and/or stability, verifiable,
modifiable, traceable.”

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Recommended document structure

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms, and abbreviations (Glossary!)

1.4 References

1.5 Overview

2. Overall description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

3. Specific requirements

Appendixes

Index

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Scope section

• Identify software product to be produced by name (e.g.,
Host DBMS, Report Generator, etc.)

• Explain what the product will and will not do

• Describe application of the software: goals and benefits

• Establish relation with higher-level system requirements if
any

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Product Perspective Section

Describe relation with other products if any.

Examples:

• System interfaces

• User interfaces

• Hardware interfaces

• Software interfaces

• Communications interfaces

• Memory

• Operations

• Site adaptation requirements

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Constraints Section

Describe any properties that will limit the developers’ options

Examples:

• Regulatory policies

• Hardware limitations (e.g., signal timing requirements)

• Interfaces to other applications

• Parallel operation

• Audit functions

• Control functions

• Higher-order language requirements

• Reliability requirements

• Criticality of the application

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Specific Requirements Section

This section brings requirements to a level of detail making

them usable by designers and testers.

Examples:

• Details on external interfaces

• Precise specification of each function

• Responses to abnormal situations

• Detailed performance requirements

• Database requirements

• Design constraints

• Specific attributes such as reliability, availability,security,

portability

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Specific Requirements Section: Example
3. Specific requirements

3.1 External interfaces
3.1.1 User interfaces

3.1.2 Hardware interfaces

3.1.3 Software interfaces

3.1.4 Communication interfaces

3.2 Functional requirements

…

3.3 Performance requirements

…

3.4 Design constraints

…

3.5 Quality requirements

…

3.6 Other requirements

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

And Remember…

Gerald Kotonya & Ian Sommerville: Requirements Engineering: Processes and Techniques, Wiley, 1998

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Key Lessons

It’s not programming:

- Programming describes a solution and not a problem

- Programming is constructive

It’s not design:

- We do not only describe the software

- We describe the full system (software and

environment)

- No separation between software and environment

- We do so in an incremental way

- We want to understand the system

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Key Lessons

- Identify & involve all stakeholders

- Requirements determine not just development but

tests

- Use cases are good for test planning

- Requirements should be abstract

- Requirements should be traceable

- Requirements should be verifiable (otherwise they are

wishful thinking)

Object technology helps

- Modularization

- Classifications

CS 620 Spring 2014 Univ. of Massachusetts Copyright L. Osterweil, all rights reserved

Some Papers in
Requirements Engineering

• D. Harel. Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming. 8 (1987).

• B. Nuseibeh and S. Easterbrook. Requirements Engineering: A
Roadmap. Proceedings of 22nd International Conference on
Software Engineering (ICSE 2000) June 2000. Limerick, Ireland.
ACM Press

• B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework for
Expressing the Relationships Between Multiple Views in
Requirements Specification. IEEE Transactions on Software
Engineering, 20 10 (1994).

• C. L. Heitmeyer. Software Cost Reduction. Encyclopedia of
Software Engineering. J.J. Marciniak, editor. ISBN: 0-471-02895-9.
January 2002.

• A. van Lamsweerde. Requirements Engineering in the Year 00: A
Research Perspective. Proceedings of 22nd International
Conference on Software Engineering (ICSE 2000) June 2000.
Limerick, Ireland. ACM Press

• A. van Lamsweerde. Goal-Oriented Requirements Engineering: A
Guided Tour. 5th IEEE International Symposium on Requirements
Engineering. Toronto, Canada, August 2001.

