
© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Modeling with UML

Reda Bendraou

reda.bendraou{{@}}Lip6.fr

http://pagesperso-systeme.lip6.fr/Reda.Bendraou/

mailto:reda.bendraou{{@}}Lip6.fr
mailto:reda.bendraou{{@}}Lip6.fr
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Modeling

-Definition

-Why Modeling?

-Which language to use?

-Software=Code?

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

What is Modeling?

Building an abstract representation of reality

Abstraction =

• Ignoring the insgnificant details (depending on the aspects/viewpoint
we are interested in)

• Bringing out the most important details

– Important= What it is imporant or not depends on the purpose of the
model (is it just for communication? Code generation? Verification?)
and which aspect of the system you want to capture?

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Modeling: an other definition!

Modeling, in the broadest sense, is the cost-effective use of something in place of

something else for some cognitive purpose. It allows us to use something that

is simpler, safer or cheaper than reality instead of reality for some purpose

A Model represents reality for the given purpose; the model is an abstraction of

reality in the sense that it cannot represent all aspects of reality. This allows us

to deal with the world in a simplified manner, avoiding the complexity, danger

and irreversibility of reality

Par Jeff Rothenberg, « The nature of modeling »

• Attention : abstraction != simplification?

– Modeling may ease understanding the problem, communicating around its

different aspects but it never simplifies the problem itself

© Reda Bendraou IDM – UPMC Cours : Model-Driven Engineering

Model: Example

• The pipe example according to Magritte

– “This is not a Pipe.”

© Reda Bendraou IDM – UPMC Cours : Model-Driven Engineering

Model: Example

reperesents

The system The Model

© Reda Bendraou IDM – UPMC Cours : Model-Driven Engineering

For those who like Mathematics

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Abstraction Vs Viewpoint

Example: Google Maps

• Different levels of abstractions

• Different viewpoints

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Why Modeling?

To communicate

• Many stakeholders may participate in the development process

– Clients, managers, marketing, engineers, developers etc.

• Big projects may involve hundreds of people working in different locations

– Example: the IBM Jazz project (more than 400 developers around the word)

• Code is not abstract enough to be used for communication!

– Computer science history:

• raising the level of abstraction away from machine-centered representation

and towards human-centred representations

• today’s models are tomorrow’s programs

• Outsourcing, offshore …Etc

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Why Modeling?

To manage complexity

• Examples: Google

– More than 1,7 Million servers (2012), a huge processing capacity

– 4 billions of requests per day!, 40 000 request per second!

• Models allow you to think about your design more easily than digging into
the code (very often, not your code!)

• Separation of concerns
– The system is viewed by different viewpoints

– Code (except for Aspect-Oriented Programming) tend to mix all concerns of a
software together in the same place (i.e., file, sections in a file)

Why Modeling ?

a multi-dimensional representation

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Full
Software

Model

Class
Diagram

Object
Diagram

Use Case
Diagram

Activity
Diagram

Protocol
Diagram

IOCL
Expressions

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Why Modeling?

To sustain the company’s know-how and assets

• Some projects may last for years

– Not always the same persons working on the project (turnover)

– Need to capitalize the know-how in a language-independent way

– Capture the business without dealing with the technological details

• Example

– Air Trafic control system (Thalès): Project ~8 years, estimated usability 40 years

– Building an Aircraft (Airbus): Project ~10 years, estimated maintenance period

50 years

T
h

e
 M

D
E

 v
is

io
n

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Why Modeling?

For a better productivity
• Code generation from models

– The MDE vision(Model-Driven Engineering)

– 100% of code being generated in some domains

• Exp. CMS, configuration files, databases, etc.

• Playing with Variability

– The Software Line Product (SPL) vision

• One generic model, multiple features possible to extend the product

• Example: Nokia

– 3 Billions of cellphones sold (250 Millions/year , 2013, 450 M, in 2010)

– Hundreds of software versions

– Time-to-market ~3 months

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Software = Code ?

• Do you really still think that?

• Not the case anymore:

– Software= Documentation + Models+ Code

– Several models, views for the same Software

– Documentation can be partially generated from Models

– Code can be partially generated from Models (100% in some cases)

• With Models today we can have

– A better productivity, better communication and a better specification of the

problem/system under study

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Which language to use for Modeling?

• Many languages and notations in the literature

• For Object Oriented systems, only one language succeeded to

become the De Facto standard for system modeling

• UML (Unified Modeling Language): Why to learn it, use it?

– World wide used (80% of the projects used it (at least one of its diagrams))

– It’s a Standard , by OMG (Open Management Group) and validated by ISO

– Very well documented and tooled (books, tuto, forums, etc.)

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

UML

- History

- Possible ways of using UML

- The development process with UML

-UML diagrams/Viewpoints

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Birth of UML

• Between 89 and 94 : the number of OO methods went from 10 to 50

• Every method used its own notation, although they shared many

common points

• In the mid 90, G. Booch, I. Jacobson & J. Rumbaugh, known as los

3 amigos, collaborated to create UML

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Dates

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

UML: Principal influences

• Booch: notion of sub systems

• Fusion: sequence diagrams (numbering messages, operations)

• Gamma, et al.: Frameworks, patterns, et notes

• Harel: Statecharts

• Jacobson: use cases

• Bertand Meyer: Pre- et post-conditions

• Odell: notion of events

• OMT: Associations

• Shlaer-Mellor: object lifecycle

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

UML Today

• Widely used

• In many domains

– OO, Real Time, Deployment, Requirement, …

• UML IS NOT A METHOD

– RUP (Rational Unified Process) is a method

• Only few people really know the standard

– 5% strong comprehension

• UML is criticized because it is not enough formal

UML Today

• Paradigms:

– Structural: Object-oriented + relational + component-based

– Behavioral: Imperative + event-based + concurrent

• General purpose (as opposed to Domain Specific Modeling Language)

• Visual (Diagram Interchange) and textual (OCL, AFL)

• Subset with formalized semantics: Foundation UML (fUML)

• Modularly structured in packages

• Self-extensible: profiles

• No competitor

• Very large:

– Infrastructure: 226p.

– Superstructure: 740p.

– DI: 86p.

– OCL: 238p.

– fUML: 369p.

– AFL: 441p.

• Lacks a library of built-in classes

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

3 possible ways of using UML

(1) As a sketching, brainstorming language… (to explore)

– To quickly communicate and brainstorm

– Models not specially sound or complete

– Objectives: to analyze the problem, think, decide(brainstorming)

– Probably the way most people use UML

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

3 possible ways of using UML

(2) As a language for model specification… (to design)
– Sound and complete models, ready to be used for code

generation/implementation

– Models used for advanced design choices

– Can be models obtained through Reverse Engineering

• To improve the design,

• To detect package dependencies and cycles, applying design patterns, etc.

– Ability to use Round trip Engineering

– Objectives: (1)+ desgin , sustain the business, to generate partially the
code

– The way UML is used in complex and big projects

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

3 possible ways of using UML

(3) As a programming language (better productivity)

• Not mature enough

« It’s worth using UML as a programming language only if it results in something that’s
significantly more productive than using another programming language »

– Martin Fowler, UML Distilled

• To put everything in the model, even operations code: Productivity Vs Readability

– Some initiatives Executable UML, J, xOCL, etc.

• The ability to simulate and to execute Models

• The tooling is not mature enough!!!

• Objectives: (2) + 100% code generation

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

In this Course

• We will use UML like in (1) and (2) Options

• We will demonstrate why (3) is not mature enough

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

The development process with UML

• UML is process/method independent

• However the process development with UML is viewed as:

– Iterative & Incremental

– Use case driven

– Architecture oriented

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Different development phases covered by UML

• Requirement

• Analysis

• Design

• Implementation

• Testing

• Deployment

• Maintenance

Well covered by UML

Arguable:

implementation: if UML is used with option (3). If

you have good code generators

Testing: some test cases can be generated from

sequence diagrams….but not sufficient

Deployment: UML provides a diagram for that but

no automation for this step

Maintenance: through round trip engineering

reverse engineering, the application of design

patterns.

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

UML: a set of diagrams and viewpoints

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

UML: diagrams and viewpoints

Package Diagram

GRH Paye

Fondation

Gestion Activité

Instance:Candidat

Bibliothèque:Terminal:

searchItemByTitle

findItemByTitle

Sequence Diagram
Activity diagram

Acteur:Employé Acteur:Manager Acteur:RH

Créer demande de poste

Créer une offre d'emploi

Examiner demande de poste

Rechercher des candidats

Telecom

Organisme

PersonnePhysiqueNationalite PersonneMorale

est formé de

1..*1..*

LienTypeLien

*

*

Personne

Adresse

1..*

*

1..*

possède

possède

1..* Auteur

Groupe
*

1

Class Diagram

Vidéothèque

Louer un
DVD

Rendre un
DVD

Use Case Diagram

State Machines Diagram

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

UML: Viewpoints

Static/architectural aspects
-Class diagram

-Object and package diagrams

-Component and composite structure

diagrams

Behavioral aspects of the system
-Sequence/collaboration diagrams

-State machines diagram

-Activity diagram

-Time diagram

Functional aspects of the system
-Use Case diagram

-Scenarios

-Sequence diagram

- Activity diagram

- State machines diagram (if needed)

Deployment aspects
-Deployment diagram

-Component diagram In Red: will be used in this course

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

UML: Functional viewpoint

- Use case diagram

-Scenarios

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

UML: Functional viewpoint

• Many UML diagrams can be used to capture what the system is

supposed to offer in terms of services/ functionalities

– Use case diagram is one of the most used one!

• Use cases can be documented with:

– Scenarios (naturel language),

– Sequence diagrams as a graphical representation of scenarios

– Activity diagrams to express in more details the workflow, data and

artifact created/exchanged to realize a service

• A very important starting point a UML-based development

process

– Use case driven!

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Use Case Diagram

A user-oriented diagram

• A system is built to answer user’s needs:

– They know what the system is expected to do but not how

– Some of them know part of the expected services

• You should pay attention to their requirements!! (otherwise =>see

next slide)

Otherwise!

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Use Case Diagram

Use Case diagram constituents:

– Actors

– Use Cases

– The system being modeled

– Relations
• Associations, Generalization, dependencies

Goals:

– To communicate around the system’s expected services

– Identify System’s functionalities (in a graphical way)

– To highlight the system’s boundaries

– Can be used to specify some functional tests

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Use Case: Actor

• An Actor represents a role undertaken by an external entity that interacts

(directly) with the system (UML2.° Spec, OMG)

• Can be a human (ex. Agent, cashier, client, etc.), a machine (ex. server,

printer, etc.) or another software (ex. Stock management, etc.);

• Graphical notations

Stock IS

UML (c) Justin Templemore-Finlayson, 2004-2011 22

Identifying actors

• To help find actors in your system you should ask the following questions:

Who is the main customer of the system?

Who obtains information from this system?

Who provides information to the system?

Who installs the system?

Who operates the system?

Who shuts down the system?

What other objects intract with the system?

Who will supply, use, or remove information from the system?

Where does the system get information?

• The system itself can also be an actor

 – For tasks that happen regularly or at a preset time

 – Indicated with an no actor, or an actor named “system”

Use Case: Actor

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Use Case

• A Use Case represents a set of actions executed by the system and which

produces an observable result of interest to a specific actor (def. UML2.0,

OMG)

• Each use case specifies an end-to-end expected service

• Indicates what the systems is expected to do, without specifying how

• Graphical notation

Withdraw cash

Verb + noun

Use Case

How to identify use cases ?

• What are the functionalities proposed by the system?

– Each functionality is represented as a use case.

• What are the interactions Actor-System?

For each identified actor

– Identify the functionalities used by this actor.

– Who maintain the system

• What are the events received by the system?

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Use Case: System’s boundary box

• The system’s boundary box represents the limits of the system.

Everything outside this box, is supposed to be provided or

designed in the context of another system

• Graphical notation

 Vidéothèque

Rent a DVD

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Use Case: Relations

• Between Actors

– Generalization

Client

Client de la banque

• Between Actors and UC

– Association

Client

Retirer Argent

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Use Case: Relations

Between Use cases: 3 kinds of relations

• Generalization : the sub-UC extends the super-
UC with more action. Source of ambiguity À
Please avoid using this relation (not allowed in
this course)

• Inclusion (<<include>>): the source UC
necessarily needs the target use case for its
execution!

– Use it to factorize common actions between
different use cases

– To highlight an important sub-functionality

• Extension (<<extend>>): a base UC can be
Optionally extended by another UC for its
execution.

• If you want to be precise, when the inclusion or
the extension happens, you can add an
Extension Point

Funds Transfer

Funds Transfer

On Line

Withdraw Cash Identification

<<include>>

Withdraw Cash

Extension Point:

check. balance

Check Balance

<<extend>>

Condition: {User wants to check balance first}

Point d’extension: check balance

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Use Case Diagrams

Some advices

• Granularity of UC => 2 UC Vs.15 UC

– « There is a magic number:7, plus or minus 2. This refers to the number of concepts that

we humans can keep in mind at any one time » (H.A. Miller, 1958)

– Many UC may reduce readability of your diagram. More details can be specified in

scenarios instead

– Some people can go for hierarchical decomposition=> not advised by the standard

• Please avoid the misuse (abuse) of <<include>>, <<extend>>

• Remember that the UML dev. Process is UC oriented

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Use Case Diagram: Conclusion

• Used very often in software projects

– Gives an abstract description of what it is expected from the system (the

WHAT)

– Very easy to learn, to read

• UC describes the WHAT and Never the HOW!!

• The HOW can be described using Scenario, to specify how each UC is

realized

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Scenarios

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Scenarios

• They represent instances of UC
– A scenario describes the actors interaction with the system

• In natural language but usually represented using Sequence Diag.

• Very used and useful for requirements specification (can hardly
do without)

• They can help you identifying other UC

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Scenarios

• Every UC will be specified using several scenarios

• First with a Happy Path scenario(the world is perfect ;))

• Secondary scenarios (exceptions, alternatives)

• UC + Detailed scenarios for each UC => Functional

requirement specification

Use case example

Name: Enroll in seminar

Identifier: UC03

Description: Enroll an existing student in a
 seminar for which she is eligible. In case of a
 schedule conflict or insufficient prerequisites,
 she will not be allowed to enroll.

Preconditions: The student is registered at the
 university

Postconditions: The student is enrolled in the
 seminar or the system is unchanged.

Basic course of action:

1. The UC begins when a student indicates she
 wants to enroll in a seminar.

2. The student identifies him or herself.
 Include UC04 « Connect to the system »

3. The system verifies that the student has not
 yet reached the number of seminars he has
 paid for.

4. The system checks the seminars that the
 student has already followed, displays the list
 of seminars for which he satisfies the pre
 requisites.

5. The student selects the seminar in which she
 wants to enroll.

6. The system displays the student’s current

 timetable superimposed with the new seminar.

7. The system asks if the student still wants to

 enroll.

8. The student confirms.

9. The system updates the student’s timetable

 with the new seminar and publishes it.

10. The system asks if the student wants a

 printed copy of his new timetable.

11. The student indicates yes.

12. The system prints the new timetable for the

 semester.

13. The student takes the timetable

14. The UC ends when the student takes her

 timetable.

 29

Scenarios: Example

Use case example (continued!)

Name: Enroll in seminar

Identifier: UC03

Description: Enroll an existing student in
 a seminar for which she is eligible. In
 case of a schedule conflict or insufficient
 prerequisites, she will not be allowed to
 enroll.

Preconditions: The student is registered
 at the university

Postconditions: The student is enrlled in
 the seminar or the system is
 unchanged.

Alternate course A: The student has

 already enrolled in all the seminars
 she has paid for.

A4. The system informs the student that
 she cannot enroll in any more seminars
 unless she pays more fees.

A5. The system invites the student to
 return after paying new fees.

A6. This UC ends.

Alternate course B: The student does
 not have sufficient pre requisites for
 any seminar

B4. The system informs the student that
 she does not have sufficient pre
 requisites to follow any more seminars.

B5. The UC ends.

Alternate course C: The student does

 not like the new timetable and
 decides not to enroll

C8. The student cancels the enrolment
 process.

C9. The UC ends.

 30

Scenarios: Example (continued)

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Scenarios: Example

• Try the Withdraw cash HP scenario

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Sequence and Activity Diagrams

• They can also be used to describe UC actions and to visually

represent scenarios

• Can describe some complex behavior (Activity Diagram)

• We will introduce them in the behavioral viewpoint

© Reda Bendraou Software Engineering – Course 2: Modeling with UML

Lectures

• Software Engineering,

– Ian Sommerville, Addison Wesley; 8 edition (15 Jun 2006), ISBN-10: 0321313798

• The Mythical Man-Month

– Frederick P. Brooks JR., Addison-Wesley, 1995

• Cours de Software Engineering du Prof. Bertrand Meyer à cette @:

– http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html

• Cours d’Antoine Beugnard à cette @:

– http://public.enst-bretagne.fr/~beugnard/

• UML Distilled 3rd édition, a brief guide to the standard object modeling language

– Martin Fowler, Addison-Wesley Object Technology Series, 2003, ISBN-10: 0321193687

• UML2 pour les développeurs, cours avec exercices et corrigés

– Xavier Blanc, Isabelle Mounier et Cédric Besse, Edition Eyrolles, 2006, ISBN-2-212-12029-X

• UML 2 par la pratique, études de cas et exercices corrigés,

– Pascal Roques, 6ème édition, Edition Eyrolles, 2008

• Cours très intéressant du Prof. Jean-Marc Jézéquel à cette @:

– http://www.irisa.fr/prive/jezequel/enseignement/PolyUML/poly.pdf

• La page de l’OMG dédiée à UML: http://www.uml.org/

• Cours de Laurent Audibert sur http://laurent-audibert.developpez.com/Cours-UML/html/Cours-UML.html

• Design patterns. Catalogue des modèles de conception réutilisables

– Richard Helm (Auteur), Ralph Johnson (Auteur), John Vlissides (Auteur), Eric Gamma (Auteur), Vuibert
informatique (5 juillet 1999), ISBN-10: 2711786447

http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://www.irisa.fr/prive/jezequel/enseignement/PolyUML/poly.pdf
http://www.uml.org/
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=Richard Helm
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=Ralph Johnson
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=John Vlissides
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=Eric Gamma

