© Reda Bendraou

Modeling with UML

Reda Bendraou
reda.bendraou{{@}}1Lip6.1r
http://pagesperso-systeme.ip6.fr/Reda.Bendraou/

Software Engineering — Course 2: Modeling with UML

mailto:reda.bendraou{{@}}Lip6.fr
mailto:reda.bendraou{{@}}Lip6.fr
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/

© Reda Bendraou

Modeling

-Detinition
-Why Modeling?
-Which language to use?
-Software=Code?

Software Engineering — Course 2: Modeling with UML

What 1s Modeling?

Building an abstract representation of reality

Abstraction =

e Ignoring the insgnificant details (depending on the aspects/viewpoint
we are interested 1n)

* Bringing out the most important details

- Important= What it is imporant or not depends on the purpose of the
model (s 1t just for communication? Code generation? Verification?)
and which aspect of the system you want to capture?

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Modeling: an other definition!

Modeling, in the broadest sense, 1s the cost-effective use of something i place of
something else for some cognitive purpose. It allows us to use something that
1s simpler, safer or cheaper than reality instead of reality for some purpose

A Model represents reality for the given purpose; the model 1s an abstraction of
reality 1in the sense that it cannot represent all aspects of reality. This allows us
to deal with the world 1 a simplified manner, avoiding the complexity, danger
and 1rreversibility of reality

Par Jeft Rothenberg, « The nature of modeling »

e Attention : abstraction != simphfication?

- Modeling may ease understanding the problem, communicating around its
different aspects but it never simplifies the problem itself

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Model: Example

* The pipe example according to Magritte
- “This 1s not a Pipe.”

Ceer nest pas axe /@be,

© Reda Bendraou IDM - UPMC Cours : Model-Driven Engineering

Model: Example

A

reperesents

The system The Model

© Reda Bendraou IDM - UPMC Cours : Model-Driven Engineering

For those who like Mathematics

» Definition 1. A directed multigraph 6 = (Ng, Eg, T)
consists of a set of distinct nodes Ng,
a set of edges E; and a mapping function

FG‘. : EG—> NG X NG

* Definition 2. A model M = (G, ®, 1) is a triple where:
v 6 = (Ng, Eg, I's) is a directed multigraph
v @ is itself a model, called the reference model of M,
associated to a graph 6, = (N, E,. ')
v u: Ng u Eg — N, is a function associating elements (nodes and
edges) of G to nodes of G, (metaElements)

© Reda Bendraou IDM - UPMC Cours : Model-Driven Engineering

Abstraction Vs Viewpoint
Example: Google Maps

Different levels of abstractions
Dlﬂerent Vlewpomts

i ., . % i i e
=’ L .
E Buueuard Samr Germa.-, < %b 4
F e i - 1- — b
1
icolas '{ / Institut \ ‘%q.
jonnet Momde Arabe "5 g%
2) . N .
/! Libertel Quartier N d
ks ™ Latin Paris
"2 Grande Traditon '
- 2 5,
Universite & 9 .L':%
Cardinal Jussiey Denis Diderot o N
Lemaine - @ P -;L\&E %ﬂ:%
1 . I. {}'&U . @'%;:}
))
x (iy
0 g7 N e
Arénes e
AL =] i
-~ "U’IUI WSS Emi) IIEI'Ea—a “aTn |?_% T\,uu=| VIS & “ }- B
=¥’ == Colnmbes ; alnt-E}Iuen A E'obi'ghy'_
e e . piie— T ol b o e o gl
Q—‘g QW' %l! e ~ Ourbfvﬂle Lgval!ufgs-\l’_err&t \ . \ Pantin=— i
'v O uriard 0% e ; — Al ;D:r. ’ /-’,./ i : /o5 NUiEW-Ie SEC ;
@ S ‘Les Lllaa ¢
B:a\ nolet
4 I{g-»-‘ m

] E_M-::-ntre:ull

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Why Modeling?

To communicate

Many stakeholders may participate in the development process

- Clients, managers, marketing, engineers, developers etc.

Big projects may mvolve hundreds of people working in ditferent locations
- Example: the IBM Jazz project (more than 400 developers around the word)

e (Code 1s not abstract enough to be used for communication!

- Computer science history:

e raising the level of abstraction away from machine-centered representation
and towards human-centred representations

* today’s models are tomorrow’s programs

e Qutsourcing, offshore ...Etc

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Why Modeling?

To manage complexity

e Examples: Google
- More than 1,7 Million servers (2012), a huge processing capacity
- 4 billons of requests per day!, 40 000 request per second!

e Models allow you to think about your design more easily than digging into
the code (very often, not your code!)

e Separation of concerns
- The system 1s viewed by different viewpoints

- Code (except for Aspect-Oriented Programming) tend to mix all concerns of a
software together in the same place (1.e., file, sections 1n a file)

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

© Reda Bendraou

Why Modeling ?

a multi-dimensional representation

Class
Diagram

Use Case
Diagram

Full

Activity
Diagram

Software
Model

N

\

Object
Diagram

IOCL
Expressions

Software Engineering — Course 2: Modeling with UML

e D\

Protocol
Diagram

Why Modeling?

To sustain the company’s know-how and assets

e Some projects may last for years
- Not always the same persons working on the project (turnover)
- Need to capitalize the know-how 1 a language-independent way

- Capture the busiess without dealing with the technological details

UOISIA IAIN BYL

e Example
- Air Trafic control system (Thales): Project ~ 8 years, estimated usability 40 years

- Building an Aircraft (Airbus): Project ~ 10 years, estimated maintenance period
50 years

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Why Modeling?

For a better productivity

e (Code generation from models
- The MDE wision(Model-Driven Engineering)

- 100% of code being generated in some domains
e Exp. CMS, configuration files, databases, etc.

e Playing with Variability
- The Software Line Product (SPL) vision

* One generic model, multiple features possible to extend the product

e Iixample: Nokia
- 3 Billions of cellphones sold (250 Millions/year , 2013, 450 M, 1n 2010)
- Hundreds of software versions

- Time-to-market ~ 3 months

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Sottware = Code ?
* Do you really still thunk that?

* Not the case anymore:
- Software= Documentation + Models+ Code

- Several models, views for the same Software
- Documentation can be partially generated from Models

- Code can be partially generated from Models (100% 1n some cases)

e With Models today we can have

- A better productivity, better communication and a better specification of the
problem/system under study

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Which language to use for Modeling?

 Many languages and notations m the hterature

e For Object Oriented systems, only one language succeeded to
become the De Facto standard for system modeling

e UML (Unihed Modeling Language): Why to learn it, use it?
- World wide used (80% of the projects used it (at least one of its diagrams))
- It’'s a Standard , by OMG (Open Management Group) and validated by ISO

- Very well documented and tooled (books, tuto, forums, etc.)

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

© Reda Bendraou

UML

- History
- Possible ways of using UML
- The development process with UML
-UML diagrams/Viewpoints

Software Engineering — Course 2: Modeling with UML

Birth of UMIL.

 Between 89 and 94 : the number of OO methods went from 10 to 50

« Every method used its own notation, although they shared many
common points

* In the mid 90, G. Booch, I. Jacobson & J. Rumbaugh, known as los
3 amigos, collaborated to create UML

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Dates

Definition en cours par une UML 2.0
commuission de révision L
Sovmission a I'OMG UML 1x 19902002
-
UML 1.2 Tuin 1998
Standardizats I'OMG
ancar sahon pat - Novembre 1997
Soumission a I'OMG UML 1.1 , _
P Septembre 1997
Soumission a 'OMG UML 1.0 Jamvier 1997
A |
Version béta OOPSLA 96 UML 09 H“‘a Tuin 1996
OO0PSLA95 Meéthode unifige 0.8 Octobre 1995
- a
e /N
7 Booch™@3 OMT-2
A
Autres méthodes Booch ™91 OMT-1 OO0SE Partenaires

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

UML: Principal influences

* Booch: notion of sub systems

e Fusion: sequence diagrams (numbering messages, operations)

Gamma, et al.: Frameworks, palterns, et notes
Harel: Statecharts

e Jacobson: use cases

Bertand Meyer: Pre- et post-conditions

Odell: notion of events

OMT: Associations

Shlaer-Mellor: object lifecycle

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

UML Today

 Widely used

* In many domains

- OO, Real Time, Deployment, Requirement, ...

 UMLISNOT A METHOD

- RUP (Rattonal Unified Process) 1s a method
e Only few people really know the standard

- 5% strong comprehension

e UML s criticized because it is not enough formal

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

UML Today

e Paradigms:
- Structural: Object-oriented + relational + component-based
- Behavioral: Imperative + event-based + concurrent

e General purpose (as opposed to Domain Specific Modeling Language)
e Visual (Diagram Interchange) and textual (OCL, AFL)
e Subset with formalized semantics: Foundatton UML (tUML)
Modularly structured n packages
o Self-extensible: profiles
 No competitor
e Very large:
- Infrastructure: 226p.
- Superstructure: 740p.
- DI: 86p.
- OCL: 238p.
- fUML.: 369p.
AFL: 441p.
Lacks a library of built-in classes

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

3 possible ways of using UML

(1) As a sketching, brainstorming language... (to explore)

- To quickly communicate and braimnstorm
- Models not specially sound or complete

- Objectives: to analyze the problem, think, decide(brainstorming)

- Probably the way most people use UML

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

3 possible ways of using UML

(2) As a language for model specification... (to design)

- Sound and complete models, ready to be used for code
generation/implementation

- Models used for advanced design choices
- Can be models obtained through Reverse Engineering

e T'o improve the design,
* To detect package dependencies and cycles, applying design patterns, etc.

- Ability to use Round trip Engineering

- Objectives: (1)+ desgin , sustain the business, to generate partially the
code

- The way UML 1s used in complex and big projects

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

3 possible ways of using UML

(3) As a programming language (better productivity)

* Not mature enough
« It’s worth using UML as a programming language only if it results in something that’s

significantly more productive than using another programming language »
- Martin Fowler, UML Distilled

To put everything in the model, even operations code: Productivity Vs Readability
- Some mitiatives Executable UML, J, xOCL, etc.

The ability to simulate and to execute Models

The tooling 1s not mature enough!!!

Objectives: (2) + 100% code generation

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

In this Course

e We will use UML like m (1) and (2) Options

e We will demonstrate why (3) 1s not mature enough

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

'The development process with UML

e UML i1s process/method mdependent

 However the process development with UML 1s viewed as:
- Tterative & Incremental
- Use case driven

- Architecture oriented

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Different development phases covered by UML

 Requirement

e Analysis

e Design

e Implementation
e Testing

e Deployment

e Maintenance

> Well covered by UML

Arguable:
iImplementation: if UML is used with option (3). If
you have good code generators

Testing: some test cases can be generated from
} sequence diagrams....but not sufficient

Deployment: UML provides a diagram for that but
no automation for this step

Maintenance: through round trip engineering
reverse engineering, the application of design
patterns.

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

UML.: a set of diagrams and viewpoints

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

UML: diagrams and viewpoints

ActeurEmployé

'

Acteur:Manager

(cmer demande de pume}

>Gxammev demande de post9

.

4

Acteur:RH

Créer une offre d'emploi

Rechercher des candidats

i

Activity diagram

GRH

Fondation

Package Diagram

© Reda Bendraou

Gestion Activité

Paye

Vidéotheque

Louer un
DVD %

Instance:Candidat

searchltemByTitle

Terminal: | | Bibliotheque:

Rendre un
DVD

sy

Use Case Diagram

N I
possede 7|
1.*

TypeLien

\

[Lien ‘ [Personne

posseéde

= e=J
Ab 1.

Sequence Diagram

After 10 jours

I
/1
Nationalite PersonnePhysique ‘

L

[PersonneMorale ‘
|
1

1 1

traitement

g

< N W
1
Organisme
fL.>
I
/1

——

est formé de
Validé

Class Diagram

Clore

Traité
Validation [ok] Validation [ko]

annulation

Annulé

Non Validé

State Machines Diagram

Software Engineering — Course 2: Modeling with UML

UML: Viewpoints

Functional aspects of the system

-Use Case diagram
-Scenarios
-Sequence diagram
- Activity diagram

- State machines diagram (if needed)

Behavioral aspects of the system <)== Static/architectural aspects

-Sequence/collaboration diagrams
-State machines diagram

-Activity diagram

-Time diagram

In Red: will be used in this course

-Class diagram

-Object and package diagrams
-Component and composite structure
diagrams

V

Deployment aspects
-Deployment diagram
-Component diagram

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

UML: Functional viewpoint

- Use case diagram

-Scenarios

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

UML: Functional viewpoint

e Many UML diagrams can be used to capture what the system 1s
supposed to offer in terms of services/ functionalities

- Use case diagram 1s one of the most used one!

e Use cases can be documented with:
- Scenarios (naturel language),
- Sequence diagrams as a graphical representation of scenarios

- Activity diagrams to express in more details the workflow, data and
artifact created/exchanged to realize a service

e A very important starting point a UMI -based development
process

- Use case driven!

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Use Case Diagram

A user-oriented diagram

e A system 1s built to answer user’s needs:
- They know what the system 1s expected to do but not how

- Some of them know part of the expected services

* You should pay attention to their requirements!! (otherwise =>see
next slide)

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

How the customer explained it

How the Project Leader
understood it

Otherwise!

How the Analyst designed it

How the Programmer wrote it

How the Business Consultant
described it

How the project was
documented

What operations installed

How the customer was billed

How it was supported

What the customer really
needed

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Use Case Diagram

Use Case diagram constituents:

- Actors

Borne interactive d'une banque Classe
- Use Cases

. Retirer argent
- The system being modeled
- Relations I <
o . . . Effectuer virement
* Associations, Generalization, dependencies ~__

R Consulter comptes
Goals: -

- To communicate around the system’s expected services

Identity System’s functionalities (in a graphical way)

To highlight the system’s boundaries

- Can be used to specity some functional tests

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Use Case: Actor

e An Actor represents a role undertaken by an external entity that interacts
(directly) with the system (UML2.° Spec, OMG)

e Can be a human (ex. Agent, cashier, client, etc.), a machine (ex. server,

printer, etc.) or another software (ex. Stock management, etc.);

e Graphical notations

<<actor>>
Client

Client

Stock IS

X

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Use Case: Actor

» To help find actors in your system you should ask the following questions:

Who is the main customer of the system?
Who obtains information from this system?

Who provides information to the system?

Who installs the system?

Who operates the system?

Who shuts down the system?

What other objects intract with the system?

Who will supply, use, or remove information from the system?
Where does the system get information?

* The system itself can also be an actor

— For tasks that happen regularly or at a preset time

— Indicated with an no actor, or an actor named “system”
M

UML (c) Justin Templemore-Finlayson, 2004-2011

22

Use Case

* A Use Case represents a set of actions executed by the system and which

produces an observable result of interest to a specific actor (def. UMLZ2.0,
OMG)

e FEach use case specifies an end-to-end expected service

e Indicates what the systems is expected to do, without specifying how

e Graphical notation

Verb + noun

/
Withdraw cash

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Use Case

How to identify use cases ?

« What are the functionalities proposed by the system?
— Each functionality is represented as a use case.

« What are the interactions Actor-System?

For each identified actor
— Identify the functionalities used by this actor.
— Who maintain the system

« What are the events received by the system?

Use Case: System’s boundary box

e The system’s boundary box represents the limits of the system.

Everything outside this box, is supposed to be provided or
designed 1n the context of another system

e Graphical notation

Vidéothéque

; : Renta DVD
Client

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Use Case: Relations

e Between Actors e Between Actors and UC

- Generalizaton - Association

Client

Client de la banque

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Use Case: Relations

Between Use cases: 3 kinds of relations ..
. . Funds Transfer
* Generalization : the sub-UC extends the super- T
UC with more action. Source of ambiguity A
Please avoid using this relation (not allowed in ontine

this course)

<<include>>
e Inclusion (<<include>>): the source UC ———

necessarily needs the target use case for its
execution!

- Use it to factorize common actions between
different use cases

- To highlight an important sub-functionality
* Lxtension (<<extend>>): a base UC can be

<<extend>>
Optionally extended by another UC for its

execution.
Condition: {User wants to check balance first} J

Withdraw Cash
Extension Point:
check. balance

e If you want to be precise, when the inclusion or
the extension happens, you can add an
Extension Point

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Point d’extension: check balance

Use Case Diagrams

Some advices

e Granularity of UC => 2 UC Vs.15 UC

-« There 1s a magic number:7, plus or minus 2. This refers to the number of concepts that

we humans can keep m mind at any one time » @.A. Miller, 1958)

- Many UC may reduce readability of your diagram. More details can be specified 1n
scenarios mstead

- Some people can go for hierarchical decomposiion=> not advised by the standard

e Please avoid the misuse (abuse) of <<include>>, <<extend>>

e Remember that the UML. dev. Process 1s UC oriented

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Use Case Diagram: Conclusion

* Used very often in software projects

- Gaves an abstract description of what 1t 1s expected from the system (the

‘WHAT)

- Very easy to learn, to read

e UC describes the WHAT and Never the HOW!!

* The HOW can be described using Scenario, to specify how each UC 1s
realized

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Scenarios

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Scenarios

e They represent instances of UC

- A scenario describes the actors interaction with the system

In natural language but usually represented using Sequence Diag.

* Very used and useful for requirements specification (can hardly
do without)

* They can help you identitying other UC

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Scenarios

Every UC will be specified using several scenarios

First with a Happy Path scenario(the world 1s perfect ;)

e Secondary scenarios (exceptions, alternatives)

UC + Detailed scenarios for each UC => Functional
requirement specification

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Scenarios:

Name: Enroll in seminar

Identifier: UC03

Description: Enroll an existing student in a
seminar for which she is eligible. In case of a
schedule conflict or insufficient prerequisites,
she will not be allowed to enroll.

Preconditions: The student is registered at the
university

Postconditions: The student is enrolled in the
seminar or the system is unchanged.

Basic course of action:

1. The UC begins when a student indicates she
wants to enroll in a seminar.

2. The student identifies him or herself.
Include UCO04 « Connect to the system »

3. The system verifies that the student has not
yet reached the number of seminars he has
paid for.

4. The system checks the seminars that the
student has already followed, displays the list
of seminars for which he satisfies the pre
requisites.

Fxample

5. The student selects the seminar in which she
wants to enroll.

6. The system displays the student’s current

timetable superimposed with the new seminar.

7. The system asks if the student still wants to
enroll.

8. The student confirms.
9. The system updates the student’s timetable
with the new seminar and publishes it.

10. The system asks if the student wants a
printed copy of his new timetable.

11. The student indicates yes.

12. The system prints the new timetable for the
semester.

13. The student takes the timetable

14. The UC ends when the student takes her
timetable.

29

Scenarios: Example (continued)

Name: Enroll in seminar
Identifier: UCO03

Description: Enroll an existing student in
a seminar for which she is eligible. In
case of a schedule conflict or insufficient
prerequisites, she will not be allowed to
enroll.

Preconditions: The student is registered
at the university

Postconditions: The student is enrlled in
the seminar or the system is
unchanged.

Alternate course A: The student has
already enrolled in all the seminars
she has paid for.

A4. The system informs the student that
she cannot enroll in any more seminars
unless she pays more fees.

AS5. The system invites the student to
return after paying new fees.

A6. This UC ends.

Alternate course B: The student does
not have sufficient pre requisites for
any seminar

B4. The system informs the student that
she does not have sufficient pre

requisites to follow any more seminars.

B5. The UC ends.

Alternate course C: The student does

not like the new timetable and
decides not to enroll

C8. The student cancels the enrolment
process.

C9. The UC ends.

30

Scenarios: Example

e Try the Withdraw cash HP scenario

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

Sequence and Activity Diagrams

 They can also be used to describe UC actions and to visually
represent scenarios

e (Can describe some complex behavior (Activity Diagram)

e We will introduce them 1n the behavioral viewpoint

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

L .ectures

* Software Engineering,
- Ian Sommerville, Addison Wesley; 8 edition (15 Jun 2006), ISBN-10: 0321313798
* The Mythical Man-Month
- Frederick P. Brooks JR., Addison-Wesley, 1995
e Cours de Software Engineering du Prof. Bertrand Meyer a cette @:
- htp:/se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
e Cours d’Antoine Beugnard a cette @:
- http://public.enst-bretagne.fr/~ beugnard/

e UML Distilled 3rd édition, a brief guide to the standard object modeling language
- Martin Fowler, Addison-Wesley Object Technology Series, 2003, ISBN-10: 0321193687
e UMLZ2 pour les développeurs, cours avec exercices et corrigés
- Xavier Blanc, Isabelle Mounier et Cédric Besse, Edition Eyrolles, 2006, ISBN-2-212-12029-X
e UML 2 par la pratique, études de cas et exercices corrigés,
- Pascal Roques, 6™ édition, Edition Eyrolles, 2008
e Cours tres mtéressant du Prof. Jean-Marc Jézéquel a cette @:
- htpy//www.irisafr/prive/jezequel/enseignement/PolvUMIL/poly.pdf
* Lapage de TOMG dédiée a UML.: http://www.uml.org/
e Cours de Laurent Audibert sur http://laurent-audibert.developpez.com/Cours-UMI/html/Cours-UML.html

* Design patterns. Catalogue des modeles de conception réutilisables
- Richard Helm (Auteur), Ralph Johnson (Auteur), John Vlissides (Auteur), Eric Gamma (Auteur), Vuibert
mformatique (b juillet 1999), ISBN-10: 2711786447

© Reda Bendraou Software Engineering — Course 2. Modeling with UML

http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://se.ethz.ch/teaching/ss2007/252-0204-00/lecture.html
http://www.irisa.fr/prive/jezequel/enseignement/PolyUML/poly.pdf
http://www.uml.org/
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=Richard Helm
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=Ralph Johnson
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=John Vlissides
http://www.amazon.fr/exec/obidos/search-handle-url?_encoding=UTF8&search-type=ss&index=books-fr&field-author=Eric Gamma

