
© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 1/57

Architecture

Reda Bendraou

reda.bendraou{{@}}Lip6.fr

http://pagesperso-systeme.lip6.fr/Reda.Bendraou/

Some slides were adapted from L. Osterweil, B. Meyer, and P.
Müller material

mailto:reda.bendraou{{@}}Lip6.fr
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/
http://pagesperso-systeme.lip6.fr/Reda.Bendraou/

Requirements Spec.

Test Plan

Test Results must
match required behavior

Design

Characteristics of
System to be
 built must
match required
characteristics

Hi level architecture

Low
level

Code

Code must
implement
design

Hi level design must
show HOW requirements
can be met

consistent
views

Test plan
exercises
this code

Focus on “How do you know”

Software Architecture & Design: Goals

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 3/57

From B. Meyer and P. Muller

Why decompose a system?

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 4/57

Management
- Partition effort

- Clear assignment of requirements to modules

Modification
- Decouple parts so that changes to one don’t affect

others

Understanding

- Allow understanding system one chunk at a time

What is the Nature of Design?

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 5/57

Addresses the question: HOW?"
• Goal: Indicate how to develop a solution system that will satisfy

requirements"

• Complements:
– Requirements: "WHAT"

– System Test Plan: HOW WOULD I KNOW IT IF I SAW IT "

How are Designs Represented?"

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 6/57

Familiar approaches
– Use of hierarchy to conquer size/complexity

– Use of multiple views to capture different aspects

– Use of pictures and diagrams to appeal to nontechnical stakeholders

Connected to requirements elements they respond to

Connected to code elements that implement them

Architecture Vs. Specification

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 7/57

Architecture
– High level system design

– Concerned with components and the interactions among components

– Not with the algorithms or data structures

Specification (Low Level Design)
– Emphasis on data structures and algorithms

– Focus on implementation issues

 » Stepwise refinement

 » Evolvability

 » Use of abstraction

Typical Architecture Issues

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 8/57

Component interaction models
– What are the components’ interfaces?

– Who can use them? And how?

How much flexibility is achievable? How modifiable?
– Is plug and play possible?

Where is network access used? How?
– Message passing, broadcasting, etc?

Late-binding issues
– Non-determinism

– Use of proxies

New issues in characterizing system

objects

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 9/57

Interaction protocols
– Tightly coupled objects

 » Direct or Remote procedure calls

– Loosely coupled

 » Event based notification, observers

Degree of separation
– Locally

– Internet scale

– “in the cloud”

Modes of communicating with each other
– message passing

– broadcast

– multi-cast

Architecture description

(specification or design)

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 10/57

A high level design that defines the components, connectors,

constraints and the interrelationships among these entities
 - Usually compositional

Suggests the value of elaborate semantics and annotations

of the nodes and edges

Many notations can be used.

 - UML has a bunch of diagrams to represent Architecture’s aspects

 - Component, Class, Package, Deployment diagrams

Components, Connectors, Constraints:

Central Software Architecture Entities

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 11/57

Components--computational units
– Subsystems

– Classes

– Objects

Connectors--interaction model
– Which components are connected to which?

– How are they connected?

– Are connectors just components with restricted semantics?

Constraints
– Guides and limits to the ways components and connectors can be configured

Architectural Styles

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 12/57

Sets of constraints that are widely used because they offer

understood capabilities and features

Pipeline Architecture:Each component has

one input connector, one output connector

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 13/57

Pipe and Filter: Pipeline architecture where

some connectors have a “filter”

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 14/57

Client/Server

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 15/57

Client/Server : multiple clients

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 16/57

Need to specify details

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 17/57

• What will a request look like?

• What will a reply look like?

• How will multiple simultaneous requests be

served?

• Any constraints on requests, replies?
 – E.g. speed

Different Substyles

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 18/57

• How to specify different ways for client/server to perform

• REST Architecture

– Server is “stateless”

– No memory of details of client

– A key property that www infrastructure is built upon

Service Oriented Architecture

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 19/57

We will address this in a specific lecture

• Applications composed from components

• Components are accessed via the Web

– Specified generically (as a “service”)"

– Located by web searches (using proxies)

– Accessed via the web

• How to compose such services?

– What composition constructs

• How to be sure they provide correct services?

• How to maintain privacy and security?

Service Oriented Architecture

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 20/57

Variants

SaaS

PaaS

IaaS

….

Cloud Architecture

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 21/57

• SOA approach, but

– Don’t know/don’t care where or how services are provided via the Web

• Service may be different each time the system runs

• Similar problems, but now more worrisome

– Correctness

– Security

– Privacy

Web Based Applications

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 22/57

Presented in more details on class (on the white board)

MVC

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 23/57

Presented in more details on class (on the white board)

Some important Concerns about

Architecture

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 24/57

Modularity

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 25/57

Cohesion Vs Coupling

Cohesion: interdependence of elements of one module

 Each subsystem has a clear responsibility

Coupling: interdependence between different modules

 Small interfaces between subsystems

Goal: high cohesion and low coupling

Modularity: increase cohesion, decrease coupling

From B. Meyer and

P. Muller

Cohesion Vs Coupling
in OO design

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 26/57

Composability

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 27/57

Build software elements so that they may be freely combined with others

to produce new software.

Every module communicates with as few

others as possible.

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 28/57

If two modules communicate, they exchange

as little information as possible.

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 29/57

If two modules communicate, they exchange as little information as possible.

Information Hiding Principle

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 30/57

The designer of every module must select a subset of the module’s properties

as the official information about the module, to be made available to authors of

client modules.

Design Patterns

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 31/57

Use them when possible

GoF book is a good reference but many other patterns exist in literature

Patterns can be in all phases of developmment

 - Requirement patterns

 - Architectural patterns

 - Design patterns

 - etc.

The five secrets of good architecture

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 32/57

 Simplicity of design

 Consistency of design

 Ease of learning of the APIs

 Support for change

 Support for reuse

Simplicity: always remember !!!

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 33/57

Conclusion

© Reda Bendraou LI386-S1 Génie Logiciel – UPMC Cours 5: Les Tests 34/57

Design goals definition

- Describes and prioritizes the qualities that are important for the system

Subsystem decomposition

- Decomposes the overall system into manageable parts by using the

principles of cohesion and coherence

Architectural style

- A pattern of a typical subsystem decomposition

Software architecture

- An instance of an architectural style

