
appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
63

62
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Behavioral Adaptation of Component Compositions
based on Process Algebra Encodings

Radu Mateescu — Pascal Poizat — Gwen Salaün

N° 6362

Novembre 2007

Centre de recherche INRIA Grenoble – Rhône-Alpes
Inovallée, 655, avenue de l’Europe, Montbonnot, 38334 Saint Ismier Cedex (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Behavioral Adaptation of Component Compositions based on
Process Algebra Encodings

Radu Mateescu* , Pascal Poizat** , Gwen Salaün***

Thème COM — Systèmes communicants

Projets Vasy et Arles

Rapport de recherche n° 6362 — Novembre 2007 — 25 pages

Abstract: Component-Based Software Engineering and Service Oriented Computing pro-
mote the reuse of existing software entities, respectively components and services. Being
developed independently, these entities often mismatch. Software adaptation has been pro-
posed as a solution to this issue with the objective to generate, as automatically as possible,
adaptors, i.e., software pieces solving mismatch in a non-intrusive way. We propose an ap-
proach for the generation of adaptor protocols from component behavioral interfaces and
composition contracts. With reference to existing work in the area, our approach is fully
tool-equipped and relies on process algebraic encodings that support the definition and the
use of on-the-fly algorithms for the adaptor generation.

Key-words: Components, Behavioral Interfaces, Mismatch, Composition, Adaptation,
Process Algebra, Lotos, On-the-fly Verification

A short version of this report is also available as “Behavioral Adaptation of Component Compositions
based on Process Algebra Encodings”, Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering ASE’2007 (Atlanta, Georgia, USA), November 2007.

* radu.mateescu@inria.fr, INRIA / VASY project-team, Faculté des Sciences Mirande, bât. LE2I, 21078
Dijon, France

** pascal.poizat@inria.fr, INRIA / ARLES project-team and IBISC FRE 2873 CNRS, Tour Évry 2, 91000
Évry, France
*** salaun@lcc.uma.es, Dept. of Computer Science, Universidad de Málaga, Campus de Teatinos, 29071
Málaga, Spain

Adaptation comportementale des compositions de

composants basée sur des encodages en
algèbre de processus

Résumé : Le génie logiciel à base de composants (Component-Based Software Enginee-
ring, Cbse) et le calcul orienté service (Service Oriented Computing, Soc) favorisent la
réutilisation de composants logiciels existants, respectivement de composants et services.
Etant développées indépendamment, ces entités sont souvent incompatibles. L’adaptation
logicielle a été proposée comme une solution à ce problème, avec l’objectif de produire, aussi
automatiquement que possible, des adaptateurs, c.-à-d. des fragments de logiciel capables
de résoudre les incompatibilités de manière non-intrusive. Nous proposons une approche
pour la génération des protocoles d’adaptation à partir d’interfaces comportementales de
composants et de contrats de composition. Comparée aux travaux existants dans le do-
maine, cette approche est complètement outillée et repose sur des encodages en algèbre de
processus permettant la définition et l’utilisation d’algorithmes à la volée pour la génération
d’adaptateurs.

Mots-clés : composants, interfaces comportementales, incompatibilité, composition,
adaptation, algèbre de processus, Lotos, vérification à la volée

Behavioral Adaptation of Component Compositions 3

1 Introduction

Components and services1 can be developed separately by different third-parties. Their
reusability is therefore often harmed by mismatch that appears at their different interface
levels (signature, behavior/protocol, quality of service and semantics) [6]. Mismatch at the
signature level is dealt with by state-of-the-art Interface Description Languages and middle-
ware e.g., CCM or .NET. The research has therefore jumped to the behavioral interface level
where Behavioral Interface Description Languages (BIDL) and related formal verification
techniques have emerged as a solution to detect behavioral mismatch, e.g., [2, 8, 17, 18, 5].
However, once mismatch is detected, the issue of how components can be corrected to enable
further composition arises. Software Adaptation [35, 28, 6] is a promising approach which
aims at supporting software composition by generating as automatically as possible, pieces
of software called adaptors. These are used to solve mismatch in a non-intrusive way, i.e.,
without impacting on the components’ code, which is impossible due to their black box
nature.

Figure 1: Research Context

Our works address composition in pervasive computing (see Figure 1), with the objective
to compose automatically components to achieve end-user specified tasks at run-time or,
more generally, to build new added-value composites. In this area, behavioral adaptation
is particularly relevant to solve mismatch between the applicative level protocols of the
components and hence to enable a larger number of compositions.

Model-based behavioral adaptation approaches rely on behavioral component descriptions
and a composition specification, i.e., an abstract level description of correspondences between
interfaces that may help to solve mismatch out. These approaches can be divided into par-
ticular, restrictive and generative. Particular approaches [33] do not address the adaptation

1In the sequel, we use component as a general term covering both software components and services, i.e.,
a software entity to be composed within a system.

RR n° 6362

4 Mateescu, Poizat & Salaün

from a general, automatable point of view, but propose specific practical solutions for par-
ticular situations instead. Restrictive approaches [23] try to solve the problem by cutting off
(pruning) the behaviors that may lead to mismatch, thus restricting the functionality of the
components involved. On the contrary, generative approaches [35, 11] try to accommodate
the protocols without restricting the behavior of the components, by generating adaptors
that act as mediators, storing and reordering messages and data when necessary, even at the
risk of causing unexpected undesirable interactions. Recently, we have proposed a technique
which combined the benefits of the last two approaches [14]. It can be considered as both
generative and restrictive since we addressed behavioral adaptation by enabling message
reordering, while we also removed incorrect behaviors.

The main issue in behavioral adaptation is to propose tools for the full automation of the
proposed adaptation techniques [33, 23, 14]. Yet, the complexity of the adaptation process
(which can be exponential, e.g., when message reordering is enabled) is a problem that has
to be solved before these techniques can be applied on pervasive systems. To solve this issue,
we present in this report a new behavioral adaptation approach. Interfaces descriptions
and composition specification are inherited from earlier work [14], however, the adaptation
technique we rely on is new. Taking basis on the definition of an encoding of the adaptation
constraints into the Lotos [9] process algebra, we are then able to develop an adaptor
construction technique where on-the-fly algorithms are used in place of ones working on a
completely built state space, thus reducing the process complexity. Restrictive adaptation
may restrict interactions between components in order to make the system work. This
makes the assessment (evaluation) of adaptors and adapted systems a mandatory step of an
adaptation approach in order to be sure they fulfil one’s needs [28, 31]. An additional benefit
of our Lotos encoding is to support both the generation of adaptors and the assessment of
adapted systems in a common framework.

This report is structured as follows. Section 2 introduces component behavioral interfaces
and composition specifications. Section 3 presents our Lotos encodings and Section 4 then
describes the way adaptors can be obtained and assessed. Finally, Section 5 discusses related
work and Section 6 ends with concluding remarks.

2 Components and Composition Specification

In this section we present our models for component interfaces and for the abstract descrip-
tion of requirements on the way they should interact.

2.1 Component Interfaces and Mismatch

Component interfaces are given using a signature and a behavioral interface. A signature is a
set of operation profiles, i.e., a disjoint union of provided operations and required operations.
An operation profile is the name of an operation, together with its argument types, its return
type and the exceptions it raises. In addition, we take into account behavioral interfaces
through the use of Labeled Transition Systems (Ltss). Ltss favor user-friendliness and

INRIA

Behavioral Adaptation of Component Compositions 5

make the graphical specification of interfaces possible. Moreover, Ltss can be obtained
from most formal behavioral specification languages (e.g., process algebras [14] or workflow
languages [16]). This makes Ltss an adequate formalism to represent behavioral interfaces in
a model driven approach: other models can be transformed into Ltss prior to the composition
and adaptation process we present in the sequel. The messages used in one component’s Lts
correspond to the operations of the component’s signature and constitute what is called
the component alphabet. Since we focus here on behavioral interoperability, we keep in
signatures only the message names and we do not deal with operation arguments, return
values or exceptions. Emissions are denoted with ! and receptions with ?.

Definition 1 (LTS) A Labeled Transition System (Lts) is a tuple (A,S, I, F, T) where: A

is an alphabet, S is a set of states, I ∈ S is the initial state, F ⊆ S are final states, and
T ⊆ S × A × S is the transition function.

Reuse of components is often harmed by mismatch, i.e., from a behavioral point a view,
cases such as:� names of messages exchanged between components that do not correspond, a regular

use of components making them interact on the same message names;� ordering of messages that do not correspond;� a message in a component that has no counterpart in another one, or that corresponds
to more than one message;� and more generally when the possible interactions between components may lead them
to a blocking state.

Formally, this corresponds to the existence of deadlock states on the whole system viewed
as a (global) Lts. For an Lts (A,S, I, F, T), a deadlock state is a state s ∈ S which
has no outgoing transition (6 ∃ (s, l, s′) ∈ T) and is not final (s 6∈ F). Our approach aims
at generating adaptors which will compensate such mismatch and make the components
communicate properly.

2.2 Composition/Adaptation Specification

In this section we present composition specifications, an abstract way to denote composition
and adaptation requirements. These requirements are later on put into practice by triggering
the adaptor generation process. In order to help solving name mismatch, an important
feature of composition specifications is first to support the explicit description of interactions
between components. This is achieved thanks to vectors which relate the messages used in
different components to implement some interaction. Vectors may involve any number of
components and are not limited to interaction through shared message names (as in Msc,
Csp and Lotos) or complementary ones (as in Ccs and the π-calculus) [4].

RR n° 6362

6 Mateescu, Poizat & Salaün

Definition 2 (Vector) A vector for a set of components Ci, i ∈ {1, .., n}, is a tuple
〈l1, . . . , ln〉 with li ∈ Ai ∪ {ε}, where each Ai is the alphabet of component Ci and ε means
that some component does not participate in the vector interaction.

The prefixing of messages by component identifiers can be used in vectors in complement to ε

omission in order to yield a digest notation, e.g., a vector 〈comm!, ε, comm?〉 for components
{c1, c2, c3} can be written 〈c1 :comm!, c3 :comm?〉.

Some situations require a specific application ordering of vectors to solve mismatch [14].
This can be adequately sorted out with a dynamic description of the way vectors should be
applied, e.g. a regular expression as in [14] or more simply an Lts whose alphabet is a set
of vectors. This vector Lts will be used as a way to denote composition specifications. Note
that in cases where no specific ordering of vectors is required, the vector Lts can be reduced
to a single state with a loop transition for each vector.

Definition 3 (Composition Specification) A composition specification for a set of com-
ponents Ci, i ∈ {1, . . . , n}, is a couple (V,L) where V is a set of vectors for components Ci,
and L is an Lts whose alphabet is V .

Message reordering is required when exchanged messages are not ordered correspondingly
in communicating entities. A benefit of our approach is that this reordering has not to be
made explicit in the writing of the composition specification to be taken into account in the
generated adaptor. It is supported directly, if required, in our adaptor generation process
(see an example of this on the registration prefix of Figure 6).

2.3 Approach Overview and Tool Support

The approach we propose for generating adaptors and assessing their effectiveness is illus-
trated in Figure 2, where the grey boxes indicate the newly developed tools: Compositor
and Scrutator.

Composition specification (.xml)

Evaluator
Bisimulator

. . .

Adaptor... ||| ...

Correctness
properties

Adapted system (.bcg, .exp)

Scrutator

()

LOTOS
spec.

Compositor

On−the−fly activities

Script for automated
adaptation (.svl)

Update composition expression Assessment OK

||

CADP

Component LTSs (.aut/.xml)

... || ...

Vector LTS

C1

C1 Cn

Cn

Figure 2: Overview of our Approach

The set of components interfaces and the composition specification are encoded into a Lotos
specification, which can be subsequently handled using the Cadp toolbox [20]. This encoding

INRIA

Behavioral Adaptation of Component Compositions 7

is fully automated by Compositor. Supported inputs are Xml and the .aut Lts textual
format for component interfaces, and Xml for composition specifications. The Scrutator
tool is used to explore the Lts of the Lotos specification and to generate the Lts of the
adaptor encoded in the .bcg compact Lts binary format. Additionally, Scrutator is also
able at the same time to reduce the adaptor Lts modulo various weak equivalence relations
(τ -confluence, τ∗.a, weak trace, etc.). With reference to existing adaptation techniques,
Scrutator is able to perform these three activities on-the-fly, without requiring the com-
putation of the complete behavioral state space.

The adaptor Lts is then synchronized with the set of components, extracted from the Lotos
specification using an Svl script [20], in order to form the final system represented as an
Lts network in the .exp format. The behavior of the final system can be explored using
the Svl and Exp.Open [20] tools dedicated to the manipulation of Lts networks, and its
correctness w.r.t. the properties required for adaptation can be verified with the various
Cadp tools (the model checker Evaluator, the equivalence checker Bisimulator, the
graphical simulator Ocis, etc.). The results of the verification can trigger modifications of
the composition specification, after which the whole cycle is repeated until all properties are
fulfilled by the final system. Compositor and Scrutator have been applied to generate
adaptors for more than 100 examples (see Table 1 for some results).

2.4 Running Example: the eMuseum Service

The objective of the eMuseum service, illustrated in Figure 3, is to augment one’s experience
while visiting museums by supporting the display – on a personal portable device, e.g.

Figure 3: eMuseum adaptation case-study

a PDA or a smartphone – of information about seen pieces of art. This can be either
video or text information, with video being sent only on a subscription all-in-package basis
(while text information is for free). The service is built on top of three separately designed
components whose behavioral interfaces are given in Figure 4 (final states are denoted with

RR n° 6362

8 Mateescu, Poizat & Salaün

black circles). Component PDA can be used to register to one’s environment’s available
(free or not) services – sending payment information, registering request and waiting for an
identifier – and then use such services in a connected mode, based on a general query/reply
schema, with reception of different multimedia formats. Component ROOM receives requests
upon arrival in front of a painting and then sends related information, either text or video.
It requires an identification for each request. Finally, component SUB handles registration
and payment. It supports two modes: either guest mode or subscriber/user mode in which
bank account is required to be debited.

SUB

quit?

id?

video_request?video!

video! again?
arrival?

text_request?

id?

text!
ROOM

registering_id?

service_registering!

bank_info!

pdf?,
jpeg?,
mpeg?

arguments!

query!

close!

shutdown!

shutdown!

PDA

guest_mode?

user_id!

user_mode?

bank_info?

user_id!

end?

SUB

Figure 4: PDA, ROOM, and SUB Interfaces (Ltss)

As one may expect from the reuse of components designed by different third-parties, the
three components cannot be composed as-is due to different kinds of mismatch. An example
of name mismatch is between PDA sending service registering and SUB waiting for either
user or guest mode. There are independent evolution problems as PDA may terminate with
shutdown which has no counterpart in the other components. Message reordering is required
to make the system work as for example payment information and registration requests are
not done in the same order in PDA and SUB. Finally, the composition should also enforce
more than deadlock freedom: subscription of PDA must be ensured before it accesses videos.
In order to solve all these problems, different composition specifications can be given, for
example depending whether one wants to make a subscriber or a guest contract. We describe
below a composition specification on a subscriber contract assumption. In a guest contract,
the sending of payment information by the PDA would for example be absorbed by the
adaptor with a vector 〈PDA :bank info!〉.

INRIA

Behavioral Adaptation of Component Compositions 9

The vectors are the following:

vend = 〈PDA :shutdown!〉
vpay = 〈PDA :bank info!, SUB :bank info?〉
vreg = 〈PDA :service registering!, SUB :user mode?〉
vid = 〈PDA :registering id?, SUB :user id!〉

vclose = 〈PDA :close!, SUB :end?〉
vrun = 〈ROOM :arrival?〉

vquery = 〈PDA :query!, ROOM :video request?〉
vargument = 〈PDA :arguments!, ROOM : id?〉

vservice = 〈PDA :mpeg?, ROOM :video!〉
vstop = 〈ROOM :quit!〉

The related Lts is shown below:

Vend VidVregVpay

Vclose,Vrun,Vquery,Vargument,
 Vservice,Vstop,Vend

3 Encoding into LOTOS

In this section we address the encoding of the systems’ adaptation constraints into Lotos.
The objective of adaptation using such a constraint-based specification is to benefit from the
specification language operational semantics to obtain an adaptor whose traces represent all
possible (correct) interactions between components. The principle is to encode, and then
compose in parallel, parts for:� the components’ Ltss, an adaptor must follow the components behaviors;� the abstract requirements for composition and adaptation (i.e., the composition spec-

ification), these represent the possibilities the adaptor has to translate messages (to
deal with name mismatch) and to reorder them when needed;� the desired system architecture – adaptor in-the-middle.

This encoding will enable (as described in Section 4) the automatic generation of adaptor
protocols and the use of on-the-fly algorithms to increase, w.r.t. existing approaches, the
efficiency of the adaptator generation and reduction process.

3.1 Introduction to LOTOS

We do a simplified presentation of behavioral specification in Lotos. The reader may refer
to [9] for a comprehensive introduction to this process algebra.

RR n° 6362

10 Mateescu, Poizat & Salaün

B ::= exit correct termination
| stop deadlock
| g;B action prefix
| B1[]B2 choice
| B1|[g1, . . . , gn]|B2 parallel composition
| B1 ||| B2 interleaving
| B1 >> B2 sequential composition
| hide g1, . . . , gn in B hiding
| P[g1, . . . , gn] process call

The action2 prefix g;B means that the execution of action g is followed by behavior B.
The choice B1[]B2 denotes a behavior that may behave either as B1 or as B2. The parallel
composition B1|[g1, . . . , gn]|B2 means that behaviors B1 and B2 evolve in parallel, synchro-
nizing on actions in the g1, . . . , gn list. The interleaving operator is a parallel composition
in which behaviors evolve concurrently without synchronizing. The sequential composition
B1 >> B2 executes behavior B1 and behaves as B2 upon B1 termination (exit). The hiding
construct hide g1, . . . , gn in B transforms the actions g1, . . . , gn of B into unobservable (τ)
actions.

We want to distinguish emission from reception, yet ! and ? have a special meaning in
Lotos (supporting data transfer which is not used here). Therefore, we represent sent
(resp. received) messages with a EM (resp. REC) suffix. Given an alphabet A, with e! ∈ A

and r? ∈ A, we define enc(e!) = e EM, enc(r?) = r REC, and enc(A) = {enc(l) | l ∈ A}.

3.2 Component LTS Encoding

Each state s ∈ S of a component Lts c (A,S, I, F, T) is encoded as a Lotos process c s

whose behavior is made up of as many branches as there are transitions outgoing from s.
An additional branch is generated to model termination when s is final (s ∈ F). This is
achieved using a specific FINAL action that will enable us to distinguish correct termination
states (those with an incoming FINAL transition) from deadlocks.

process c s [enc(A), FINAL] : func(c, s) :=

enc(l1); c s1[enc(A), FINAL]

[] . . . []

enc(lm); c sm[enc(A), FINAL]

[[] FINAL; exit]

endproc

where A = {l1, . . . , lm, . . . , ln}, and {t ∈ T | source(t) = s} = {(s, l1, s1), . . . , (s, lm, sm)}
(source denotes the source state of a transition). Moreover, in Lotos, a functionality has
to be associated to each process declaration to indicate whether the process terminates

2An action in Lotos may denote either an event (synchronizing on a gate) or a communication (emis-
sion/reception of messages).

INRIA

Behavioral Adaptation of Component Compositions 11

(exit) or not (noexit). It is obtained as follows:

func(p, s) =

exit if ∃s′ ∈ F such that reachable(c, s, s′)

noexit otherwise

with

reachable(c, s, s′) =

true if ∃(s1, . . . , sk) ∈ Sk, s1 = s, sk = s′,

such that ∀i ∈ {1, . . . , k − 1} ∃ (si, ti, si+1) ∈ T

false otherwise

For deadlock states, the encoding is simply:

process c s [enc(A), FINAL] : noexit := stop endproc

3.3 Composition Specification Encoding

A composition specification CS = (V,L), with L = (AC , SC , IC , FC , TC) aims at coordinat-
ing the different components involved in a composition, and at working mismatch out. It is
encoded by generating (i) a process for the vector Lts L, (ii) a process for each vector in V ,
and (iii) the interleaving of all these vector processes.

The correct ordering of vectors is ensured by the vector Lts process thanks to two actions
for each vector v. A first one (run v) is used to enable the corresponding vector process to
receive messages. A second one (rel v) releases the vector Lts and enables it to overlap
vector applications, and hence reorder messages. The vector Lts process is encoded using
a pattern similar to component Ltss in Section 3.2 (one process for each s ∈ SC), yet with
for each outgoing transition, the two specific actions run and rel used to trigger vector
processes.

process LTS s [AL] : func(L, s) :=

run v1; rel v1;LTS s1[AL]

[] . . . []

run vm; rel vm;LTS sm[AL]

[[] FINAL; exit]

endproc

where AC = {v1, . . . , vn}, AL = {FINAL} ∪
⋃

v∈AC
{run v, rel v}, and {t ∈ TC | source(t) =

s} = {(s, v1, s1), . . . , (s, vm, sm)}.

This encoding does not allow the vector Lts to overlap two instantiations of a given vector. In
Lotos, this can be specified by “vector v = (. . . |||vector v)” which means that vector v

may be launched as many times as necessary. However, this construct is forbidden by
the Cadp toolbox since it may build infinite systems. In the case one needs to design a
composition expression in which a vector has to be launched several times with possible
overlapping, the vector can be duplicated and identified with different names.

RR n° 6362

12 Mateescu, Poizat & Salaün

Vector processes communicate with components on shared actions. They have to receive all
sent messages before beginning to emit some (i.e., in 〈c1 :comm1!, c2 :comm2!, c3 :comm3?〉,
comm1 and comm2 have to be received before the vector can send comm3). There is no
specific ordering between receptions (resp. between emissions) in a vector process. When a
vector process executes a vector, it must be ready to interact with the component Ltss on
the emissions, but next (after rel v), the components’ receptions can be postponed, and
the vector Lts can launch another vector. This behavior is essential to make the reordering
of messages possible. Each vector v is encoded as a process vector v as follows:

process vector v[Av] : exit:=

(run v;exit >> (e1;exit||| . . . |||ek;exit) >>

rel v;exit >> (r1;exit||| . . .|||rm;exit) >>

vector v [Av])

[] FINAL; exit

endproc

where Av = {run v, rel v, e1, . . . , ek, r1, . . . , rm, FINAL}, {e1, . . . , ek} = emissions(v),
{r1, . . . , rm} = receptions(v), and functions emissions and receptions are defined as
emissions(〈l1, . . . , ln〉) = {enc(li) | li = e!} and receptions(〈l1, . . . , ln〉) = {enc(li) | li = r?}.

When a vector process executes a vector, it must be ready to interact with the component Lts
on the emissions, but next (after rel v), the components’ receptions can be postponed, and
the vector Lts can launch another vector. This behavior is essential to make the reordering
of messages possible.

Finally, vector processes are interleaved, since they do not communicate altogether.

process vectors [AV] : exit :=

(vector v1 [Av1
]||| . . . |||vector vn [Avn

])

endproc

where AC = {v1, . . . , vn}, and AV =
⋃

v∈AC
Av.

3.4 System Encoding

In this step, we generate a Lotos expression corresponding to the whole system constraints
from the Lotos processes encoding the component Ltss, the ones encoding the composition
specification, and respecting the desired system architecture (adaptor in-the-middle,
intercepting all messages). This means that the component Ltss only interact together
on FINAL (correct termination is when all components terminate) while they interact with
vectors on actions used in their alphabets. The synchronizing between vector processes and
vector Lts has been described earlier on. In addition, all actions that are not messages
of the system, that is messages appearing in the involved components, are hidden as they
represent internal actions of the adaptor we are building (e.g., run and rel actions).
They are the “mechanics” of adaptation and are not relevant for implementation. Such

INRIA

Behavioral Adaptation of Component Compositions 13

internal actions are inherent to adaptation via encoding (see, e.g., τ actions corresponding
to message transfer in the Petri net encoding of [14]). They will be removed by reduction
steps of the adaptor generation process (see Section 4.1).

hide A∗

L
in

(C1 IC1
[enc(AC1

), FINAL] |[FINAL]| . . .|[FINAL]| Cn ICn
[enc(ACn

), FINAL])

|[ACX , FINAL]|

(LTS IC[AL] |[AL]| vectors[AV])

where A∗
L = AL\{FINAL} and ACX =

⋃

i∈{1,...,n} enc(ACi
).

3.5 Application to the eMuseum Service

For space reasons, we do not present the whole Lotos encoding of our example (≈ 400
lines), but instead we demonstrate the encoding of (part of) a component Lts on SUB and
the encoding of vectors on vpay. The SUB Lts has five states, which correspond in the
encoding to five processes. One may note that, as the initial state (state 0) of SUB is final,
the body of process SUB 0 contains a choice with as second branch the action FINAL followed
by a correct termination, exit. Other states of the components are declared locally to the
process SUB 0 using the where construct.

process SUB_0 [ASUB] : exit :=

SUB_guest_mode_REC; SUB_1 [ASUB]

[] SUB_user_mode_REC; SUB_3 [ASUB]

[] FINAL; exit

where

process SUB_1 [ASUB] : exit :=

SUB_user_id_EM; SUB_0 [ASUB]

endproc

[...]

endproc

where ASUB = SUB guest mode REC, SUB user mode REC, SUB user id EM,

SUB bank info REC, SUB end REC, FINAL.

The vector vpay is encoded as the Lotos process vector Vpay. This process is fired when the
vector Lts interacts on action run Vpay. The next interaction corresponds to the emissions,
here there is a single one, namely PDA bank info EM, carried out by component PDA. The
vector Lts is the released (rel Vpay) by vector Vpay to enable it to execute other vectors.
Here this will enable to begin vector vreg and reorder bank information and registration.
Receptions are then executed, here SUB bank info REC, carried out by component SUB.
Last, the process vector Vpay is called again and may execute again the vector, or terminate
(FINAL).

RR n° 6362

14 Mateescu, Poizat & Salaün

process vector_Vpay [AVPAY] : exit :=

(run_Vpay;exit >> (PDA_bank_info_EM;exit) >>

rel_Vpay;exit >> (SUB_bank_info_REC;exit) >>

vector_Vpay [AVPAY])

[] FINAL;exit

endproc

where AVPAY=run Vpay, rel Vpay, PDA bank info EM, SUB bank info REC, FINAL.

4 Adaptor Generation

This section is devoted to the adaptor generation methodology. We first present the principle
of our on-the-fly adaptor generation, then we show its application on the eMuseum service
case-study and on several other examples from our database, and finally we illustrate how
the generated adaptors can be verified by model checking in order to assess their adequacy
w.r.t. the desired service expected from the adapted system.

4.1 Principle

An adaptor for a set of components is an Lts running in parallel with the component Ltss
and guiding their execution in such a way that mismatches (deadlocks) are avoided and
the ordering of messages imposed by the composition specification is guaranteed. Such an
adaptor can be obtained from an Lts description of the whole system (components and
composition specification) by keeping only the behaviors without mismatch, which amounts
to cut the execution sequences leading to deadlock states. In the adaptation techniques
that support such behavioral restriction, as [23, 14], the computation of the deadlock-free
behaviors is done by performing a backward exploration of the explicit, entirely constructed,
Lts by starting at the deadlock states and cutting all the transitions whose target state
leads to a deadlock. Here we aim at more efficiency, avoiding the entire construction of the
Lts, by generating the adaptor on-the-fly and exploring the Lts corresponding to the Lotos
specification of the whole system in a forward manner.

The Cæsar compiler [22, 21] of Cadp translates a Lotos specification into a C program
representing the corresponding Lts implicitly, by means of the successor function enumer-
ating the outgoing transitions of a given state. This implicit Lts representation complies
with the application programming interface defined by Open/Cæsar [19], the generic en-
vironment of Cadp dedicated to Lts exploration. Thus, a Lotos encoding of the whole
system allows to immediately benefit from all on-the-fly verification tools of Cadp built us-
ing Open/Cæsar. However, at the present time none of these tools provides the kind of Lts
exploration needed for adaptor generation, and therefore we developed a new prototype tool,
named Scrutator, implementing this functionality. The adaptor generation procedure con-
sists of two simultaneous activities, performed on-the-fly during a forward exploration of the
Lts corresponding to the Lotos specification of the whole system.

INRIA

Behavioral Adaptation of Component Compositions 15

final states

⇔ 〈FINAL〉 true

s

|= final

⇔ µX. 〈FINAL〉 true ∨ 〈true〉X

|= AG¬final

|= EFfinal

deadlock states

|= [true] false

⇔ νX. [FINAL] false ∧ [true]X

reach final states

states that never

states that potentially

reach final states

Figure 5: On-the-fly detection of states potentially leading to successful termination

Mismatch elimination. First, the execution sequences leading to mismatches (deadlocks)
must be pruned. We do this by keeping, for each state encountered, only its successor states
that potentially reach a successful termination state, which is source of a transition labeled
with the action FINAL, as shown in Figure 5. Besides avoiding deadlocks (which are sink
states reached by actions other than FINAL), this also avoids livelocks, i.e., portions of
the state space where some components get “trapped” and cannot reach their final states
anymore. In a state-based setting based on Kripke structures, the desired successor states
would satisfy the Ctl [15] formula EF final , where the atomic proposition final characterizes
successful termination states. In our action-based setting based on Ltss, those successor
states would satisfy the µ-calculus [34] formula µX. 〈FINAL〉 true ∨ 〈true〉X and they could
be detected on-the-fly by invoking the Evaluator [27] model checker of Cadp. However,
this solution is not efficient since each invocation of Evaluator has a linear complexity
w.r.t. the size of the Lts and therefore a sequence of invocations (in the worst case, one for
each state of the Lts) may have a quadratic complexity.

The solution we adopted is to translate the evaluation of the formula into the resolution of
the following boolean equation system (Bes):

{Xs=µ

∨

s
FINAL

→ s′
true ∨

∨

s→s′′Xs′′}

where a boolean variable Xs is true iff state s satisfies the propositional variable X corre-
sponding to the µ-calculus formula. This Bes (which is also used internally by Evaluator
for checking the µ-calculus formula above) is solved on-the-fly using the algorithms of the
Cæsar Solve library [26] of Cadp, and particularly the algorithm dedicated to disjunctive

RR n° 6362

16 Mateescu, Poizat & Salaün

Bess (containing only ∨ operators in the right-hand sides of the equations), which stores in
memory only the boolean variables (hence only the Lts states) and not the dependencies
between them (and hence not the Lts transitions). The algorithms of Cæsar Solve are
designed such that a sequence of resolutions has an overall linear complexity in the size of the
Bes; this is achieved by keeping the results of intermediate computations persistent between
two subsequent resolutions. Thus, a state s potentially leading to a successful termination
is detected by solving on-the-fly the variable Xs of the Bes above; the overall complexity of
the exploration enhanced with this detection remains linear w.r.t. the size of the Lts and
does not store in memory the transitions, but only the states of the Lts.

Behavioral reduction. Second, the adaptor Lts obtained by pruning can be reduced
on-the-fly modulo an appropriate equivalence relation in order to get rid of the internal
actions and obtain an adaptor as small as possible. The current version of Scrutator
uses the algorithms in [25] to implement on-the-fly reductions modulo τ -confluence (a form
of partial order reduction preserving branching bisimulation) and the τ∗.a and weak trace
equivalences, both of which eliminate internal transitions and (for weak trace) determinize
the adaptor Lts. We also plan to implement on-the-fly reductions for other equivalences,
such as branching bisimulation; for the time being, the adaptors generated by Scrutator
can be reduced off-line modulo strong or branching bisimulation using the Bcg Min tool of
Cadp.

The adaptation protocols described by our adaptors share message names and direction with
the components. This is due to the process algebraic framework we rely on (Lotos) where
synchronizing is performed on the basis of shared actions. Note that in order to implement
the adaptor protocol, one has to mirror all messages (reversing emissions and receptions,
EM and REC) as the adaptor acts as an orchestrator in-the-middle of the components. This
relabeling of adaptors is done using an Svl script.

4.2 Application to the eMuseum Service

Taking as input the Lotos specification of the eMuseum service presented in Section 3, we
applied Scrutator in order to generate on-the-fly the corresponding adaptor, which has
410 states and 719 transitions without any reduction and 43 states and 63 transitions with
τ -confluence coupled with weak trace reduction. The latter version can be further reduced
modulo strong bisimulation using Bcg Min (for efficiency reasons, the reductions performed
on-the-fly do not attempt to produce the minimal Lts), yielding the adaptor with 31 states
and 46 transitions shown in Figure 6.

In this adaptor, we stress the messages exchanged for registration. One may note that the
adaptor mirrors the components’ messages, follows the components’ protocols, follows the
orderings specified by vectors and vector Lts, and orders message reception/emission to avoid
deadlocks. Here, the adaptor ensures PDA sends both bank info and service registering before
they are transmitted (in the reverse order) as user mode and bank info to SUB which may
thereafter reply with an identifier (user id) that will be transmitted to PDA (registering id).

INRIA

Behavioral Adaptation of Component Compositions 17

17

0

18

1

20

19

2 21

3

22

4

23

5

24

6

25

7

26

8

27

9

10

28

11

30

29

1213

14

15

16

SUB_END_REC

SUB_END_EM

PDA_SHUTDOWN_REC

ROOM_QUIT_EM

FINAL

PDA_BANK_INFO_REC

PDA_SHUTDOWN_REC

PDA_QUERY_REC

ROOM_QUIT_EM

SUB_END_EM

ROOM_QUIT_EM

ROOM_ARRIVAL_EM

ROOM_QUIT_EM

PDA_MPEG_EM

PDA_SHUTDOWN_REC

PDA_CLOSE_REC

PDA_MPEG_EM

ROOM_ARRIVAL_EM

ROOM_ARRIVAL_EM

SUB_END_EM

PDA_REGISTERING_ID_EM

PDA_ARGUMENTS_RECPDA_SHUTDOWN_REC

SUB_USER_ID_REC

ROOM_ARRIVAL_EM

ROOM_VIDEO_REC

ROOM_ARRIVAL_EM

PDA_SHUTDOWN_REC

ROOM_QUIT_EM

PDA_REGISTERING_ID_EM

SUB_USER_MODE_EM

PDA_MPEG_EM

ROOM_VIDEO_REQUEST_EM

PDA_ARGUMENTS_REC

PDA_ARGUMENTS_REC

SUB_BANK_INFO_EM

ROOM_QUIT_EMROOM_ID_EM

PDA_CLOSE_REC

PDA_SERVICE_REGISTERING_REC

PDA_QUERY_REC

PDA_QUERY_REC

ROOM_QUIT_EM

ROOM_VIDEO_REQUEST_EM

ROOM_QUIT_EM

PDA_ARGUMENTS_REC

SERVICE REGISTRATION PREFIX

PDA_SHUTDOWN?

FINAL

PDA_BANK_INFO?

 SUB_USER_MODE!

 PDA_SERVICE_REGISTERING?

SUB_BANK_INFO!

SUB_USER_ID?

PDA_REGISTERING_ID!ROOM_ARRIVAL!

PDA_REGISTERING_ID!

Figure 6: Adaptor Lts for the eMuseum service

RR n° 6362

18 Mateescu, Poizat & Salaün

Adaptor Lts Lts portion explored for
Application raw reduced reduced adaptor generation

states trans. states trans. states % trans. %

ebook 169,530 558,258 40,276 159,736 139,989 46.66 297,326 26.49
mail-system 12,273 31,877 148 398 12,048 84.98 7258 20.32
rate-service 599 982 54 81 240 33.76 197 15.02
emuseum (subscriber) 410 719 43 63 771 89.76 728 48.05
video-on-demand 229 406 12 15 18 64.29 17 47.22
sql-server 189 302 20 26 230 84.87 187 40.30
no-comm 151 215 24 43 156 78.39 109 39.64
emuseum (guest) 126 191 25 32 215 84.31 199 50.77
memory 94 147 35 53 74 78.72 70 47.62
pc-store 86 125 14 15 141 77.47 109 42.08
hi-fi 79 126 33 51 141 90.97 120 49.18
broadcast 66 127 34 63 49 74.24 45 34.88
library 59 68 21 21 186 93.47 163 60.15
deadlock 45 84 21 39 36 80.00 46 54.76
client-server 44 66 20 32 37 84.09 37 56.06
connected 41 57 14 17 31 75.61 40 70.18
flower 38 47 16 19 23 60.53 23 48.94
resource 23 28 10 10 10 43.48 10 35.71
restrictive 22 28 7 8 48 84.21 52 64.20
switch 14 16 7 7 7 50.00 6 37.50

Table 1: Examples of adaptor generation

Table 1 shows experimental measures on 20 examples from our database. For each ex-
periment, the table gives the size of the “raw” adaptor Lts generated from the Lotos
specification by pruning deadlocks (columns 2, 3) and of the adaptor reduced on-the-fly by
Scrutator modulo weak trace equivalence combined with τ -confluence (columns 4, 5). Our
running example of eMuseum service is referred to as “emuseum (subscriber)” in Table 1.
The rightmost columns of the table indicate the portion of the Lts actually explored on-the-
fly during the generation of the reduced adaptor, which can be significantly smaller (down
to 33% of the states and 15% of the transitions) than the whole Lts. This illustrates the
benefits of on-the-fly adaptation w.r.t. the approach based on explicit construction of Ltss
employed in [24, 14]. Moreover, we observe that the ratio between the number of transitions
explored and the transitions of the Lts is smaller than the ratio concerning the states. This
aspect — which becomes more important with the increase of the branching factor of the
Lts, proportional to the number of components in the adapted system — further penalizes
the explicit approach w.r.t. the on-the-fly approach, because the former requires to store all
Lts transitions in memory in order to compute the adaptor, whereas the latter requires to
store only Lts states. The largest example given in Table 1 (“ebook”) took a little more
than one minute of computation on a 731 MHz, 512 MB Pc running Linux.

INRIA

Behavioral Adaptation of Component Compositions 19

4.3 Verification of the Adaptation

The use of Lotos to encode not only the system components but also the composition
specification has the additional advantage of allowing to verify the correctness of the adaptor
alone or of the final system (components and adaptor) using the Cadp tools. Verification is
needed in order to ensure that the whole system is correct w.r.t. the desired service to be
obtained after adaptation: indeed, the user may provide a wrong composition specification,
which does not solve all the mismatches existing between the components, and could lead to
an erroneous adaptor. For the eMuseum service example, one can use Evaluator to check
temporal properties expressed in regular alternation-free µ-calculus. This has been done on
ten properties, as those illustrated below.

Safety. The client cannot get a video before it has successfully subscribed (sending its bank
information):

[(¬SUB BANK INFO EM)∗.PDA MPEG EM] false

Liveness. Every request sent by the client will be eventually answered by the service:

[true∗.PDA QUERY REC] µX.〈true〉true ∧ [¬ROOM VIDEO REC]X

The safety property holds on the final system obtained after adaptation but not on the
PDA alone, since it involves an action of SUB which has no counterpart in PDA; the cor-
rect ordering of these actions has been ensured by adaptation on an adequate composition
specification. The liveness property holds on the final system, but fails3 on the system be-
fore adaptation (made of components and vector Lts) because of mismatches. The shortest
counterexample sequence (16 transitions) produced by Evaluator corresponds to the fol-
lowing chain of vectors: vpay (emission of banking information by PDA), vreg (emission of
registering demand by PDA), vid (emission of user id by SUB). This chain is then followed
by a request PDA:query ! (captured by vector vquery) sent by the PDA before the vector vrun

was executed; since the ROOM component is not ready to accept a request, this leads to a
deadlock.

The whole machinery of translation into Lotos, on-the-fly generation of the adaptor, and
verification of properties was automated using Svl scripts, as indicated in Figure 2. We give
below the Svl script handling all operations from the on-the-fly generation of the adaptor
for the eMuseum example to the verification of the final system obtained after adaptation.

3When checking the properties on the system before adaptation, one should use the original action
names, before the mirroring of the adaptor. Thus, the liveness property checked on the original system
is [true∗.PDA QUERY EM] µX.〈true〉true ∧ [¬ROOM VIDEO EM] X.

RR n° 6362

20 Mateescu, Poizat & Salaün

% DEFAULT_LOTOS_FILE="emuseum.lotos"

(* On-the-fly generation and reduction of the adaptor *)

% caesar.open "emuseum.lotos" ./scrutator.a -tauconfluence -weaktrace \

% -potential FINAL "emuseum_scr.bcg" ;

(* Mirroring of adaptor’s actions and strong minimization *)

"emuseum_adaptor.bcg" = strong reduction of

total rename "\(.*\)_XXX" -> "\1_REC" in

total rename "\(.*\)_REC" -> "\1_EM" in

total rename "\(.*\)_EM" -> "\1_XXX" in

"emuseum_scr.bcg" ;

(* Generation of the components *)

"room_0.bcg" = strong reduction of room_0 ;

"pda_0.bcg" = strong reduction of pda_0 ;

"sub_0.bcg" = strong reduction of sub_0 ;

(* Generation of the adapted system *)

"emuseum_final.bcg" = strong reduction of

("room_0.bcg" |[FINAL]| "pda_0.bcg" |[FINAL]| "sub_0.bcg")

|[room_quit_REC, room_video_EM,

room_again_REC, room_arrival_REC,

room_text_EM, room_id_REC,

room_video_request_REC, room_text_request_REC,

pda_pdf_REC, pda_mpeg_REC,

pda_query_EM, pda_arguments_EM,

pda_service_registering_EM, pda_registering_id_REC,

pda_jpeg_REC, pda_bank_info_EM, pda_close_EM,

pda_shutdown_EM, sub_stat_REC,

sub_end_REC, sub_guest_mode_REC,

sub_user_mode_REC, sub_user_id_EM,

sub_bank_info_REC, FINAL]|

"emuseum_adaptor.bcg" ;

(* Verification of the adapted system *)

"diag_safe.bcg" = verify "safety.mcl" in "emuseum_final.bcg" ;

"diag_live.bcg" = verify "liveness.mcl" in "emuseum_final.bcg" ;

INRIA

Behavioral Adaptation of Component Compositions 21

5 Related Work

The problem of automatically adapting components to foster reuse is not a new discipline.
In [30, 28], the authors propose a framework with adaptation features. They are able to
retrieve and compose automatically a set of components supporting parts of the system
desired properties and adapt them in order to fulfill a given specification. They use axiomatic
Rosetta specifications and rely on theorem-proving techniques as the underlying formal tool
support. We do not support component retrieval for the moment. Moreover, as our objective
is to address behavioral composition, we rather use behavioral specifications and related
tools.

Several recent adaptation proposals [35, 33, 23, 11, 14] also focus on solving behavioral
mismatch between components. Brogi et al. (BBCP) [10, 11] present a methodology for
generative behavioral adaptation where component behaviors are specified with a subset
of the π-calculus and composition specifications with name correspondences. An adaptor
generation algorithm is used to refine the given specification into a concrete adaptor which is
able to accommodate both message name and protocol mismatch. This approach has recently
been used to obtain adaptor implementations for services [12]. Inverardi et al. (IT) [24,
23] address the enforcement of behavioral properties out of a set of components. Starting
from the specification with Mscs of the components to be assembled and of LTL properties
(liveness or safety) that the resulting system should verify, they automatically derive the
adaptor glue code for the set of components in order to obtain a property-satisfying system.
They follow a restrictive adaptation approach, hence are not for example able to reorder
messages when required. More recently, in [14], we have proposed an automated adaptation
approach that was both generative and restrictive, and supports adaptation policies and
system properties described by means of regular expressions of vectors. It superseded both
IT (as it supported message reordering) and BBCP (which could generate dumb adaptors [10]
and has no tool-support), yet it built on algorithms based on synchronous products and Petri
nets encodings with a resulting exponential complexity for the computation of adaptors.

All these works suffer from the cost of computing global adaptors for the whole set of com-
ponents. Some work have recently tried to address this issue either at the computation time
– by supporting the incremental computation of adaptors [31] – or at deployment time –
by distributing the adaptors over the components [3]. Yet, they build on algorithms for
the computation of global adaptors previously defined by their authors. What we have
defined here is a technique which enables the one-the-fly removal of incorrect interactions
and behavioral reduction of adaptors. As such, this technique can be used in restrictive (or
generative and restrictive) approaches, or when the adaptor size is too big and requires re-
duction before implementation. Compared to the existing adaptation approaches, ours also
benefits from being based on a formal toolset which has been intensively validated on large
case studies over the last years, namely Cadp. In particular, compared to our own previous
approaches [14, 31], the one at hand deals with the same mismatch but follows a simplified
process and has a better complexity. Using Compositor to get a Lotos specification, one
can directly rely on Cadp and our external module for it, Scrutator to get adaptors. Last,
the algorithm dealing with reordering presented in [14] suffered from state explosion in some

RR n° 6362

22 Mateescu, Poizat & Salaün

cases – e.g. in case of components with emission looping behaviors (due to message storing).
This issue was related to the Petri net encoding used, and is avoided in the current solution
which has passed examples failing with [14].

Software adaptation can be related to controller synthesis [32], which focuses on the genera-
tion of controllers with respect to a given system (called plant) designed as a finite automaton
and properties to be ensured. However, both approaches are fundamentally different because
controller synthesis goal is to influence (when possible) the behavior of the controlled system,
while adaptation works on black-box components and should be non intrusive. In addition,
controller synthesis is a restrictive approach whereas efficient adaptation approaches are also
generative.

The fact that adaptation can be restrictive, or may produce non envisioned interaction
scenarios using reordering, makes assessment an important issue in software adaptation.
Verification of adapted systems is tackled in [29] where Atelier B is used to check properties
of adaptors completely specified with the B method. We believe behavioral equivalences or
model checking are more adequate than theorem proving for the verification of behavioral
adaptors. A benefit of the approach we present here is that adaptor generation and adaptor
assessment are tool-supported in a common framework, Lotos and Cadp. Amongst the
numerous component or service verification approaches, we may cite one, also based on
LOTOS, for Fractal components [5] which could be used in complement with our adaptation
approach to assess systems.

To sum up, compared to the related work introduced above, our approach relies on differ-
ent strengths which are: a simple yet expressive mapping language, a self-contained and
simple approach to generate adaptors, the reuse when possible of reliable and optimized
tools that have been widely validated and used, on-the-fly algorithms to generate adaptor
protocols, automation of the approach thanks to prototype tools we have implemented, and
possible verification (assessment) of adapted systems in the same framework as the adaptor
generation.

6 Concluding Remarks

Software adaptation is a promising area of Software Engineering to solve mismatch between
components and hence increase their reusability level. Results on model-based adaptation
are now mature enough to be put into practice on implementation frameworks [24, 12, 16],
without requiring the need of specific adaptive middleware [1], but rather use directly the
features provided by the target framework, which is more compatible with an MDE approach.

In this report, we have proposed a completely automated approach for the generation of
adaptor protocols which supersedes state-of-the-art work on two important elements. First,
the use of a process algebra encoding, namely Lotos, supports both the adaptor gener-
ation process and its assessment/verification in a common and unified framework, Cadp.
Moreover, this enabled the definition and the use of on-the-fly techniques for the pruning of
component interactions leading to deadlocks and for the reduction of adaptors’ size. This

INRIA

Behavioral Adaptation of Component Compositions 23

is particularly interesting in contexts where adaptor size is relevant: adaptation at run-
time or in service composition for pervasive and ambient intelligence systems [7] where the
end-user is equipped with low-resources portable devices. Both encoding and adaptor gen-
eration are fully automatized thanks to the Cadp toolbox and the tools we have developed,
Compositor and Scrutator.

Perspectives are within the context of the framework for component and service automatic
composition and adaptation presented in the introduction. A first perspective aims at avoid-
ing the complete construction of adaptors at design or deployment time, and rather construct
them while interacting with running components or services. However, while composing the
components at run-time, one should avoid to engage into execution branches that may lead
to deadlock situations. A first step towards run-time adaptation is presented in [13] where
a bounded forward-looking simulation algorithm is used to ensure deadlock freedom on the
chosen bound limits. To ensure full correctness, we could reuse the encoding and on-the-fly
technique presented here, provided we extend one Cadp simulation tool (OCIS) with on-
the-fly verification. A second perspective concerns the tool integration of our model-based
works, as presented here, with our implementation related works [16].

References

[1] Special Issue on Adaptive Middleware. Communications of the ACM, 45(6):30–64, 2002.

[2] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Trans. on
Software Engineering and Methodology, 6(3):213–249, 1997.

[3] M. Autili, M. Flammini, P. Inverardi, A. Navarra, and M. Tivoli. Synthesis of Concur-
rent and Distributed Adaptors for Component-based Systems. In Proc. of EWSA’06,
volume 4344 of LNCS, pages 17–32. Springer-Verlag, 2006.

[4] T. Barros, R. Boulifa, and E. Madelaine. Parameterized models for distributed java
objects. In Proceedings of the 24th IFIP WG 6.1 International Conference on For-
mal Techniques for Networked and Distributed Systems FORTE’2004 (Madrid, Spain),
volume 3235 of LNCS, pages 43–60. Springer-Verlag, September 2004.

[5] T. Barros, A. Cansado, and E. Madelaine. Model-Checking Distributed Components:
the Vercors Platform. In Proceedings of the 3rd International Workshop on Formal
Aspects of Component Software FACS’2006 (Prague, Czech Republic), ENTCS. Elsevier,
2006.

[6] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and M. Tivoli. Archi-
tecting Systems with Trustworthy Components, volume 3938 of LNCS, chapter Towards
an Engineering Approach to Component Adaptation, pages 193–215. Springer-Verlag,
2006.

RR n° 6362

24 Mateescu, Poizat & Salaün

[7] S. Ben Mokhtar, Liu J., N. Georgantas, and V. Issarny. QOS-aware Dynamic Service
Composition in Ambient Intelligence Environments. In Proc. of ASE’05, pages 317–320.
ACM Press, 2005.

[8] M. Bernardo and P. Inverardi, editors. Formal Methods for Software Architectures,
volume 2804 of LNCS. Springer-Verlag, 2003.

[9] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS.
Computer Networks and ISDN Systems, 14(1):25–59, 1988.

[10] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adaptation.
Journal of Systems and Software, 74(1):45–54, 2005.

[11] A. Brogi, C. Canal, and E. Pimentel. Component Adaptation Through Flexible Sub-
servicing. Science of Computer Programming, 63(1):39–56, 2006.

[12] A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. In Proc. of
ICSOC’06, volume 4294 of LNCS, pages 27–39. Springer-Verlag, 2006.

[13] J. Camara, G. Salaün, and C. Canal. Run-time Composition of Mismatching Transac-
tions. In Proc. of SEFM’07, 2007.

[14] C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural Mismatch in Software
Composition. In Proc. of FMOODS’06, volume 4037 of LNCS, pages 63–77. Springer-
Verlag, 2006.

[15] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[16] J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat. Relating Model-Based
Adaptation and Implementation Platforms: A Case Study with WF/.NET 3.0. In
Proc. of WCOP’07, 2007.

[17] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web Service
Compositions. In Proc. of ASE’03, pages 152–163. IEEE Computer Society, 2003.

[18] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc. of
WWW’04. ACM Press, 2004.

[19] H. Garavel. Open/Cæsar: An Open Software Architecture for Verification, Simulation,
and Testing. In Proc. of TACAS’98, volume 1384 of LNCS, pages 68–84. Springer-
Verlag, 1998.

[20] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In Proc. of CAV’07, volume 4590
of LNCS, pages 158–162. Springer-Verlag, 2007.

[21] H. Garavel and W. Serwe. State space reduction for process algebra specifications.
Theoretical Computer Science, 351(2):131–145, February 2006.

INRIA

Behavioral Adaptation of Component Compositions 25

[22] H. Garavel and J. Sifakis. Compilation and verification of lotos specifications. In
L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the 10th International
Symposium on Protocol Specification, Testing and Verification (Ottawa, Canada), pages
379–394. IFIP, North-Holland, June 1990.

[23] P. Inverardi, L. Mostarda, M. Tivoli, and M. Autili. Synthesis of Correct and Distributed
Adaptors for Component-based Systems: an Automatic Approach. In Proc. of ASE’05,
pages 405–409. ACM Press, 2005.

[24] P. Inverardi and M. Tivoli. Deadlock Free Software Architectures for COM/DCOM
Applications. Journal of Systems and Software, 65(3):173–183, 2003.

[25] R. Mateescu. On-the-fly state space reductions for weak equivalences. In Tiziana Mar-
garia and Mieke Massink, editors, Proceedings of the 10th International Workshop on
Formal Methods for Industrial Critical Systems FMICS’05 (Lisbon, Portugal), pages
80–89. ERCIM, ACM Computer Society Press, September 2005.

[26] R. Mateescu. CAESAR SOLVE: A Generic Library for On-the-Fly Resolution of
Alternation-Free Boolean Equation Systems. STTT Journal, 8(1):37–56, 2006.

[27] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Science of Computer Programming, 46(3):255–281, 2003.

[28] B. Morel and P. Alexander. Automating Component Adaptation for Reuse. In Proc. of
ASE’03, pages 142–151. IEEE Computer Society, 2003.

[29] I. Mouakher, A. Lanoix, and J. Souquieres. Component Adaptation: Specification and
Verification. In Proc. of WCOP’06, 2006.

[30] J. Penix and P. Alexander. Efficient specification-based component retrieval. In Proc.
of ASE’99, pages 139–170. Kluwer Academic Publishers, 1999.

[31] P. Poizat and G. Salaün. Adaptation of Open Component-based Systems. In Proc. of
FMOODS’07, volume 4468 of LNCS, pages 141–156. Springer-Verlag, 2007.

[32] P. J. G. Ramadge and W. M. Wonham. The Control of Discrete Event Systems. Proc.
of the IEEE, 77(1):81–98, 1989.

[33] R. H. Reussner. Automatic component protocol adaptation with the CoConut/J tool
suite. Future Generation Computer Systems, 19(1):627–639, 2003.

[34] C. Stirling. Modal and Temporal Properties of Processes. Springer-Verlag, 2001.

[35] D. M. Yellin and R. E. Strom. Protocol Specifications and Components Adaptors. ACM
Trans. on Programming Languages and Systems, 19(2):292–333, 1997.

RR n° 6362

Centre de recherche INRIA Grenoble – Rhône-Alpes
Inovallée, 655, avenue de l’Europe, Montbonnot - 38334 Saint Ismier Cedex (France)

Centre de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes, 4, rue Jacques Monod - Bât. G - 91893 Orsay Cedex (France)
Centre de recherche INRIA Nancy – Grand Est : 615, rue du Jardin Botanique - 54600 Villers-lès-Nancy (France)

Centre de recherche INRIA Rennes – Bretagne Atlantique : Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Components and Composition Specification
	Component Interfaces and Mismatch
	Composition/Adaptation Specification
	Approach Overview and Tool Support
	Running Example: the eMuseum Service

	Encoding into LOTOS
	Introduction to LOTOS
	Component LTS Encoding
	Composition Specification Encoding
	System Encoding
	Application to the eMuseum Service

	Adaptor Generation
	Principle
	Application to the eMuseum Service
	Verification of the Adaptation

	Related Work
	Concluding Remarks

