
Transactional Reduction of Component

Compositions

Serge Haddad1 and Pascal Poizat2,3

1 LAMSADE UMR 7024 CNRS, Université Paris Dauphine, France
Serge.Haddad@lamsade.dauphine.fr

2 IBISC FRE 2873 CNRS, Université d’Évry Val d’Essonne, France
3 ARLES Project, INRIA Rocquencourt, France

Pascal.Poizat@inria.fr

Abstract. Behavioural protocols are beneficial to Component-Based
Software Engineering and Service-Oriented Computing as they foster
automatic procedures for discovery, composition, composition correct-
ness checking and adaptation. However, resulting composition models
(e.g., orchestrations or adaptors) often contain redundant or useless parts
yielding the state explosion problem. Mechanisms to reduce the state
space of behavioural composition models are therefore required. While
reduction techniques are numerous, e.g., in the process algebraic frame-
work, none is suited to compositions where provided/required services
correspond to transactions of lower-level individual event based commu-
nications. In this article we address this issue through the definition of
a dedicated model and reduction techniques. They support transactions
and are therefore applicable to service architectures.

1 Introduction

Component-Based Software Engineering (CBSE) postulates that components
should be reusable from their interfaces [27]. Usual Interface Description Lan-
guages (IDL) address composition issues at the signature (operations) level. How-
ever, compositions made up of components compatible at the signature level may
still present problems, such as deadlock, due to incompatible protocols [13]. In
the last years, the need for taking into account protocol descriptions within
component interfaces through the use of Behavioural IDLs has emerged as a so-
lution to this issue. BIDLs yield more precise descriptions of components. They
support component discovery, composability and substitutability checking (see,
e.g., [6,24,3,15]) and, if mismatch is detected, its automatic solving thanks to
adaptor generation (see, e.g., [28,26,18,9,14]). With the emergence of Service
Oriented Architectures (SOA) [22], behavioural techniques are also valuable,
e.g., to discover and compose services [10,4], to verify service orchestrations and
choreographies [25,7,17] or to build adaptors [11]. BIDLs usually rely on Labelled
Transition Systems (LTS), i.e., finite automata-like models where transition la-
bels correspond to the events exchanged between communicating components or
services. Several works rather use process algebras such as the π-calculus in or-



der to ensure conciseness of behavioural descriptions, yet verification techniques
rely on the process algebras operational semantics to obtain LTSs.

These behavioural techniques, grounding on operations such as LTS products,
often yield big global (system-level) models for compositions or adaptations, i.e.,
coordinators or adaptors, which also contain redundant or useless parts. This
occurs even when all the basic component models are optimal with respect to
some standard criterium, e.g., their number of states. This problem limits the
applicability of composition and adaptation techniques, especially in domains
where they are to be applied at run-time on low-resources devices, e.g., pervasive
computing or ambient intelligence. Reduction techniques supporting component
and service4 composition and adaptation are therefore required.

Transactions are important in component composition, e.g., for Web Ser-
vices [19]. Here, we address transactions from an applicative point of view: to
ensure a given high-level service (the transaction), components usually proceed
by exchanging several lower-level events. For example, to book a tourism package,
service bookTour, a client should give in sequence elements about the country,
the hotel requirements, and eventually price constraints. At the same time, to
achieve this, the service may itself communicate with external services such as
bookHotel, bookPlane and rentACar. The overall complexity of the bookTour ser-
vice is adequately encapsulated into the (application-level) transaction concept.
Transactions are also important in adaptation where they correspond to long-
run sets of exchanges one wants to ensure using adaptors. Deadlock-freedom
adaptation [14] is closely related to component final states, which in turn enable
the definition of transactions in component protocols. This makes the support
for transaction a mandatory feature of behavioural reduction techniques since
in order to consider behaviours equivalent, and thereafter remove duplicates,
complete transactions should to be taken into account.

Related Work. The usual techniques to deal with complexity problems are
abstraction, on-the-fly, compositional and equivalence techniques. Abstraction,
e.g., [8], is used to achieve behavioural descriptions at a high level, avoiding
details. A problem with abstraction is that it can be difficult to relate abstract
results (e.g., a composition scenario or an adaptor) and lower-level models (e.g.,
a Web Service orchestration in BPEL4WS). On-the-fly techniques, e.g., [20],
compute global LTSs not before but during a given process. Branches can be
discarded if not relevant or not consistent with reference to the process issue.
Compositional techniques rely on the fact that some properties can lift from the
local level (in a component) to the global one (in a composite). However, many
interesting properties such as deadlock freedom are not compositional [2]. Var-
ious equivalences or reductions techniques have been developped in the field of
process algebras and reused afterwards for component models (see, e.g., [24,25]).
They are based on the hiding of internal or synchronized events (using τ tran-
sitions). A first problem is that the ability of two components to synchronize
is an important element for the usefulness of a composition. Synchronizations

4 In the sequel, we use component as a general term covering both software components
and services, i.e., mainly an entity to be composed.



also yield a structuring information supporting the implementation of coordina-
tors or adaptors: to which subcomponent event they do correspond. Hence, they
cannot just be hidden and removed.

Moreover, abstraction, on-the-fly, compositional and reduction techniques do
not support transactions. Action refinement and related equivalences [5] should
do. Yet, action refinement is not suited to component composition or adaptation.
This is first because the relations between two connected components cannot be
always seen as an unidirectional refinement. Moreover, action refinement relates
two components while composition or adaptation may apply on a wider scale.
In [15] an approach based on component interaction automata with generic (over
a set of events) equivalence and substitutability notions is proposed. However, its
absence of specific treatment for component final states may prevent its support
for transactions and deadlock-freedom adaptation.

Contribution. The contributions of this article are twofold. First we propose
a hierarchical component model with behavioural descriptions and expressive
binding mechanisms combining different degrees of synchronization and encap-
sulation. These binding mechanisms enable one to define composition and adap-
tation contracts that would not be expressible in other component models such
as the Fractal ADL [12] or UML 2.0 component diagrams [21] due to consistency
constraints between component interface or port names. Our model supports
open systems and enables one to achieve compositionality (composites are com-
ponents). As discussed in related work, almost all reduction techniques forget
the structure of composites and are thus inappropriate when one does not want
to (or cannot) re-design the subcomponents. So our second contribution are re-
duction techniques which, on the one hand, take into account the transactional
nature of communications between components and, on the other hand, do not
modify the internal behaviour of the subcomponents. As a side effect, they also
enforce deadlock-freedom adaptation between components that was previously
handled by specific algorithms.

Organization. The article is organised as follows. In Section 2, we motivate the
need for specific features in hierarchical component models and we informally
introduce ours. It is then formalized in Section 3. Section 4 defines transaction-
based reductions and corresponding algorithms are given. Finally, we conclude
and present perspectives in Section 5.

2 Informal Presentation of the Model

Behaviours. As advocated in the introduction, component models should take
into account means to define the behavioural interfaces of components through
BIDLs. Let us introduce this part of our model using a simple example. Two
components, an email server (SERVER) and an email composer (GUI) are inter-
acting altogether and with the user. Their behavioural interfaces are described
by LTSs (Fig. 1) where transition labels denote events that take place at the
level of the component, either receptions or emissions. Receptions correspond to
provided services and emissions to required ones. LTSs can be obtained either



at design-time as a form of behavioural contract for components, but may also
be obtained by reverse engineering code.

tmail?

attach!

end!

end!

compose!

compose!

vmail?

0

3

4

2

1

(a) GUI

textEMail?

video?

send?

send?

body?

body?

videoEMail?

_

V1

V2

T2

T1

text?

close?

close?

(b) SERVER

Fig. 1. Mail System – Components (LTS)

At the composer level, one begins with a user opening a new window for
a simple email (tmail?) or a video email (vmail?), which requires a special au-
thentication not modelled here for conciseness. Afterwards, different user actions
can be performed on the window. To keep concise, we only represent the cor-
responding triggered emissions in GUI. A text input (triggering compose!) is
possibly followed by attachments (triggering attach!) for video email, and the
mail is asked to be send (triggering end!). The server works on a session mode
and allows, again with authentication, two kind of sessions: one dedicated to
emails with text file attachments (textEMail?) and one dedicated to emails with
video attachments (videoEMail?). Content is received using body?, attachments
with either text? or video?, and the sending request with send?. Sessions are
closed with close?. The usual notations are used for initial (black bullet) and
final (hollow circles) states.

Architectural descriptions and hierarchical models. Simple components
may be either the starting point of an architectural design process or the re-
sult of a discovery procedure [4]. In both cases, their composition has then to
be described. This can take different forms, it can be directly given by the de-
signer, or it can be computed from a high-level service or property description
using conversation integration [4], service aggregation [10] or component adap-
tation [14]. However, in both cases, what one ends up with is an architectural
description where correspondences between required and provided services are
given. We advocate that, in order to deal with complexity, a composition model
has to be hierarchical and to yield composites that can be related to components,
and therefore, once defined, be reused in other higher-level composites. UML 2.0
component diagrams and Fractal ADL are such models and we refer to these for
more details on the interests of hierarchical notations.

Expressive inter-component bindings. Even if components are meant to be
reused, one may not expect all the components in an architecture have been
designed to match perfectly, neither at the signature, nor at the behavioural



level [13]. Therefore, it is important to be able to describe composition/adaptation
mapping contracts where correspondences between required and provided ser-
vices may not correspond to name identity (e.g., the end! required service in
GUI corresponds to the send? provided service in SERVER), or could even be
non one-to-one mappings (e.g., the services related to the opening and closing of
sessions provided by SERVER have no counterpart in GUI which is not session-
oriented). These are current limitations of the UML 2.0 and Fractal ADL models
which impose restrictions on bindings between components interfaces.

The role of transactions and their support. One may expect from a correct
adaptation of the SERVER and GUI components that, of course they are able to
communicate in spite of their incompatible interfaces, but also that the adaptor
ensures the system eventually ends up in a global state where both SERVER and
GUI are in a stable (final) state, namely , T1 or V1, and 0. We base our approach
on implicit transactions that correspond to this notion, and are sequences of
transitions begining in an initial or a final state and ending in a final state.
Explicit transactions are a complementary approach that could be supported
with additional definitions (sequences of events) to be given for components.
In GUI transactions are the sending of a text email and the sending of a video
email. In SERVER, transactions correspond to the opening and the closing of
sessions, to the creation of a text email and the creation of a video email. LTSs
models provide the support for implicit transactions for free, however, to perform
reduction more elements are to be taken into account.

The reduction of a composition model is a process that results in removing
behaviours from it, mainly removing transitions. One expects from such a pro-
cess that, in every context, replacing a component by one of its reductions can
be achieved without hurt, e.g., without introducing new deadlocks. This corre-
sponds to the substitutability concept, i.e., that all useful behaviours are still
available for further composition. There is therefore a need for means to define
the utility of transitions and sequences of transitions with reference to the avail-
able transactions in components. Reduction is usually enabled in composites by
hiding and then removing synchronized events, we have seen in the introduction
the problems with this. Here for example, this would apply to the synchronizing
between end! and send?. Not only this synchronizing is an important informa-
tion as it ends a global-level transaction (the sending of an email) hence it is a
witness of it, but its removal also makes it impossible to implement it afterwards
as a communication between end! in GUI and send? in SERVER.

Composition = synchronization + encapsulation. Using the basic com-
ponents behavioural models and architectural descriptions one may obtain the
behaviour of the global system using formal semantics (and hence, tools). How-
ever, as we have seen above, the correspondence between services is often con-
fused with the encaspulation level of these services, i.e., synchronized correspon-
dences in-between the subcomponents of a composite are internal (hidden) while
ports remaining free may eventually be exported so that the composite inter-
face is defined in terms of its subcomponents ones. This misses distinction in
nature between synchronization (related to communication) and encapsulation



(related to observability). We advocate that architectural composition should
provide means to describe separately synchronization and encapsulation. We de-
fine binding connectors (or connectors for short) as an architectural level concept
supporting the definition of both synchronization and encapsulation. Synchro-
nization is defined thanks to internal bindings which relate a binding connector
with at least one subcomponent port. Encapsulation is defined thanks to external
bindings which relate a binding connector with at most one port of the compos-
ite. A component port can be either synchronizable, and in such a case it can be
synchronized or not, or observable. Four different encaspulation levels are pos-
sible: inhibition, hiding, observability and synchronizability. Component ports
not bound to some connector are inhibited. Connectors not bound to composite
ports corresponds to the internal level and events which may be removed by
reduction. Connectors bound to synchronizable ports of composites are synchro-
nizable (support for n-ary synchronisation). In between, observability acts as an
intermediate encapsulation level and is used to denote internal, yet useful, infor-
mation for transactions. Binding connectors are a solution to the issues related
to transactions and reductions presented above. They propose a good balance
between the possible hiding of synchronizations (to enable reduction, yet stress-
ing their possible utility thanks to the observability notion) and the possible
retrieval of synchronized events (thanks to the internal bindings information).

observable synchronizable

not synchronized synchronized

inhibited

a a

not applicable

internal

a a a b

observable

 c

a

 c

a a

 c

b

synchronizable forbidden

 c

a a

 c

b

Table 1. Architectural Notations

In Table 1 we present the graphical notation for our architectural concepts.
Binding connectors are denoted with black bullets, observable component ports
with white bullets and synchronizable ports with Ts as in Fractal ADL.

The architecture corresponding to the composition/adaptation contract for
our example is given in Figure 2. Two ports of GUI are connected to the com-
posite synchronizable ports in order to model the possible action of the user
on this component. There are three connectors for internal synchronization be-
tween components: one for the body of emails (compose! with body?), one for
video attachments (attach! with video?) and one for the sending requests (end!



 GUI

 SERVER

 attach!

 end!

 compose!

 vmail?

 tmail?

videoEMail? 

text? 

video? 

send? 

body? 

close? 

textEMail? 

 tmail?    vmail?

  sendattach  

Fig. 2. Mail System – System Architecture

with send?). In order to denote that the two latter ones should not be taken
into account when reducing the composite behaviour (i.e., should not be re-
moved), they are made observable (using respectively observable ports attach

and send in the composite interface). Three ports of SERVER are synchroniz-
able but not synchronized. This means that in the composition corresponding
events may be generated by an adaptor when needed (see [14] for more details
on such adaptation contracts). Yet, they are hidden which means that the cor-
responding events are not observable and may be removed when reduction is
performed. To end, one port of SERVER, namely text? is inhibited (not used in
the composition/adaptation contract).

3 Formalization of the Model

We focus on events triggered by (basic or composite) components. There are two
possible related views of such events: (i) the external view (encapsulation) which
distinguishes events depending on the ability to observe them and to synchro-
nize with them, and (ii) the internal view (synchronization) which additionally
includes in case of a composite event, the activities of subcomponents and syn-
chronizations between them that have produced the external event. The external
view leads to elementary alphabets while the internal view leads to structured
alphabets. Given an event of the latter kind we will obtain an event of the former
one by abstraction. The next definitions formalize these concepts.

Definition 1 (Elementary Alphabet). An elementary alphabet Σ is given by
the partition Σ = Σs ⊎Σo ⊎ {τ} where Σs represents the synchronizable events,
Σo represents the observable (and non synchronizable) events and τ represents
an internal action. Furthermore, Σ does not include ⊥ (do-nothing event).

In the sequel, we use the letter Σ for elementary alphabets.



Example 1. Let us describe the elementary alphabets of our example. The ele-
mentary alphabet of the GUI subcomponent, ΣGUI is defined by Σo

GUI
= ∅ and

Σs
GUI

= {tmail?, vmail?, compose?, end!, attach!}. The elementary alphabet of the
SERVER subcomponent, ΣSERVER is defined by Σo

SERVER
= ∅ and Σs

SERVER
=

{videoEMail?, textEMail?, close?, body?, send?, video?, text?}. The elementary al-
phabet of the composite component (i.e., its external view), Σ is defined by
Σs = {tmail?, vmail?} and Σo = {attach, send}.

A structured alphabet is associated with a possibly composite component.

Definition 2 (Structured Alphabet). A structured alphabet A = Σ ×
∏

i∈Id

(Ai ∪ {⊥}) is recursively defined by: Σ an elementary alphabet, Id a (possibly
empty) finite totally ordered set, and Ai a structured alphabet for every i ∈ Id.
To denote an item of A, we use the tuple notation v = v0 : 〈v1, . . . , vn〉 with
Id = {id1, . . . , idn}, v0 ∈ Σ and ∀1 ≤ i ≤ n, vi ∈ Ai ∪ {⊥}.

Id represents the set of subcomponent identifiers and the occurrence of ⊥
in vi, where v belongs to the structured alphabet, means that subcomponent
idi does not participate to the synchronization denoted by v. Obviously Id is
isomorphic to {1, . . . , n}. However in the component-based framework, compo-
nent identifiers are more appropriate. Note that every elementary alphabet can
be viewed as a structured one with Id = ∅. The mapping v 7→ v0 corresponds
to the abstraction related to the external view. Hence, in v = v0 : 〈v1, . . . , vn〉,
v0 plays a special role. We therefore introduce root(v) = v0. Similarly, we note
root(A) = Σ. The alphabets Ai are called subalphabets of A. We denote the
empty word by ε. Let A be a structured alphabet and w ∈ A∗, the observable
part of w, denoted ⌈w⌉ is recursively defined by ⌈ε⌉ = ε, ∀a ∈ A, if root(a) = τ
then ⌈a⌉ = ε else ⌈a⌉ = root(a) and finally ⌈ww′⌉ = ⌈w⌉⌈w′⌉.

In our framework, component behaviours are described with Labelled Tran-
sition Systems.

Definition 3 (Labelled Transition System). A Labelled Transition System
(LTS) C = 〈A, Q, I, F,→〉 is defined by: A, a structured alphabet, Q, a finite set
of states, I ⊆ Q, the subset of initial states, F ⊆ Q, the subset of final states,
and →⊆ Q×A×Q the transition relation. As usual, (q, a, q′) ∈→ is also denoted

by q
a
−→ q′. The observable language of C, L(C), is defined as L(C) = {w | ∃σ =

q0
a1−→ q1 . . .

am−−→ qm s.t. q0 ∈ I, qm ∈ F, w = ⌈a1 . . . am⌉}.

We now introduce mapping vectors and mapping contracts which express
component bindings in order to build a composite component. Mapping vectors
are items of a specific structured alphabet whose root alphabet Σ corresponds to
the interface of the composite and whose subalphabet indexed by i corresponds to
the interface of component idi which is (generally) different from the alphabet of
this component. A mapping contract is a subset of mapping vectors representing
all the possible “local” or “synchronized” events of the composite.

Definition 4 (Mapping Vectors and Mapping Contracts). Let Id be a set
of component identifiers, S = {Ci}i∈Id be a finite family of LTS, for i ∈ Id, let



Ai denote the alphabet of Ci and let Σ be an alphabet. Then a mapping vector v
relative to S and Σ is an item of the structured alphabet Σ ×

∏
i∈Id (root(Ai)

∪ {⊥}). Furthermore a mapping vector v = v0 : 〈v1, . . . , vn〉 fulfills the following
requirements:

– ∃i 6= 0, vi /∈ Σs
i ∪ {⊥} ⇒ v0 /∈ Σs ∧ ∀j /∈ {0, i}, vj =⊥;

– ∃i 6= 0, vi = τ ⇒ v0 = τ .

A mapping contract V relative to S and Σ, is a set of mapping vectors such
that every mapping vector v with some vi = τ belongs to V.

The requirements on mapping vectors and mapping contracts are consistent
with our assumptions about the model (Tab. 1). Non synchronizable events of
a subcomponent cannot be synchronized or transformed into a synchronizable
event in the composite and internal events of a subcomponent cannot be made
observable in the composite. The requirement about mapping contracts means
that an internal event in a subcomponent cannot be inhibited in the composite.

The translation from the graphical notation to the formal model is straight-
forward. There is a mapping vector for each binding connector of the graphic,
its root is either given by the composite port bound to this connector when it
is present or τ . Each component of the mapping vector is either given by the
corresponding component port bound to this connector when it is present or ⊥.

Example 2. The mapping contract in Figure 2 is defined by: tmail? : 〈tmail?,⊥〉,
vmail? : 〈vmail?,⊥〉, τ : 〈⊥, videoEMail?〉, τ : 〈⊥, textEMail?〉, τ : 〈⊥, close?〉, τ :
〈compose!, body?〉, send : 〈end!, send?〉, attach : 〈attach!, video?〉 and the vectors
relative to internal events of the subcomponents.

Synchronous product is used to give a formal semantics to composites.

Definition 5 (Synchronized Product of LTS). Let S = {Ci}i∈Id be a finite
family of LTS, Σ be an alphabet and V be a mapping contract relative to S and Σ,
then the synchronized product of S w.r.t. V is the LTS Π(S,V) = 〈A, Q, I, F,→〉
where:

– A = Σ ×
∏

i∈Id(Ai ∪ {⊥}), Q =
∏

i∈Id Qi, I =
∏

i∈Id Ii, F =
∏

i∈Id Fi,

– (q1, . . . , qn)
v0:〈a1,...,an〉
−−−−−−−−→ (q′1, . . . , q

′
n) iff ∃v0 : 〈v1, . . . , vn〉 ∈ V and ∀i ∈ Id,

• vi =⊥⇒ ai =⊥ ∧ q′i = qi,

• vi 6=⊥⇒ root(ai) = vi ∧ qi
ai−→i q′i.

This semantics is supported by the ETS plugin [23]. It can be obtained in an
on-the-fly way to be more efficient. Thus in practice, we reduce Q to be the set
of reachable states from I.

Example 3. The synchronized product of the GUI LTS and the SERVER one
is described in Figure 3. For sake of readability, for each (structured) event
occurring in this LTS, we have only represented its root and when this root is τ
we have not represented it. For instance, the arc from (2, T2) to (0, T1) should
be labelled send : 〈end!, send?〉 instead of send. The size of this LTS is [13; 27]
where 13 is the number of states and 27 is the number of transitions.



(0,_) (0,V1)(0,T1)

(4,V2)(3,V1)(3,_)(4,T2) (3,T1)

(2,T2) (1,T1) (2,V2)(1,V1)(1,_)

vmail?

tmail?

vmail?

tmail?

vmail?

tmail?

send

send

send

send

attach

Fig. 3. Mail System – Resulting Adaptor/Coordinator ([13; 27] LTS)

4 Transaction-Based Reductions

The goal of this section is the design of algorithms which reduce the LTSs as-
sociated with compositions. Due to our assumptions about components, two
requirements must be fulfilled by such algorithms: the reduction only proceeds
by transition removals (and as a side effect possibly by state removals) and the
reduction must preserve the capabilities of the composite w.r.t. its transactions.
We introduce first the transaction concept.

Definition 6 (Transactions of an LTS). Let C = 〈A, Q, I, F,→〉 be an LTS, a
transaction tr = (s, w, s′) of C is such that s ∈ I∪F , s′ ∈ F , w ∈ (root(A))∗ and

there exists a witnessing sequence σ = q0
a1−→ q1 . . .

am−−→ qm with s = q0, s′ = qm,
∀0 < i < m, qi /∈ F and ⌈a1 . . . am⌉ = w. We denote by Seq(tr) the set of witness-
ing sequences of transaction tr and by L(s, s′) = {w | (s, w, s′) is a transaction},
the language generated by transactions from s to s′.

Example 4. Below, we exhibit the regular expresssions associated with every
transaction language of the Figure 3 LTS:

L((0, ), (0, )) = L((0, T1), (0, )) = L((0, V1), (0, )) = {ε}

L((0, ), (0, T1)) = L((0, T1), (0, T1)) = L((0, V1), (0, T1)) = tmail? · send + vmail? · send

L((0, ), (0, V1)) = L((0, T1), (0, V1)) = L((0, V1), (0, V1)) = tmail? · send + vmail? · attach
∗ · send

Since we want to preserve the transaction capabilities, we introduce a spe-
cific notion of simulation between states, where only initial and final states are
considered and the transactions are viewed as atomic transitions.

Definition 7 (Transaction Simulation Relation between States). Let C
and C′ be two LTS and let R be a relation, R ⊆ (I ∪ F ) × (I ′ ∪ F ′). R is a
transaction simulation relation iff for every pair (q1, q

′
1) of R and every trans-

action tr = (q1, w, q2) of C, there is a transaction tr′ = (q′1, w, q′2) of C′ with
(q2, q

′
2) ∈ R.

We define ⊑ by ⊑=
⋃
{R |R is a transaction simulation relation}.



Algorithm 1 transSimulation

computes the transaction simulation relation between states of C
inputs LTS C = 〈A, Q, I, F,→〉
outputs Relation R ⊆ (I ∪ F ) × (I ∪ F )

1: for all (i, j) ∈ (I ∪ F ) × (I ∪ F ) do R[i, j] := true end for

2: repeat // fixed point algorithm for i ⊑ j

3: end := true

4: for all (i, j) ∈ (I ∪ F ) × (I ∪ F ) s.t. i 6= j ∧R[i, j] = true do

5: for all k ∈ F do

6: // is L(i, k) ⊆
S

k′ s.t. R[k,k′] L(j, k′)?

7: K′ := {k′ ∈ F | R[k, k′] = true}
8: R[i, j] :=lgInclusion(transLTS(C, i, {k}),transLTS(C, j, K′))
9: end := end ∧R[i, j]

10: end for

11: end for

12: until end

13: return R

In the Figure 3 LTS, any final state simulates the other ones:

∀s, s′ ∈ {(0, ), (0, T1), (0, V1)}, s ⊑ s′

Based on state simulation, the simulation of an LTS C by an LTS C′ is defined.
We require that every initial state of C is simulated by an initial state of C′.

Definition 8 (Transaction Simulation between LTS). Given two LTS C
and C′, C′ simulates C denoted by C ⊑ C′ iff ∀i ∈ I, ∃i′ ∈ I ′, i ⊑ i′.

We are now a position to define when an LTS Cred is a reduction of an LTS C:
it is obtained from C by removal of transitions and states and still simulates it.

Definition 9 (Reduction of a LTS). Given two LTS C and Cred, Cred is a
reduction of C iff: Q′ ⊆ Q, I ′ ⊆ I, F ′ ⊆ F , →′⊆→, and C ⊑ Cred.

Let us describe the principles of our reduction algorithm for an LTS C:

1. Algorithm 1 computes the simulation relation between initial and final states
of C. It proceeds by iterative refinements of a relation until a fixed point has
been reached. The number of iterations of this algorithm is polynomial w.r.t.
the size of the LTS and every iteration involves a polynomial number of calls
to the language inclusion procedure applied to simple transformations of C.

2. Then, based on the simulation relation between states, Algorithm 2 computes
a subset of initial states and a subset of final states such that the LTS,
obtained by deleting the other initial and final states, simulates the original
one.

3. At last Algorithm 3 examines every transition of the step 2 LTS whose label
τ : 〈v1, . . . , vn〉 is such that ∃i, vi ∈ Σs

i and removes it if the resulting LTS



Algorithm 2 stateReduction

state-based reduction, constructs reduced LTS C′ from LTS C with C ⊑ C′

inputs LTS C = 〈A, Q, I, F,→〉
outputs reduced LTS C′ = 〈A′, Q′, I ′, F ′,→′〉

1: R :=transSimulation(C)
2: heap := getAMaximal(R, I)
3: front := heap

4: repeat

5: extract some s from front

6: candidates := F ∩ reach(transLTS(C, s, F ), {s})
7: for all f ∈ candidates \ heap do

8: dom := {f ′ ∈ candidates \ {f} | R(f, f ′)}
9: if lgInclusion(transLTS(C, s, {f}),transLTS(C, s, dom)) then

10: remove f from candidates

11: end if

12: end for

13: front := front ∪ (candidates \ heap)
14: heap := heap ∪ candidates

15: until front = ∅
16: I ′ := I ∩ heap; F ′ := F ∩ heap

17: Q′ := reach(C, I ′) ∩ coreach(C, F ′)
18: I ′ := I ′ ∩ Q′; F ′ := F ′ ∩ Q′; →′:=→ ∩Q′ × A × Q′

19: return 〈A,Q′, I ′, F ′,→′〉

simulates the current one. The condition on labels ensures the approach is
compatible with a grey-box vision of components where components are com-
posed and/or adapted externally without modifying the way they internally
work (i.e., without removing internal or observable events).

The different steps of our reduction involve calls to transLTS. Given an LTS
C, an arbitrary state s of C and a subset of final states S, this function produces
an LTS C′ whose observable language is the set of suffixes of transactions in C,
starting from s and ending in S. After every reduction, we “clean” (in linear time)
the LTS by eliminating the states that are not reachable from the initial states
using the reach function and the ones that cannot reach a final state using the
coreach function. This ensures deadlock-freedom adaptation. The (observable)
language inclusion check between two LTS is performed by the lgInclusion

function. It is the main factor of complexity as language inclusion is a PSPACE-
complete problem. However the design of (empirically) efficient procedures is still
an active topic of research with significant recent advances [16]. The procedure
includes some non deterministic features (for instance the examination order of
“τ transitions”). Thus it could be enlarged with heuristics in order to empirically
improve its complexity but this is out of the scope of the current paper.

Algorithm 1 is based on a standard refinement procedure for checking simula-
tion or bisimulation. Its specific feature is that it checks inclusion of languages
rather than inclusion of set of labels (which entails an increasing of complexity).



Algorithm 2 starts with a maximal set of initial states given by function
getAMaximal (line 2). The heap variable contains the current set of initial and
final states that should be in the reduced LTS whereas the front variable con-
tains the subset of heap whose “future” has not yet been examined. The main
loop (lines 4–15) analyzes the transactions initiated from a state s extracted
from front. In line 6, it computes the final states reached by such a trans-
action and stores them in variable candidates. For every f , candidate not al-
ready present in heap, it looks whether the language of transactions L(s, f)
is included in the union of the languages of transactions L(s, f ′) with f ′ a
candidate simulating f . In the positive case, it removes f from candidates
(lines 7–12). At the end of loop, the remaining candidates not already present
in heap are added to heap and front. For the Figure 3 LTS, the algorithm
starts with front = heap = {(0, )}. During the first loop, candidates is set to
{(0, ), (0, T1), (0, V1)}, and then (0, T1) is removed. Therefore, at the beginning
of the second loop, front = {(0, V1)}, heap = {(0, ), (0, V1)}. During the second
loop, candidates is set to {(0, ), (0, T1), (0, V1)}, again (0, T1) is removed and
at the end of second loop, front = ∅, heap = {(0, ), (0, V1)}. The resulting LTS
is represented on the left-hand side of Figure 4.

Algorithm 3 main loop tries to remove (one by one) transitions which are
unobservable at the composite level but are observable at the component level
(lines 2–18). When the state reached s′ from some state s by such a transition is a
final state, then the subset of transaction suffixes that reach s′ from s is reduced
to the singleton {ε}. So, in order to remove the transition, the algorithm checks
whether the empty word may be the suffix of a transaction starting in s, ending
in a final state simulating s′ without using this transition (lines 4–7). Otherwise
it performs a similar test for every final state f reached from s (inner loop 10–15)
comparing the languages of transaction suffixes. Starting from the LTS on the
left-hand side of Figure 4, Algorithm 3 produces the right-hand side LTS. Note
that even for such a small example, the reduction is significant w.r.t. the original
LTS (i.e., the size is approximatively divided by two).

A comparison with the usual reduction techniques (Fig. 5) demonstrates their
inadequacy in our context: they are based on equivalences which are either
too strong – bisimulation treats τs as regular transitions hence only removes
few of them – or too weak – too many τ transitions are removed (e.g., τ :
〈compose!, body?〉 between states (1, V1) and (2, V2)) which makes it impossible
afterwards to implement the composition between components. Moreover, acting
only at the composition level, these reduction techniques may make it necessary
to change the subcomponent protocols in order to implement compositions, while
we want to support a non intrusive approach for composition and adaptation.

5 Conclusion

In order to build efficient composite components, one needs both efficient basic
components (which can be expected from, e.g., Commercial-Off-The-Shelf) and
efficient composition or adaptation techniques. This last constraint is related



Algorithm 3 transReduction

transaction reduction, constructs reduced LTS C′ from LTS C with C ⊑ C′

inputs LTS C = 〈A, Q, I, F,→〉
outputs reduced LTS C′ = 〈A′, Q′, I ′, F ′,→′〉

1: C′ := C

2: for all t = s
τ :〈v1,...,vn〉
−−−−−−−−→ s′ s.t. ∃i, vi ∈ Σs

i do

3: if s′ ∈ F ′ then

4: dom := {f ∈ F ′ | R(s′, f)}; C′′ := C′; →′′:=→′′ \{t}
5: if lgInclusion(emptyWordLTS(),transLTS(C′′ , s, dom)) then

6: →′:=→′ \{t}
7: end if

8: else

9: del :=true

10: for all f ′ ∈ F ′ ∩ reach(transLTS(C′ , s, F ′), {s}) do

11: dom := {d ∈ F ′ | R(f ′, d)}; C′′ := C′; →′′:=→′′ \{t}
12: if not lgInclusion(transLTS(C′ , s′, {f ′}),transLTS(C′′ , s, dom)) then

13: del :=false; break

14: end if

15: end for

16: if del then →′:=→′ \{t} endif

17: end if

18: end for

19: Q′ := reach(C′, I ′) ∩ coreach(C′, F ′)
20: I ′ := I ′ ∩ Q′; F ′ := F ′ ∩ Q′; →′:=→ ∩Q′ × A × Q′

21: return C′

to the basic techniques which underpin the composition or adaptation process,
e.g. [10,4,14], but also to efficient reduction procedures for the resulting be-
havioural models. We have addressed this issue with techniques that take into
account the transactional nature of communications between components. Re-
duction is supported by a component model with expressive binding mechanisms
and different levels of synchronization and encapsulation.

A first perspective of this work concerns the integration of our reduction al-
gorithms in a model-based adaptation tool [1] we have developed and assessment
on real size case studies from the pervasive computing area. A second perspective
is to relate our model-based reduction technique with adaptor implementation
issues, mainly taking into account the controllability of events (e.g., viewing
emissions as non controllable events). Other perspectives are related to the en-
hancement of our reduction technique, addressing on-the-fly reduction (reduction
while building the compositions or adaptors) and optimizing algorithms thanks
to recent developments on language inclusion [16].

References

1. Adaptor, January 2007 distribution (LGPL licence). http://www.ibisc.univ-
evry.fr/Members/Poizat/Adaptor, 2007.



(0,_) (0,V1)

(4,V2)(3,V1)(3,_)(3,T1)

(1,T1) (2,V2)(1,V1)(1,_)

vmail?

tmail?

vmail?

tmail?

send

send

attach

(0,_) (0,V1)

(4,V2)(3,V1)(3,_)

(2,V2)(1,V1)(1,_)

vmail?

tmail?

vmail?

tmail?

send

send

attach

Fig. 4. Mail System – Reduced Adaptor/Coordinator (left: state reduction, [10; 19]
LTS; right: transition reduction, [8; 11] LTS])

vmail?

tmail?

vmail?

tmail?

vmail?

tmail?

send

send

send

attach

vmail?

tmail?

send

send

attach

vmail?

tmail?

send

send

attach

Fig. 5. Mail System – Reduced Adaptor/Coordinator (left: strong bisimulation reduc-
tion, [12; 26] LTS; center: weak bisimulation or branching reduction, [4; 7] LTS; right:
trace or τ ∗ a reduction, [3; 5] LTS)

2. F. Achermann and O. Nierstrasz. A calculus for reasoning about software compo-
sition. Theoretical Computer Science, 331(2–3):367–396, 2005.

3. C. Attiogbé, P. André, and G. Ardourel. Checking Component Composability. In
Software Composition, volume 4089 of LNCS, pages 18–33. Springer, 2006.

4. S. Ben Mokhtar, N. Georgantas, and V. Issarny. Ad Hoc Composition of User
Tasks in Pervasive Computing Environments. In Software Composition, volume
3628 of LNCS, pages 31–46. Springer, 2005.

5. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.
North-Holland, Elsevier, 2001.

6. M. Bernardo and P. Inverardi, editors. Formal Methods for Software Architectures,
volume 2804 of LNCS. Springer, 2003.

7. A. Betin-Can, T. Bultan, and X. Fu. Design for Verification for Asynchronously
Communicating Web Services. In International Conference on World Wide Web,
pages 750–759, 2005.

8. D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar. Checking Memory Safety
with Blast. In International Conference on Fundamental Approaches to Software
Engineering, volume 3442 of LNCS, pages 2–18. Springer, 2005.

9. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-
tion. Journal of Systems and Software, 74(1):45–54, 2005.

10. A. Brogi, S. Corfini, and R. Popescu. Composition-Oriented Service Discovery. In
Software Composition, volume 3628 of LNCS, pages 15–30. Springer, 2005.



11. A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. In Inter-
national Conference on Service Oriented Computing, volume 4294 of LNCS, pages
27–39. Springer, 2006.

12. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The Fractal
Component Model and Its Support in Java. Software Practice and Experience,
36(11-12):1257–1284, 2006.

13. C. Canal, J. M. Murillo, and P. Poizat. Software Adaptation. L’Objet, 12(1):9–
31, 2006. Special Issue on Coordination and Adaptation Techniques for Software
Entities.

14. C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural Mismatch in
Software Composition. In International Conference on Formal Methods for Open
Object-Based Distributed Systems, volume 4037 of LNCS, pages 63–77. Springer,
2006.

15. I. Cerná, P. Vareková, and B. Zimmerova. Component Substitutability via Equiva-
lencies of Component-Interaction Automata. In International Workshop on Formal
Aspects of Component Software, Electronic Notes in Theoretical Computer Science.
Elsevier, 2006.

16. M. De Wulf, L. Doyen, T. Henzinger, and J.-F. Raskin. Antichains: A new algo-
rithm for checking universality of finite automata. In Computer-Aided Verification,
volume 4144 of LNCS, pages 17–30. Springer, 2006.

17. H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: a tool for Model-Based
Verification of Web Service Compositions and Choreography. In International
Conference on Software Engineering, pages 771–774. ACM, 2006.

18. P. Inverardi and M. Tivoli. Deadlock Free Software Architectures for COM/DCOM
Applications. Journal of Systems and Software, 65(3):173–183, 2003.

19. M. Little. Transactions and Web Services. Communications of the ACM,
46(10):49–54, 2003.

20. R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming, 46(3):255–281,
2003.

21. Objet Management Group. Unified Modeling Language: Superstructure. version
2.0, formal/05-07-04, August 2005.

22. M. P. Papazoglou and D. Georgakopoulos. Service-Oriented Computing. Commu-
nications of the ACM, 46(10):25–28, 2003.

23. P. Poizat. Eclipse Transition Systems. French National Network for Telecommu-
nications Research (RNRT) STACS Deliverable, 2005.

24. P. Poizat, J.-C. Royer, and G. Salaün. Formal Methods for Component Description,
Coordination and Adaptation. In International Workshop on Coordination and
Adaptation Techniques for Software Entities at ECOOP, pages 89–100, 2004.

25. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Ser-
vices using Process Algebra. International Journal of Business Process Integration
and Management, 1(2):116–128, 2006.

26. H. W. Schmidt and R. H. Reussner. Generating Adapters for Concurrent Com-
ponent Protocol Synchronization. In International Conference on Formal Methods
for Open Object-Based Distributed Systems, pages 213–229, 2002.

27. C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

28. D. M. Yellin and R. E. Strom. Protocol Specifications and Components Adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.


