D
AN

Esape from the ivory tower
The Haskell journey

) 24

Simon Peyton Jones, Microsoft Research
May 2017

1976-80

John and Simon
go to university

John Hughes, - Simon Peyton Jones
Maths, Churchill Maths, Trinity
(first) .

Early days of microprocessors (Failed)

4kbytes is a lot of memory
Cambridge University has one (1) computer
and...

Af,'D‘

The late 1970s, early 1980s

SK combinators,
} graph reduction

(Turner)

Lambda the Ultimate
(Steele, Sussman)

e.g. (\x. x+x) 5
=S(S(K+)II>5

KIM: Lisp & FP 1980

SKIM = The S, K, I Reduction Machine

T.J.W. Clarke, F.J.S. Gladstone, C.D. MacLean, A.C. Norman

Trinity College, Cambridge

Abstract

SKIM i3 a computer built to explore pure
functional programming, combinators as & machine
language and the use of hardware to provide direct
support for a high level language. Its design
stresses simplicity and aims at providing
minicomputer performance (in its particular
application areas) for miecrocomputer costs. This
paper discusses the high level reduction language
that SKIM supports, the way in which this language
is compiled into combinators and the hardware and
microcode that then evaluate programs.

1. Introduction

In [1] Turner shows how combinators can be used as
an intermediate representation for applicative
programs. He compares (software) interpretation of
combinator forms with more traditional schemes
based on lambda caleulus, and demonstrates that
his new method is both elegant and efficient, at
least when normal order evaluation is required.
SKIM is an investigation of how Turner's ideas
translate into hardware, It views his combinators
as machine code, and the fixed program that cbeys
them as microcode. In section 2 we will present
the particular applicative language we use, and
comment on the need for special computers to
support such languages. Section 3 reviews Turnper's

programming style which fits in very smeoothly with
the mathematical flavour of sSymbolic algebra.
Also, since 1n an algebra system even sSmall
amounts of arithmetic may invelve calling fairly
expensive subroutines, the initial design for
Small did not feel obliged to allow for
compilation inteo efficient machine code. As a
user-level language for driving large packages it
can afford an interpretive implementation., This
results in a language which demands proper
treatment of functional objects (the Funarg
facility, so often missing or restricted in full
sized LISP systems), call-by-need (otherwise known
as lazy evaluation) and an error-handling scheme
compatible with the semanties of the rest of the
language.

Figure 1 gives a few simple examples of Emall
functions and 2c illustrates how it compares with
the direct use of lambda cslculus or LISP. It is
easy to demonstrate the positive features of a
language such as Small, such as its pattern-
matehing test for decomposing structures, its
capability for recursive definitions of data as
well as program and its lazy evaluation., When
these points have been covered there remain
various real worries as to how practical Small
could be for the development of large programs.
Here we will ignore most of these - for instance
those concerning the relationship between pure
language and file stores - and just discuss the
two concerns that we have considered most
pressing. We pose each in the form of direct
questions:

SLPJ: Lisp & FP 1982

AN INVESTIGATION OF THE RELATIVE EFFICIENCIES QF

COMBINATORS AND LAMBDA EXPRESSIONS
by
Simon L Peyton Jones

Beale Electronic Systems Ltd
Whitehall, Wraysbury, UK.

programming errors are less likely,
ABSTRACT and programs are more amenable to

In 'A HNew Implementation Technique formal verification.

for Applicative Languages' [Tu79%al
Turner uses combinators to inplement
lambda expressions. This paper
describes an experimental investigation

of the efficiency of Turner's technigue
compared with more traditional reducers.

(1i) The absence of side effects means
that expressions can be concurrently
evaluated by several cooperating
processors., This suggests
functional languages as a base for
highly parallel computing.

OVERVIEW The two main techniques for
—e efficiently implementing functional

The basis for comparison of the two semantics are data flow and reduction.
systems is discussed in Section 1. This 3:15 paper concentiates exclusively ,on
is followed by some implementation < implementation of reduction

considerations in Section 2, while the techniques.

main results are presented in Section 3.

Section 4 ©presents some discussion of archEEECture i:nnizicaiamhda r:?us;ion
the results and related issues, and s calculus,
conclusions are drawn in Section 5. FE;:?jhaﬁsig?bﬁytensi;z literature (ig
R . wever, some o

results derived by Curry and Feys [Cu58]

1 BASIS FOR COMPARISON have been used by Turner [Tu79] +to
implement a reduction machine for the

1.1 Background combinator calculus. The combinator
calculus has the same semantics as the

Functional languages are égggda ia%cu}us, but has a rather
characterised by the absence of side erent implementaticn. Thus the two
effects and imperative commands. They calculi can be thought of as two machine

are the focus of considerable current codes for a functional -igh-level

Backus Turing Award 1977

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

rd -k w - B -

John Backus Dec 1924 - Mar 2007

The Call

Functional programming: A 4 Lazy functional A
recursion, pattern matching, programming
comprehensions etc etc (Friedman, Wise,
(ML SASL, KRC, Hope, Id) Henderson Morris, Turner)
SK combinators,
Dataflow architectures ‘ graph reduction
(Arvind et al) (Turner)

Backus

Can programming be
liberated from the von
Neumann style?

The Call

ael' Have no truck with the
wt grubby compromises of

imperative programming

Datafl :rc;sr\
S Go forth, follow the j

Path of Purity
Design new languages
and new computers,
and rule the world

O

)/

Result
Chaos

Many bright young things

Many conferences
(birth of FPCA, LFP)

Many languages
(Sasl, Miranda, LML, Orwell, Ponder, Alfl, Clean)

Many compilers

Many architectures
(mostly doomed)

Crystalisation

FPCA, Sept 1987: initial mee’ring.
A dozen lazy functional programmers, wanting to agree
on a common language.

= Suitable for teaching, research, and application

= Formally-described syntax and semantics

= Freely available

= Embody the apparent consensus of ideas

= Reduce unnecessary diversity

Absolutely no clue how much work we were taking on
Led to...a succession of face-to-face meetings

April 1990 (23 yrs later): Haskell 1.0 report

Practitioners

Geeks

History of most research

languages
1,000,000
10,000
100
The quick death
1 —\
lyr Byr 10yr 15yr

Practitioners

Geeks

Successful research languages

1,000,000

10,000

100

/\The slow death
1

lyr Byr 10yr 15yr

Practitioners

Geeks

C++, Java, Perl /Ruby

Threshold of immortality

1,000,000
10,000
The regrettable
100 absence of death

lyr Syr 10yr 15yr

Practitioners

Geeks

Committee languages

1,000,000

10,000

100 The committee

language

lyr Syr 10yr 15yr

Practitioners

Geeks

H as ke l I “Learning Haskell is a great w;\y\of

training yourself to think functionally
so you are ready to take full

"I'm already looking at advantage of C# 3.0 when it comes

coding problems and my

out”
mental perspective is now
1,000,000 shifting back and forth (blog Apr 2007)
between purely OO and
more FP styled solutions”
(blog Mar 2007)
10,000
100 :
The second life?
1
Apr 1990 1995 2000 2005 2010

Haskell

v)
9
< 1000000
.0
+=
O
S 10,000
| -
Q.
100 :
" The second life?
X
Q
Y 1
Q)
Apr 1990 1995 2000 2005 2010

» f,'D‘

Language popularity
how much language X is

This is a chart showing combined results from all data sets, listed individually below.

C

Java

C++

PHP
JavaScript
Python

C#

Perl

sQL

Ruby

Shell

Visual Basic
Assembly
Actionscript
Objective C
Lisp

Delphi
Pascal
Scheme
Haskell

Tcl

Fortran
Ada

Lua
ColdFusion
Cobol
Erlang

D

Language popularity
| how much language X is talked about

C++
C
Java
Python
Haskell
Javascript
Ruby

C#
PHP
Lisp
Perl
Shell
Scheme
Erlang
Scala
sSQL
Lua
Assembly

¢ langpop.com Aug 2013

THIS ALL STARTED
A VERY LONG TIME AGO

A\

Born April 1990, Haskell is 27

And so is
Michael

Meg (b 1995) Michael (b May 1990) Sarah (b 1993)

"-.

o, -

1992

Q)
-
)
-
0
QV|
O
=

=
= 5

- e 4
 —
!.' W

aalh - &
s-}-.-/-
AN

1l

*
==
==)

GINZEE WGE2.8 June 1992

| (29N < 3 31 ;
RS P &

Foms W g A

= 29

RSN

i - Ra -

WG2.8 June 1992

&

I%E,

I?%%l\\\l\ll o

A\

THIS ALL STARTED
A VERY LONG TIME AGO

BUT IT IS STILL GOING

STRONG

The Glasgow Haskell Compiler

= GHC today

- First release 1991: 13k lines, 110
modules, sequential

- Now: 150k lines, 380 modules, parallel
= >> 100k users
= 100% open source (BSD)

= Still in furious development: > 200
commits/month

)

Aﬁ,,?’

Now over 11,000 packages on Hackage

Library Categories

Database 1]

Sound~
Math~"
Language Other
YWeb
MNetwork
Devel
Graphics Drata
Control
Text

aystem

<

[Cata

B Text

B System

B Control

[Graphics

[Cevel

B Hetwork

[l Web

[Language

I Math

B Sound

B Database
G LI

B Cther

Incredibly supportive community

™ Firefox |

»= haskell.org/haskellwiki/Haske

-

*§ - Robert Glueck

al O

(& >
(€)
[J StickWiki 4 NewCodeGen ® i have a zunussi aquacy... & Train || Current |/ Haskell | ' GHC L] ChordCo |/ CAS | WG2.8 | RandAlg @ ROTTEN TOMATOES: M... » [Bookmarks

< fev 2... | B8 Schedule... | | » Suppor... | ¥ Create O... | C] A Neigh... |"¥ InfoQ: Ru... [Neil Mitc... | Ax. The Com... | = Copy you... »=Haskel.. x| > + -

View source History

= Simon Pe... [£) main is u... | | Home pa...

The Haskell Programming Language

m

Haskell is an advanced purely-functional programming language. An open-source product of

more than twenty years of cutting-edge research, it allows rapid development of robust, |
concise, correct software. With strong support for integration with other languages, built-in

Haskell makes it easier to produce flexible, maintainable, high-quality software.

Learn Haskell Use Haskell Join the Community
o What is Haskell? ¥ Download Haskell | « Haskell on Reddit, Stack Overflow
o Try Haskell in your browser e Language specification ¢ Mailing lists, IRC channels
¢ Learning resources o Hackage library database ¢ Wiki (how to contribute)
e Books & tutorials ¢ Applications and libraries ¢ Communities and Activities Reports
e Library documentation ¢ Hoogle and Hayoo API search e Haskell in industry, research and

education.
¢ Planet Haskell 8, The
Q‘ Monad.Reader -
I ® Find: taste ¥ Next # Previous & Highlight all [C] Match case

=]

Haskell Weekly News

= Anonymous: I'd love to explain to you how to
write hello world in Haskell, but first let me
infroduce you to basic category theory

= neutrino: in many ways, Haskell is like this
primodial soup out of which other languages end

up springing
= hobophobe: So, I can only conclude that Haskell is
a memetic virus, and monads are the eggs it lays

out in innocent programming forums to entice
others to become infected

Aﬁ,,?‘

= GuySteele: Some people prefer not to commingle
the functional, lambda-calculus part of a language
with the parts that do side effects.

It seems they believe in the separation of Church
and State.

My favourite

= Berengal: T was squashing a bug, got frustrated,
and typed "fix error" in ghci...

AE,ID‘

After 26 years, Haskell has a vibrant,
growing ecosystem, and is still ina
ferment of new developments.

Why?

1. Keep faith with deep, simple principles
2. Killer apps:
domain specific languages
 concurrent and parallel programming
_. 3. Avoid success at all costs

Avoiding success

= A user base that makes Haskell nimble:

- Smallish: enough users to drive innovation,
not so many as to stifle it

- Tolerant of bugs in GHC. Very tolerant.

- Innovative and slightly geeky: Haskell users
react to new features like hyenas react to
red meat

- Extremely friendly

= Avoided the Dead Hand of standardisation
committees

Aﬁ,,?’

What deep, simple
principles?

1. A tiny core language

2.Purity and laziness

3. Types; especially type classes

¢

GHC

Module Lines (1992) Lines (2011) Increase
Compiler

Main 007 11,150 11.2
Parser 1,055 4,008 3.9
Renamer 2 R2K 4,630 1.6
Type checking 3,352 24,007 7.2
Desugaring 1,381 7,001 5.1
Core tranformations 1,631 0,480 5.8
STG transformations 514 840 1
Data-Parallel Haskell 3,718

Code generation 2013 11.003 3.8
Native code generation 14,138

LLVM code generation 2,266

GHCh 7,474

Haskell abstract syntax 2546 3,700 1.5
Core language 1,075 4,708 4.5
STG language al7 693 1.3
C-- (was Abstract C) 1,416 7,591 5.4
Identifier representations 1,831 3,120 1.7
Type representations 1,628 3,808 23
Prelude definitions 3,111 2,692 0.
Utilities 1,989 7,878 3.06
Profiling 101 367 1.92
Compiler Total 28,275 139,955 4.9
Runtime System

All C and C-- code 43,865 48,450 1.10

Figure 1: Lines of code in GHC, past and present

Deep, simple principles

Source language Intermediate language

Haskell
System FC
3 types,
Dozens of 15 constructors
TypeS 9]
100+ R f GHC
st
constructors est o

Af,'D‘

Deep simple principles

= System F is GHC's intermediate language
(Well, something very like System F.)

data Expr
= Var Var
| Lit Literal
| App Expr Expr
| Lam Var Expr
| Let Bind Expr
| Case Expr Var Type [(AltCon, [Var], Expr)]
| Cast Expr Coercion
| Type Type
| Coercion Coercion
data Bind = NonRec Var Expr | Rec [(Var,Expr)]
data AltCon = DEFAULT | LitAlt Lit | DataAlt DataCon

A—\ﬁ,a‘

System FC

en=x|k|t]|y
| e; e, | \(x:i1).e
| let bind ine
| case e of alts

| ey

Everything has to translate into this tiny language
Statically typed (very unusual)
Fantastic language design sanity check

)

AE,ID‘

Laziness
and
Purity

A\

Laziness

= Laziness was Haskell's initial rallying cry

= John Hughes's famous paper "Why
functional programming matters”
- Modular programming needs powerful glue

- Lazy evaluation enables new forms of
modularity; in particular, separating generation
from selection.

- Non-strict semantics means that unrestricted
beta substitution is OK.

But John did not mention the
Sw most important reason

Laziness keeps you pure

= Every call-by-value language has given into
the siren call of side effects
= But in Haskell
f (print “yes”) (print “no”)
just does not make sense. Even worse is
[print “yes”, print “no”]

= So effects (I/0, references, excep’rlons)
are just not an option.

= Result: prolonged embarrassment.
Stream-based I/0, continuation I/0...
u’r NO DEALS WIH THE DEVIL

i

Enter Phil Wadler

Laziness keeps you

fanads
.~ \lonat
pending
- Comprett
| philip “;;“ ;&0‘"
f T “’::Xt‘; 0) —
Universt

Imperative functiona] programming

Simon I, Peyton Jones

Philip Wadler
Dept of (

Jomputing Science, University of (§
Email: {simonpj »Wadler}@dcs -glagsow.

October 1999

lasgow
ac.uk

This paper appears in
ACM Symposium on, Principles Of p

rogramming Languages (POPL), Charleston
pp71-84. This copy corrects a few minoy typographical errors i, the

, Jan 1993,

published version,

1/O are constructed by gluing together smaller pro-
grams that do so (Section 2). Combined with higher-

-

—~ —
r w
NS)

Salvation through monads

A value of type (10 t)is an “action”

that, when performed, may do some
input/output before delivering a result
of type t.
toUpper :: Char -> Char

getChar :: IO Char
putChar :: Char -> I0 ()

= The main program is an action of type IO ()

main :: IO ()
~@9‘ main = putChar ‘x’

Connecting I/0 operations

(>>=)

:: I0a -> (a ->I0Db) > I0Db

return :: a -> I0 a

eg. Read two characters,
print the second, return both

getChar >>= (\a ->
getChar >>= (\b ->
putChar b >>= (\ () ->
return (a,b))))

What have we achieved?

The ability to mix imperative and purely-
functional programming, without ruining
either: the types keep them separate

Benefits for
understanding
maintenance
testing
parallelism

Purity by default

effects are a little
iInconvenient

Our biggest mistake \

The challenge of effects

Arbitrary effects
C

Useful

No effects
Haskell

Safe

Useless

Dangerous

The challenge of effects

Plan A

(everyone else)
Useful | (Arbitrary effects > @

PN

Plan B
(Haskell)

Useless

Dangerous Safe

Lots of cross-over

Plan A

(everyone else)
Arbitrary effects > @
- PN
nvy
Plan B

(Haskell)

Safe

Useful

Useless

)

AE,ID‘

Dangerous

Lots of cross-over

Plan A

(everyone e>lse) .
PN

Ideas; e.g. Software
Transactional Memory Plan B

(retry, orElse) (Haskell)

Useful | (Arbitrary effects

Useless

;\E.'D‘

Dangerous Safe

SLPJ conclusions

= One of Haskell's most significant
contributions is to relentlessly pursue
purity and see where takes us

= Purely functional programming feels very
very different: you have to "rewire your
brain”

= But it's not "just another approach®:
ultimately, there is no alternative.

AE,ID‘

A\

Types
and
type classes

. ™
A@‘

Starting point: ML

= Parametric polymorphism
append :: [a] -> [a]
= Types are inferred

append [] ys=ys

append (x:xs) ys = x : append xs ys
= Algebraic data types
data Tree a

= Leaf a
| Branch (Tree a) (Tree a)

¢

Problem

= Functions that are "nearly polymorphic”
- member i a->[a] -> Bool (pockell

- sort i [a] -> [a] committee
sqereiave | M
- show :: a -> String what else to do/
- serialise :: a -> BitString

- hash :: a -> Int

= Usual solution: "bake them in" as a
runtime service

Enter Phil Wadler (again)

) !
;&ﬂ, - \“I.

5 o,y
G i

- .

P »
T

> ol

-

The birth of type classes

From: Philip Lee Wadler <plwi@cs.glasgow.ac.uk>

Date: Sat, 27 Feb 838 15:33:30 GMT

To: bob@lfcs.ed.ac.uk, fplangcfcs.ucl.ac.uk, mads@lfcs.ed.ac.uk,
plwics.glasgow.ac.uk

Subject: Overloading in Haskell

Sender: fplangc-request@cz.ucl.ac.uk

Propo=zal: Overloading in Haskell
Phil Wadler
24 February 1938

Overloading was a topic that sparked much discussion at the Yale meeting.

It sgeemed clear that if the language was to be usable, we would at least need
overloading of operations =such as "+" and "*". The owverall philo=ophy of the
language =suggested that we should do thi=z in a= general a way as possible, rather
than just a=z a =special case for a few operators.

There appeared to be no easzy "off-the-zhelf" zolution availabkle for us to use.

A worrying point was exemplified by the definition
sguare ¥ = X * X

Since "*" applies to wvalues of both type "int" and tyvpe "float"™, shouldn't "sguare"
apply to both asz well? Clearly thi=z was deszirable, but we could =ee no easy way Lo
achieve it. (The =zimple=t method leads to a potential blow-up when the original

zource with overloading i= translated to a core language wWwith overloading removed.)

Another =zource of discu=zzion was the "polymorphic equality™ operator.

The "polymorphic eguality™ operation found in Standard ML and Miranda iz, from =zome
perspectives, an odd beast. Standard ML reguires an extenszion to the tyvpe =svysten,

"equality types", to guarantee, for example, that two functions are never compared

for egquality. Further, polyvmorphic equality iz not "lambda definable"—---it muast he
defined a=z a new primitive. This poses problem= for zome implementations=, =such as=s

Type C IGSSZS Works for any type 'd,

provided ‘a’ is an
instance of class Num

sef&a—re::a-a'—a/
square :: Num a => a -> a
square X = X * x

Similarly:
sort :: Ord a => [a] -> [a]
serialise :: Show a => a -> String
member :: Egq a => a -> [a] -> Bool

Aﬁ,a‘

Declaring classes

square :: Num a =>/i/:i/i/J
.)
class Num a where Haskell class is

(+) :: a -> a -> a like a Java

(*X) :: a ->a ->a interface y

..etc...

instance Num Int where
(+) = plusiInt
(*) = mullInt
..etc...

Allows 'square’ to be
L applied to an Int

Ae,l?'

How type classes work

When you write this... ...the compiler generates this

square :: Num n => n -> n square :: Num n -> n -> n
square X = X*x square d x = (*) d x x '/
class Num a where data Num a
(+) i a ->a -> a = MkNum (a->a->a)
(*) i a -> a -> a (a->a->a)
negate :: a -> a (a->a)
.etc.. ...etc. ..
(*) :: Num a -> a -> a -> a
(*) (MkNum _m _ ...) =m

The class decl translates to:
« A data type decl for Num
« A selector function for
each class operation
e nd

A value of type (Num T) is a vtable
of the Num operations for type T

Type classes over time

= Type classes are the most unusual
feature of Haskell's type sys‘rem

‘ Hey, what's
[Wild enthusiasm the big

deal?
Despair
Incomprehension }

1987 1989 1993 1997
r Implementation begins (Kevin Hammond, Cordelia Hall)

Will Partin, Jim Mattson,
Cordelia Hall, Kevin Hammond

Date: Tue, 14 Feb 1995 09:28:06 +0000
From: Jim Mattson <mattson@dcs.gla.ac.uk»>

> I've successfully made GHC 0.23 under Solaris 2.3

> using the .hc files

> and two quick hacks to the C code. Yet my attempts to rebuild to
> produce a native code generator have been stymied.

Poor wee soul. I hate to see you suffer like this. Don't do anything.
I will devote the day to intense self-flagellation. By the time you
wake up, there will either be a Solaris binary for GHC 0.24, or one
less Research Assistant on the Aqua project.

AE,ID‘

mailto:mattson@dcs.gla.ac.uk

Type classes have proved
extraordinarily convenient in practice

= Equality, ordering, serialisation

= Numerical operations. Even numeric
constants are overloaded

= Monadic operations

class Monad m where
return :: a -> m a
(>>=) :::ma-> (a->mb) ->mb

= And on and on....time-varying
values, pretty-printing, collections,
reflection, generic programming,

_marshalling, monad transformers....

Type-class fertility

Higher kinded

type variables
/ (1995)

Wadler/ .
Blott Mulfti-
type — parameter
classes type classes
(1989) (1991)
Overlapping
instances
“newtype
deriving"
Derivable

type classes

Variations

Implicit
parameters (2000)

Extensible .
records (1996) Computation

at the type
level
Functional
dependencies

(2000) Generic
\ programming
Associated Testing
types (2005)
Applications

Beyond type classes

Haskell has become a laboratory and
playground for advanced type systems

= Higher kinded type variables
data T £f a =T a (£ (T k £f))
-— £ x> %

= Allows new forms of abstraction

£f ::[a] -> [a]
f :: Monad m=> ma ->m a
f :: (Profunctor p, Monad m) => p (m a) (m a)

Aﬁ,,?‘

Beyond type classes

Haskell has become a laboratory and
playground for advanced type systems

Polymorphic recursion

Kind polymorphism
data S £f a =S (f a)
-- S :: Vk. (k->*) -> k -> Type

Polymorphic functions as function arguments

(higher ranked types)
f :: (forall a. [a]l->[a]) -> ...

Existential types
data T = exists a. Show a => MkT a

Beyond type classes: sexy types

Haskell has become a laboratory and
playground for advanced type systems

= Generalised Algebraic Data Types (GADTSs)
data Vec n a where
vnil :: Vec Zero n
Vcons :: a -> Vec n a -> Vec (Succ n) a

= Type families and associated types
class Collection c¢ where
type Elem c
insert :: Elem ¢ -> ¢ -> ¢

= Data kinds
s Q=D and on and on

Building on success

= Static typing is by far the most successful
program verification technology in use today

- Comprehensible to Joe Programmer
- Checked on every compilation

Lvle Types% Haskell Coq
N rhe spectr m

Increasing

Hammer : Tactical nuclear weapon
(cheap, easy confidence thaf (expensive, needs a trained
to use, limited the program does user, but very effective

effectivenes) what you want indeed)

Bad type systems

A\

Programs that
work

Programs that are All programs
well typed

Region of
Abysmal Pain

Sexy type systems

Programs that are All programs
well typed

Programs that

=

Smaller Region of Abysmal Pain

~

Plan for World Domination

= Build on the demonstrated success of
static types

= ...by making the type system more
expressive

= ...s0 that more good programs are
accepted (and more bad ones
rejected)

= ...without losing the Joyful Properties
__(comprehensible to programmers)

Encapsulating it all
(hail, John Launchbury)

runST :: (forall s. ST s a) -> a

Stateful
computation [Pure result

runST

Arguments Results

Imperative,

stateful algorithm

A pure function

Aﬁ,,?‘

Encapsulating it all

(hail, John Lau

runST :: (forall s. ST s a) -> a

[Higher rank type

nchbury)

_

Security of
encapsulation

depends on
parametricity)

Parametricity depends on there
being few polymorphic functions
(eg.. fi: a->a means f is the

identity function or bottom)

Monads } <

/And that depends on type classes
to make non-parametric
operations explicit

And it also depends
on purity (no side
effects)

A\

Closi
osing thoughts

. ™
Aﬁ,,?‘

Escape from the ivory tower

= The ideas are more important than the
language: Haskell aspires to infect your
brain more than your hard drive

= The ideas really are important IMHO
- Purity (or at least controlling effects)
- Types (for big, long-lived software)

= Haskell is a laboratory where you

can see these ideas in distilled form
(But take care: addiction is easy and irreversible)

AE,ID‘

Fun

= Haskell is rich enough to be very useful for
real applications

= But above all, Haskell is a language in which
people play

- Embedded domain-specific languages (animation,
music, probabilistic, quantum, security...)

- Programming as an art form (Conal Elliot, Dan
Piponi...)

= Play leads to new discoveries
= And it's fun...

AE,ID‘

Luck and friendship

Technical excellence helps, but is neither
hecessary hor sufficient for a language to
succeed.

Luck, on the other hand, is definitely
necessary

We were certainly lucky: the conditions
that led to Haskell are hard to reproduce

The Haskell committee

Arvind

Lennart Augustsson
Dave Barton

Brian Boutel
Warren Burton

Jon Fairbairn
Joseph Fasel

Andy Gordon

Maria Guzman
Kevin Hammond
Ralf Hinze

Paul Hudak [editor]
John Hughes [editor]

Thomas Johnsson
Mark Jones

Dick Kieburtz
John Launchbury
Erik Meijer
Rishiyur Nikhil
John Peterson

Simon Peyton Jones [editor]

Mike Reeve

Alastair Reid

Colin Runciman

Philip Wadler [editor]
David Wise

Jonathan Young

