
Decidability of well-connectedness for distributed synthesis

I

Paul Gastina, Nathalie Sznajderb

aLSV, ENS Cachan & CNRS & INRIA
61, Av. du Président Wilson, F-94235 Cachan Cedex, France

bLIP6, Université Pierre et Marie Curie & CNRS
4 place Jussieu, 75005 Paris, France

Abstract

Although the synthesis problem is often undecidable for distributed, synchronous systems, it becomes decid-
able for the subclass of uniformly well-connected (UWC) architectures, provided that only robust specifica-
tions are considered. It is then an important issue to be able to decide whether a given architecture falls in
this class. This is the problem addressed in this paper: we establish the decidability and precise complexity
of checking this property. This problem is in EXPSPACE and NP-hard in the general case, but falls into
PSPACE when restricted to a natural subclass of architectures.

1. Introduction

The synthesis problem, also known as Church’s
problem [3] consists in automatically deriving a sys-
tem from its specification. The systems considered
are open and reactive, i.e., maintain an ongoing in-
teraction with an uncontrollable environment. For
MSO specifications, the problem is decidable [2, 9].
The problem has then been studied for distributed
systems [8]. In that case, along with the specifi-
cation, is given a set of processes and a description
of their possible interactions (the architecture of the
system). Synthesis in the distributed case is a much
more di�cult problem, in general undecidable [8, 7]
for LTL or CTL specifications. For some restricted
subclasses of architectures though, the problem has
been proved to be decidable [8, 6]. Following these
results, a decidability criterion has been exhibited
[4], when the specifications considered are in CTL⇤

and total : they are allowed to constrain all the
variables of the system, even those serving as in-
ternal communications between the processes. We
have advocated in [5] that total specifications are
too powerful, and that external specifications, that
only relate input and output variables (those al-
lowing communication with the environment) and
let internal communications unconstrained, were
both more natural from a practical point of view,

IPartially supported by LIA INFORMEL.

and more likely to keep the problem decidable for
a wider range of architectures. We have exhib-
ited a decidability criterion for the subclass of uni-
formly well connected (UWC) architectures when
restricted to external CTL⇤ specifications, that in-
deed enlarge the classes of architectures for which
the problem was known to be decidable. Moreover,
we have shown that when restricted to robust ex-
ternal specifications, the synthesis problem is decid-
able for all UWC architectures. It is thus important
to be able to decide whether a given architecture is
uniformly well-connected. This is not trivial and
has not been addressed in [5]. Informally, an archi-
tecture is UWC if there exists a routing allowing
each output process to get, as soon as possible, the
values of all inputs it is connected to. However, for
the processes to decode the messages they receive
and obtain the values of said inputs, we may need
memory. If there is no bound on the size of this
memory, a naive algorithm enumerating the di↵er-
ent possible routings and decoding functions may
not terminate. In this paper, we show that if an ar-
chitecture is UWC, then there exist decoding func-
tions with finite memories. We give an algorithm to
decide whether an architecture is UWC. This can
be done in EXPSPACE in the general case, and in
PSPACE for some naturally restricted cases of the
problem. We also make explicit the link between
this notion and communication flow problems in
network coding introduced in [1]. This relation al-

Preprint submitted to Elsevier September 2, 2012

lows us to establish that our problem is NP-hard.

2. Preliminaries

We use the formalism and notations defined in
[5], simplified when possible to fit our purpose.

Architectures. An architecture A = (V]
P,E, (Sv)v2V , (dp)p2P) is a finite directed acyclic
bipartite graph, where V] P is the set of vertices,
and E ✓ (V ⇥P)[(P ⇥V) is the set of edges, such
that |E�1(v)| 1 for all v 2 V . Elements of P will
be called processes and elements of V variables. In-
tuitively, an edge (v, p) 2 V ⇥P means that process
p can read variable v, and an edge (p, v) 2 P ⇥ V

means that p can write on v. Thus, |E�1(v)| 1
means that a variable v is written by at most one
process. Input and output variables are defined, re-
spectively, by VI = {v 2 V | E�1(v) = ;}, VO =
{v 2 V | E(v) = ;}. Variables in VL = V \(VI[VO)
will be called local or internal. We assume that no
process is minimal or maximal in the graph.
Each variable v ranges over a finite domain S

v,
given with the architecture. When U ✓ V , S

U

will denote
Q

v2U S

v. A configuration of the ar-
chitecture is given by a tuple s = (sv)v2V 2 S

V

describing the value of all variables. For U ✓ V ,
we denote by s

U = (sv)v2U the projection of the
configuration s to the variables in U . The above
notation is extended to words in the natural way:
for � = s1 · · · sn 2 (SV)⇤, its projection on U ✓ V

is �U = s

U
1 · · · sUn . Also, we denote by �[i] the prefix

of length i of � (by convention, �[i] = " if i 0).
We will assume that 0 2 S

v and |Sv| � 2 for all
v 2 V . In fact, if Sv = {0} then variable v would
always have the same value, and could be ignored.
Each process p 2 P is associated with a delay

dp 2 N that corresponds to the time interval be-
tween the moment the process reads the variables
v 2 E

�1(p) and the moment it will be able to write
on its output variables in E(p). Note that delay 0
is allowed. For v 2 V \ VI with E

�1(v) = {p}, we
let R(v) = E

�1(p) = E

�2(v) be the set of variables
v directly depends on and dv = dp be its delay.
An example of an architecture is given in Fig-

ure 1, where variables are represented by circles
and processes by boxes with delays written next
to them.

Semantics. We consider a discrete time, syn-
chronous semantics. Informally, at each step the en-
vironment provides new values for input variables.
Then, each process p reading values of variables in

u1

u2

p
1

t

q1

0

q2
0

v1

v2

Figure 1: An architecture

E

�1(p) written at time i� dp, computes values for
variables in E(p) and writes them at time i.

Program, routing. The values of a local variable
v 2 VL will be computed by a memoryless pro-
gram (or strategy) f

v : S

R(v) ! S

v. A rout-

ing for architecture A is a family � = (fv)v2VL

of memoryless strategies. A �-sequence is a word
� = s1 · · · sn 2 (SV \VO)⇤ such that for all v 2 VL we

have s

v
i = 0 for all 1 i dv and s

v
i = f

v(sR(v)
i�dv

)
for all dv < i |�| = n. This ensures that the de-
lay dv is respected when computing the next value
of variable v. When the delays are all equal to 0,
we also say that a configuration s is �-compatible
when s

v = f

v(sR(v)) for all v 2 VL.

View. For a variable v 2 V , we let InView(v) =
(E�2)⇤(v)\VI be the set of input variables v might
depend on.

Delays. The smallest cumulative delay of transmis-
sion from u to v is inductively defined by d(u, v) =
+1 if v /2 (E2)⇤(u), i.e., if there is no path from u

to v in the architecture, d(u, u) = 0, and d(u, v) =
dv + min{d(u,w) | w 2 (E2)+(u) \ E

�2(v)} for
u 6= v 2 (E2)+(u).

We then say that an architecture is uniformly
well-connected if there exists a routing � that al-
lows to transmit with a minimal delay to every pro-
cess p writing to an output variable v, the values of
the variables in InView(v).

Definition 1. An architectureA is uniformly well-

connected (UWC) if there exist a routing � and,
for every v 2 VO and u 2 InView(v), a decoding

function g

u,v :
�
S

R(v)
�+ ! S

u that can reconstruct
the value of u as soon as possible, i.e., such that
for any �-sequence � = s1 · · · sn 2 (SV \VO)+ with
|�| = n > d(u, v)� dv, we have

s

u
n�d(u,v)+dv

= g

u,v(�R(v)) (1)

In case there is no delay, the uniform well-
connectedness refines the notion of adequate con-
nectivity introduced by Pnueli and Rosner in [8],

2

as we no longer require each output variable to be
communicated the value of all input variables, but
only those in its view.

As already pointed out in [5], the definition
of uniform well-connectedness is not symmetric:
whereas the routing functions are memoryless, some
memory is required for the decoding functions. We
take the example given in [5] to prove this fact.
Consider the architecture from Figure 1 and assume
that all variables range over the domain {0, 1}. It
is clear that this architecture is UWC: process p

writes to t the xor of u1 and u2 with delay 1. This
could be written t = Y u1 �Y u2 where Y x denotes
the previous value of variable x. In order to recover
(decode) Y u2, process q1 stores the previous value
of u1 and makes the xor with t: Y u2 = t � Y u1.
But if we restrict to memoryless decoding functions,
then we only know u1 and t and we cannot recover
Y u2.
Let us show formally that if we restrict to mem-

oryless decoding functions, we cannot recover the
values of the input variables. Fix a routing � = f

t,
where f

t is memoryless, and fix decoding functions
(gu,v)v2VO,u2InView(v) satisfying (1). Note that, if
s1s2 2 (SV)2 is a �-sequence, then s

t
2 only depends

on s

{u1,u2}
1 since f

t is memoryless and dp = 1.
Now, f

t cannot be injective, hence we find an-
other �-sequence s

0
1s

0
2 2 (SV)2 with s

t
2 = s

0t
2 and

s

{u1,u2}
1 6= s

0{u1,u2}
1 and s

{u1,u2}
2 = s

0{u1,u2}
2 . For in-

stance s

u2
1 6= s

0u2
1 and we get gu2,v1

�
(s1s2){u1,t}

�
=

s

u2
1 6= s

0u2
1 = g

u2,v1
�
(s01s

0
2)

{u1,t}
�
. It follows that

g

u2,v1 is not memoryless.
However, and interestingly, while proving the de-

cidability of this criterion, we will establish that if
an architecture is uniformly well-connected, then
decoding functions with finite memory su�ce. By
that, we mean a function of the form g : M ⇥
S

R(v) ! S

v, where M is a finite memory that can
be updated at each step. Such functions will be
represented by finite automata with outputs.

3. Decidability and complexity of checking

UWC

Observe that, since the routing functions are
memoryless, the value of any variable in a �-
sequence is influenced only by a limited number of
input values in the past. This is expressed by the
following lemma.
First, we introduce some additional notations.

Here we use not only the minimal transmission de-

lay d(u, v) from u to v but also the maximal trans-
mission delay D(u, v) defined by D(u, v) = +1
if v /2 (E2)⇤(u), D(u, u) = 0, and D(u, v) =
dv + max{D(u,w) | w 2 (E2)+(u) \ E

�2(v)} for
u 6= v 2 (E2)+(u). If � = s1s2 · · · sn is a sequence
and i, j are integers then �[i · · j] denotes the sub-
sequence si · · · sj , which is empty if i > j. We also
use this notation when i 0 or j 0: if j 0 then
�[i · · j] = " is the empty sequence, and if i 0 < j

then �[i · · j] = �[1 · · j].

Lemma 2. For all v 2 V \ VO, for any routing �
and any �-sequence � = s1 . . . si, the value s

v
i only

depends on (�u[i�D(u, v) · · i�d(u, v)])u2InView(v).

Proof. The proof is by induction on the variables
of the acyclic architecture. It is trivial for input
variables and also when i dv since in this case we
have svi = 0. Suppose now v 2 VL and i > dv. Since

� is a �-sequence, we have svi = f

v(sR(v)
i�dv

). Let w 2
R(v). By induction hypothesis, swi�dv

depends only
on (�u[i�dv�D(u,w) · · i�dv�d(u,w)])u2InView(w).
We have InView(v) =

S
w2R(v) InView(w). Hence,

using the definitions of the minimal and maximal
transmission delays, we deduce that s

v
i depends

only on (�u[i � D(u, v) · · i � d(u, v)])u2InView(v).
⇤

Corollary 3. For all v 2 VO, for all routing �,

and all �-sequence � = s1 · · · si, the value s

R(v)
i

only depends on

(�u[i+ dv �D(u, v) · · i+ dv � d(u, v)])u2InView(v).

Proof. Let w 2 R(v). By Lemma 2, swi only de-
pends on (�u[i�D(u,w) · · i� d(u,w)])u2InView(w).
For u 2 InView(w), we have D(u,w) D(u, v)�dv

and d(u,w) � d(u, v)� dv. The result follows since
InView(w) ✓ InView(v). ⇤

According to Corollary 3, given a routing �, for
each output variable v 2 VO, we can define a global
coding function v which computes the values of
variables in R(v) from a limited input segment.

Formally, fix v 2 VO. For any input sequence
⇢ = r1 · · · ri 2 (SVI)⇤, and u 2 InView(v), we
define m

u
v (⇢) = ⇢

u[i + dv � D(u, v) · · i � 1 +
dv � d(u, v)] and lstuv (⇢) = r

u
i+dv�d(u,v) if i >

d(u, v) � dv and lstuv (⇢) = " otherwise. Moreover,
we let mv(⇢) = (mu

v (⇢))u2InView(v) and lstv(⇢) =
(lstuv (⇢))u2InView(v).

Note that, if � = s1 · · · si is the �-sequence in-
duced by ⇢, i.e., such that �

VI = ⇢, then the

3

InView(v)

R(v)

σ s

sR(v)

lstv(σs)
mv(σs)

Figure 2: Fragment of the input influencing the value sR(v)

value s

R(v)
i only depends on (mv(⇢), lstv(⇢)) by

Corollary 3. To simplify the notation, we let
mv(�) = mv(⇢) and lstv(�) = lstv(⇢). Figure 2
illustrates this notion: the bottom rectangle rep-
resents (�s)InView(v). The curved shape picturing
mv(�s) and lstv(�s) shows the input values on
which s

R(v) depends (note that �R(v) does not de-
pend on lstv(�s)). The shape is irregular because
of the di↵erent minimal and maximal transmission
delays between variables in InView(v) and variables
in R(v).
Let the domain dom(v) of the global coding

function be the set of pairs (mv(⇢), lstv(⇢)) where ⇢
is an input sequence. Note that dom(v) is finite.
Moreover, if � = s1 · · · si is the �-sequence induced
by an input sequence ⇢, we let v(mv(⇢), lstv(⇢)) =

s

R(v)
i . Note that, if �0 = s

0
1 · · · s0j is any �-sequence

such that (mv(�0), lstv(�0)) = (mv(�), lstv(�)) then

s

0R(v)
j = s

R(v)
i by Corollary 3. Therefore, v is

well-defined.
The following lemma gives a necessary and su�-

cient condition for a routing to be decodable:

Lemma 4. Given a routing �, there exist decoding

functions (gu,v)v2VO,u2InView(v) satisfying Eq. (1)

of Definition 1 if and only if, for all v 2 VO, for all

(m, y), (m, y

0) 2 dom(v), we have

 v(m, y) = v(m, y

0) =) y = y

0 (2)

Informally, the coding function v computes,
from some history m and a new input value y,
the value s

R(v) = v(m, y) that will reach the
decoding functions (gu,v)u2InView(v). If (2) holds
then it is possible to recover the new input value
y from the finite memory m and the value s

R(v).
Hence, decoding functions with finite memory ex-
ist. Conversely, if there are some (m, y), (m, y

0)
such that v(m, y) = v(m, y

0), we will build two
�-sequences � and �

0 that coincide on the values in
R(v). If decoding functions exist (not necessarily
with finite memories) they will compute the same

input value y = y

0 from � and �

0. The formal proof
follows.

Proof of Lemma 4. Assume that there exist
decoding functions (gu,v)v2VO,u2InView(v) satisfy-
ing Eq. (1) of Definition 1. Let (m, y), (m, y

0) 2
dom(v) be such that v(m, y) = v(m, y

0).
Let � = s1 · · · si be a �-sequence such that

(m, y) = (mv(�), lstv(�)). Then, v(m, y) = s

R(v)
i .

Let ⇢ = r1 · · · ri 2 (SVI)i be an input se-
quence such that for all u 2 InView(v) we have
⇢

u[1 · · i�1+dv�d(u, v)] = �

u[1 · · i�1+dv�d(u, v)]
and r

u
i+dv�d(u,v) = y

0u if i > d(u, v) � dv. Let

�

0 = s

0
1 · · · s0i 2 (SV \VO)+ be the (unique) �-

sequence induced by ⇢, i.e., such that �

0VI = ⇢.
By definition, we have (m, y

0) = (mv(�0), lstv(�0)).

Hence, v(m, y

0) = s

0R(v)
i .

Applying Corollary 3, we get �

R(v)[1 · · i � 1] =

�

0R(v)[1 · · i � 1] since for all u 2 InView(v) we
have �

0u[1 · · i � 1 + dv � d(u, v)] = �

u[1 · · i �
1 + dv � d(u, v)]. Moreover, sR(v)

i = v(m, y) =

 v(m, y

0) = s

0R(v)
i . Hence �

R(v) = �

0R(v).
We deduce that for all u 2 InView(v) such that

i > d(u, v) � dv, we have y

u = s

u
i+dv�d(u,v) =

g

u,v(�R(v)) = g

u,v(�0R(v)) = s

0
i+dv�d(u,v) = y

0u.

Therefore, y = y

0.

Now, fix some v 2 VO and assume that (2) holds
for all (m, y), (m, y

0) 2 dom(v). We will define the
decoding functions (gu,v)u2InView(v) using a finite
automaton Av whose set of states Qv defines the
finite memory of the decoding functions.

First, for u 2 InView(v) and � a �-sequence, we
define Mu

v (�) = �

u[|�|+1+dv�D(u, v) · · |�|+dv�
d(u, v)] and Mv(�) = (Mu

v (�))u2InView(v). Note
the shift by 1 between mv and Mv: if �s is a �-
sequence, then Mv(�) = mv(�s) and Mv(�s) is de-
termined byMv(�) and lstv(�s) (see Figure 2). The
decoding functions will recover the value lstv(�s)
from s

R(v) that it can directly read, and from its
memory Mv(�) = mv(�s).

Then, Qv is the set of all Mv(�) such that �

is a �-sequence. The initial state is Mv(") =
(")u2InView(v). The set of transitions consists of all

Mv(�)
sR(v)

���! Mv(�s) such that �s is a �-sequence.
Clearly, for each �-sequence �, there is a run of Av

starting from the initial state, reading �

R(v), and
leading to state Mv(�). This run is unique since
Av is deterministic as we show next.

Let �s and �

0
s

0 be two �-sequences such that
Mv(�) = m = Mv(�0) and s

R(v) = s

0R(v). Let y =

4

lstv(�s) and y

0 = lstv(�0
s

0). We have v(m, y) =
s

R(v) = s

0R(v) = v(m, y

0) since mv(�s) = m =
mv(�0

s

0). Hence we get y = y

0 from our hypoth-
esis. We deduce that Mv(�s) = Mv(�0

s

0) since
this value is determined by (Mv(�), lstv(�s)) =
(Mv(�0), lstv(�0

s

0)). Therefore, Av is deterministic.
Finally, for a �-sequence �s, we define

(gu,v((�s)R(v)))u2InView(v) as the unique y such

that v(mv(�s), y) = s

R(v). Recall that Av al-
lows to compute mv(�s) = Mv(�) as the state
reached when reading �

R(v) from the initial state.
Moreover, v(mv(�s), lstv(�s)) = s

R(v). Hence
y = lstv(�s) and (1) is satisfied. ⇤

From the above results, we deduce:

Theorem 5. The problem of checking whether a

given architecture is UWC is decidable. It is in

EXPSPACE in the general case, and in PSPACE if

we restrict to architectures which are 0-delay, where

the size of the variable domains is fixed, and where

the read-degree is fixed.

Proof. Let A = (V] P,E, (Sv)v2V , (dp)p2P) be
an architecture. For each v 2 VO we define �v =
1 + max{D(u, v) � dv | u 2 InView(v)}. First we
claim that to get dom(v) it su�ces to consider
input sequences of length at most �v. Indeed, let
⇢ = r1 · · · ri 2 (SVI)⇤ be an input sequence of length
i > �v and let ⇢

0 = ri+1��v
· · · ri. We can easily

check that mv(⇢0) = mv(⇢) and lstv(⇢0) = lstv(⇢)
which proves our claim.
We check whether A is UWC with the following

non-deterministic procedure. Guess a routing � =
(fv)v2VL

. For each v 2 VO and each pair ⇢, ⇢

0 2
(SVI)+ of input sequences of length at most�v such
thatmv(⇢0) = mv(⇢), compute the �-sequences � =
s1 · · · si induced by ⇢ and �

0 = s

0
1 · · · s0j induced by

⇢

0 and check that if sR(v)
i = s

0R(v)
j then lstv(⇢0) =

lstv(⇢). The correctness of the algorithm follows
immediately from Lemma 4.

We establish now the complexity upper bound.
Considering that we write in binary the cardinal of
each domain S

v and the value of each delay dp, the
space needed to store the architecture is sz(A) =
A+B + C where

A =
X

v2V

dlog2(1 + |Sv|)e B =
X

p2P

dlog2(1 + dp)e

and C = 2|V ||P | is the space needed to store E. We
first compute the space sz(�) needed to store a rout-
ing �. For each variable v 2 VL, the space needed

to store the memoryless routing f

v : SR(v) ! S

v is
|SR(v)| · dlog2(1 + |Sv|)e. Hence,

sz(�) =
X

v2VL

|SR(v)| · dlog2(1 + |Sv|)e .

Next, fix v 2 VO. The space needed to store
a �-sequence � of length at most �v is bounded
by A�v since the space needed for a configuration
s 2 S

V is bounded by A. The same holds for the
input sequences ⇢, ⇢

0 of length at most �v used in
our decision procedure. Then our non-deterministic
procedure uses space bounded by sz(�) + 4 · A ·
maxv2VO

(�v).
More precisely, in the general case, |SR(v)|

|SV | 2A hence � can be stored within expo-
nential space. Moreover, �v 1 +

P
p2P dp Q

p2P (1 + dp) 2B . Hence, � can be stored
with exponential space. We deduce that the non-
deterministic decision procedure uses exponential
space in the general case. The result follows since
NEXPSPACE = EXPSPACE.

We assume now that dp = 0 for all p 2 P , and
that for all v 2 V we have |Sv| cs and |R(v)| cr

where cs and cr are constants which do not depend
on the input. The space needed to store � becomes

sz(�) |V | · ccrs · dlog2(1 + cs)e = O(sz(A))

since |V | |E| sz(A). Therefore, in that case,
the routing � can be stored within polynomial
space.

Since all delays are 0, we have �v = 1 for all
v 2 VO. Hence we only consider input sequences
of length 1 and the problem is in NPSPACE =
PSPACE.

More precisely, in this restricted case, the prob-
lem is in fact in ⌃P

2 = NPNP. Recall that,
in the polynomial hierarchy, the complexity class
NPNP corresponds to problems that can be solved
by a non-deterministic Turing machine working in
polynomial time, with the help of an oracle for
a problem in NP. Given a routing �, we call a
pair r, r

0 2 S

VI
conflicting if for the correspond-

ing �-compatible configurations s, s

0 2 S

V \VO and
for some v 2 VO, we have s

R(v) = s

0R(v) but
r

InView(v) 6= r

0InView(v). Such a pair is a witness
of incorrectness of �. Given an architecture A and
a routing �, the problem of deciding the existence
of a conflicting pair is in NP: first guess the two
input values r and r

0, guess the output variable v,
compute the corresponding �-configurations s and

5

s

0 and check the property. Note that a configura-
tion s 2 S

V \VO can be stored in space log2(|SV |)
|V | · log2(cs) = O(sz(A)). We can check that, in
polynomial time, we can guess the pair r, r

0, com-
pute the corresponding �-configurations s, s

0, and
checking the property above.
Now, our procedure works as follows: guess a

routing � and ask the oracle whether there is a
conflicting pair for � or not. The routing can be
guessed in polynomial time (and stored in polyno-
mial space). Hence the problem is in NPNP. ⇤

4. Relation to Network Coding

We now show the interesting relationship be-
tween uniform well-connectedness and the network
information flow problem, introduced in [1]. In-
stances of such problems are directed acyclic graphs
in which two subsets of nodes have been distin-
guished: the sources and the sinks. Along with
such a graph comes a certain amount of messages,
and each sink demands a subset of the messages.
Formally, an instance of the network information
flow problem is a tuple (P,E,M, S, demand) where
M is the set of messages (input variables), P is
the set of processes, E ✓ (P ⇥ P) [(M ⇥ P) is
the edge relation defining an acyclic graph and the
set V = E \ (P ⇥ P) corresponds to the (implicit)
internal variables of the network. All variables in
M [V of the network have the same domain S. A
process is a source if it is connected to some input
message, i.e., the set of sources is E(M). Finally,
the map demand : P ! 2M defines what messages
should be routed to which processes. A sink is a
process p 2 P with demand(p) 6= ;. We impose
that demand(p) ✓ (E�1)⇤(p)\M = InView(p). For
p 2 P , let R(p) = (M \E

�1(p))[(E \ (P ⇥ {p})),
moreover, let R(v) = R(p) for v = (p, q) 2 V .
The solution of such a problem is a 0-delay rout-

ing � = (fv)v2V with f

v : S

R(v) ! S and de-
coding functions g

m,p : SR(p) ! S for p 2 P and
m 2 demand(p) such that, for any �-compatible
configuration s, we have g

m,p(sR(p)) = s

m. We say
then that � satisfies the demands.
One specific problem that has been more exten-

sively studied in that area is the multicast : an
instance of the aforementioned problem in which
there is a unique source, and every sink demands
all messages.
The networks considered in information flow

problems mainly di↵er from our architectures on
the following aspects. First, a variable is attached

to an edge, hence there is exactly one process that
can read each variable whereas in our case several
processes might read the same variable. Second,
there is a single (uniform) domain for all variables
of the network instance of an information flow prob-
lem whereas we may have domains with di↵erent
sizes for the variables of our architectures. And last,
there is no delay in the transmission of information
while we may add various delays to our processes.
Hence, our architectures are more flexible and we
get:

Lemma 6. There is a polynomial reduction from

the multicast problem to the uniform well-

connectedness problem.

Proof. Let A = (P,E,M, S, demand) be an in-
stance of the multicast problem. We have E(M) =
{p0} where p0 is the unique source. We show how
to build a corresponding architecture that would be
UWC if and only if there is a 0-delay routing solv-
ing the original multicast problem. The messages
will be turned into values of input variables, and
explicit variables will be added: one input variable
for each message of A, one output variable for each
sink process of A, and one internal variable for each
edge of A.

Formally, we define an architecture A0 = (V 0]
P,E

0
, (Sv)v2V 0

, (dp)p2P) by V

0 = V

0
I] V

0
O] V

0
L

with V

0
I = M , V 0

O = {vp | p is a sink} and V

0
L =

V , E

0 = (M ⇥ {p0}) [{(p, vp) | p is a sink} [S
v=(p,q)2V {(p, v), (v, q)}, S

v = S for all v 2 V

0,
and dp = 0 for all p 2 P . Observe that for all
v 2 V

0
O, we have InView(v) = V

0
I = M and for all

v 2 V

0
L we have R0(v) = R(v). Hence, the notion of

0-delay routing on A coincides with the notion of
routing on A0.

Next, we have seen in the proof of Lemma 4 that
if decoding functions exist for A0 then they only
need finite memory computed by the automata Av.
But when all delays are 0 we have |Qv| = 1, which
means that the decoding functions g

u,v are mem-
oryless. In this case, Condition (1) of Definition 1
coincides with the condition on the memoryless de-
coding functions for A.

Hence, the multicast problem for A coincides
with the UWC problem for A0. ⇤

This reduction allows us to deduce a com-
plexity lower bound for checking uniform well-
connectedness. The multicast problem was shown
to be NP-hard in [10]. Since it can be reduced to
our problem by Lemma 6, we obtain:

6

Corollary 7. The problem of checking whether a

given architecture is UWC is NP-hard.

To be complete on the relationship between in-
formation flow and uniform well-connectedness, we
also show that, for some restricted architectures,
the reduction is also valid in the other direction.

Lemma 8. The uniform well-connectedness prob-

lem for architectures that are 0-delay, and in which

all the variables range over the same domain S can

be reduced to the network information flow problem.

Proof. Since in a network instance of the infor-
mation flow problem, only one process can read a
variable whereas a same variable can be read by
several processes in our architectures, we will re-
place variables of an architecture by processes of
the network.
Let A = (V] P,E, S) be such an architecture.

Consider A0 = (P 0
, E

0
,M

0
, S, demand) be an in-

stance of the network information flow problem
where P

0 = P [VL, E0 = E \ (P ⇥ VO), M 0 = VI

and for all p 2 E

�1(VO), demand(p) = InView(v)
where v 2 E(p) is arbitrary (they all have the same
input-view). The set of internal variables V 0 is then
V

0 = E

0 \ (P 0 ⇥ P

0) = E \ (P ⇥ VO [VI ⇥ P) =
P ⇥ VL [VL ⇥ P .
Suppose there is a routing � = (fv)v2VL

on
A and, for every v 2 VO, a decoding function
g

v : SR(v) ! S

InView(v). We have to simulate the
routing � = (fv)v2VL

of the architecture A with a
new routing �0 = (f 0e)e2V 0 on the network A0. If
e = (p, v) 2 P ⇥ VL then, on A, process p writes
on variable v, which is simulated on A0 by setting
f

0e = f

v. In the other case, the previous value
is simply copied to the next edge. Formally, let
�0 = (f 0e)e2V 0 be the routing on A0 defined as fol-
lows : for r 2 S

R0(e)

• if e = (p, v) 2 P ⇥ VL, then R

0(e) = (VI \
R(v)) [{(u, p) | u 2 VL \ R(v)} so we have
S

R0(e) = S

R(v) and we can set f 0e(r) = f

v(r),

• if e = (v, p) 2 VL⇥P , then R

0(e) is a singleton
{(q, v)} where q is the unique process writing
in v in A and we set f 0e(r) = r.

For all p 2 E

�1(VO) sink of the network, we let
g

0p = g

v, for some v 2 VO \ E(p), and show that
they are decoding functions for the network A0.
Let s

0 2 S

M 0[V 0
be a �0-configuration and s 2

S

V \VO defined by s

VI = s

0M 0
and, for all v 2 VL,

s

v = s

0(p,v), where p 2 P is the unique process
writing on v.

We show that s is a �-configuration. Let v 2 VL,
then by definition, sv = s

0(p,v) = f

0(p,v)(s0R
0(p,v)) =

f

v(s0R
0(p,v)). We have seen that R

0(p, v) = (VI \
R(v)) [{(u, p) | u 2 VL \ R(v)}. For e = u 2
VI \ R(v), we have s

0e = s

u by definition of s. Let
e = (u, p) with u 2 VL \ R(v). We have seen that
R

0(e) = {(q, u)}, where q is the unique process writ-
ing on u in A. Then, s0e = f

0e(s0R
0(e)) = s

0(q,u) =
s

u by definition of s. Then, s0R
0(p,v) = s

R(v) and
s

v = f

v(sR(v)).
Let p 2 E

�1(VO) and v 2 VO \ E(p). As above
we can show that s

0R0(p) = s

R(v). We deduce that
g

0p(s0R
0(p)) = g

v(sR(v)) = s

InView(v).

Conversely, let �0 = (f 0e)e2V 0 be a routing forA0.
We define the routing � = (fv)v2VL

as follows. Let
v 2 VL be some internal variable and let p 2 E

�1(v)
be the unique process which writes on v. We have
seen that R

0(p, v) = (VI \ R(v)) [{(u, p) | u 2
VL\R(v)}. Hence, SR(v) = S

R0(p,v) and we can set
f

v(r) = f

0(p,v)(r) for all r 2 S

R(v).
Assume there are decoding functions

(g0p)p2E�1(VO) that satisfy the demand. Let
v 2 VO and p 2 E

�1(v). We can see as above that
S

R(v) = S

R0(p) and we can define gv(r) = g

0p(r) for
r 2 S

R(v). We show that (gv)v2VO
yield uniform

well-connectedness.
Let s be a �-outcome and s

0 be the �0-outcome
induced by the same input values: s

0VI = s

VI . We
show by induction that for all v 2 VL, we have
s

v = s

0(p,v) where p 2 E

�1(v). Let v 2 VL and
p 2 E

�1(v). Since R

0(p, v) = (VI \R(v))[{(u, p) |
u 2 VL \ R(v)}, we obtain s

R(v) = s

0R0(p,v) by in-
duction and using s

0VI = s

VI . Then, we get s

v =
f

v(sR(v)) = f

0(p,v)(sR(v)) = f

0(p,v)(s0R
0(p,v)) =

s

0(p,v).
Finally, for each v 2 VO and p 2 E

�1(p), we
get as above s

R(v) = s

0R0(p). Then g

v(sR(v)) =
g

0p(s0R
0(p)) = s

0InView(v) = s

InView(v) showing that
the decoding functions are correct. ⇤

References

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Ye-
ung. Network information flow. Trans. Inf. Theory,
46(4):1204–1216, 2000.

[2] J. R. Büchi and L. H. Landweber. Solving sequen-
tial conditions by finite-state strategies. Trans. Amer.
Math. Soc., 138:295–311, 1969.

[3] A. Church. Logic, arithmetics, and automata. In
Proc. of Int. Congr. of Mathematicians, pages 23–35,
1962.

7

[4] B. Finkbeiner and S. Schewe. Uniform distributed syn-
thesis. In Proc. of LICS’05, pages 321–330. IEEE Com-
puter Society Press, 2005.

[5] P. Gastin, N. Sznajder, and M. Zeitoun. Distributed
synthesis for well-connected architectures. Formal
Meth. Syst. Des., 34(3):215–237, 2009.

[6] O. Kupferman and M. Y. Vardi. Synthesizing dis-
tributed systems. In Proc. of LICS’01. IEEE Computer
Society Press, 2001.

[7] G. L. Peterson and J. H. Reif. Multiple-person alter-
nation. In Proc. of FOCS’79, pages 348–363. IEEE
Computer Society Press, 1979.

[8] A. Pnueli and R. Rosner. Distributed reactive systems
are hard to synthesize. In Proc. of FOCS’90, volume II,
pages 746–757. IEEE Computer Society Press, 1990.

[9] M. O. Rabin. Automata on Infinite Objects and
Church’s Problem. Amer. Math. Soc., Boston, MA,
USA, 1972.

[10] A. Rasala Lehman and E. Lehman. Complexity classifi-
cation of network information flow problems. In Proc. of
SODA’04, pages 142–150. SIAM, 2004.

8

	Introduction
	Preliminaries
	Decidability and complexity of checking UWC
	Relation to Network Coding

