
Safraless Procedures for Timed Specifications?

Barbara Di Giampaolo1, Gilles Geeraerts2, Jean-François Raskin2, Nathalie Sznajder2

1 Dipartimento di Informatica ed Applicazioni, Università degli Studi di Salerno, Italy
2 Département d’Informatique, Université Libre de Bruxelles (U.L.B.)

bardig@dia.unisa.it, {gigeerae,jraskin,nsznajde}@ulb.ac.be

Abstract. This paper presents extensions of Safraless algorithms proposed in
the literature for automata on infinite untimed words to the case of automata on
infinite timed words.

1 Introduction

In this paper, we investigate the applicability of automata constructions that avoid de-
terminization for solving language inclusion and synthesis for real-time specifications.
While timed language inclusion is undecidable for the class of timed languages defin-
able by classical timed automata [AD94], there are interesting subclasses of timed lan-
guages for which language inclusion is decidable. In particular, it has been shown that
the timed inclusion problem for event-clock automata [AFH99] and recursive general-
izations [RS98,HRS98,Ras99] is PSPACE-complete for both finite and infinite words.
For infinite words, those results are obtained using an adaptation of the Safra construc-
tion [Saf88] to this subclass of timed automata. Unfortunately, this construction leads
to state spaces that are highly complex and difficult to handle in practice.

Contributions Safra-based determinization is difficult to implement even in the con-
text of untimed languages. As a consequence, recent research efforts have investigated
alternative decision procedures [KV01,KV05,SF07,FJR09] that avoid the use of this
construction. We investigate here extensions of those techniques to timed languages
expressed by (alternating) event-clock automata and to a fragment of the Event-Clock
Logic for which the realizability problem is decidable [DGRR09].

First, we show, in Section 3, that the techniques of [KV01] can be adapted to alter-
nating event-clock automata. That is, given an alternating event-clock automaton with
co-Büchi acceptance condition A, we show how to construct, in quadratic time, an al-
ternating event-clock automaton with Büchi acceptance condition B that accepts the
same language as A. From that alternating event-clock automaton B, we show how to
construct in exponential time a nondeterministic event-clock automaton C with Büchi
acceptance condition such that accepts the same language as B and A. This is done
by adapting a classical construction due to Miyano and Hayashi [MH84] originally

? Work supported by the projects: (i) Quasimodo: “Quantitative System Properties in
Model-Driven-Design of Embedded”, http://www.quasimodo.aau.dk/, (ii) Ga-
sics: “Games for Analysis and Synthesis of Interactive Computational Systems”,
http://www.ulb.ac.be/di/gasics/, and (iii) Moves: “Fundamental Issues in
Modelling, Verification and Evolution of Software”, http://moves.ulb.ac.be, a PAI
program funded by the Federal Belgian Gouvernment.

proposed for Büchi automata on infinite (untimed) words. Those procedures then can
be used to complement nondeterministic event-clock automata with Büchi acceptance
conditions, this in turn leads to algorithms for solving the universality and language
inclusion problems for that class of timed automata without resorting to the Safra con-
struction.

Second, we generalize, in Section 4, the ideas of [FJR09] to solve the realizability
problem for a fragment of the Event Clocks Logic called LTLC [DGRR09]. For each
formula of this logic, we can construct, in exponential time, a universal event-clock
automaton with co-Büchi acceptance condition that accepts the set of timed words that
the formula defines. Then, we show that the co-Büchi acceptance condition can be
strengthened into a condition that asks that all runs of the automaton visit less than
K ∈ N times the set of accepting locations. This allows to reduce the realizability
problem for LTLC to the realizability problem for universal K-co-Büchi event-clock
automata. Those are easily determinizable and this reduces the original problem to a
timed safety game problem. We show, in Section 5, that this timed safety game problem
can be solved using the tool UPPAAL TIGA [BCD+07]. We illustrate this on a simple
example.

2 Preliminaries

Words and timed words An alphabet Σ is a finite set of letters. A finite (resp. infinite)
word w over an alphabet Σ is a finite (resp. infinite) sequence of letters from Σ. We
denote respectively by Σ∗ and Σω the sets of all finite and infinite words on Σ. We
denote by ε the empty word, and by |w| the length the word w (which is equal to ∞
when w is infinite). A finite (resp. infinite) timed word over an alphabet Σ is a pair
θ = (w, τ) where w is a finite (resp. infinite) word over Σ, and τ = τ0τ1 . . . τ|w|−1 is
a finite (resp. infinite) sequence of length |w| of positive real values (the time stamps)
such that τi ≤ τi+1 for all 0 ≤ i ≤ |w| − 1 (resp. for all i ≥ 0). We let |(w, τ)| = |w|
denote the length of (w, τ).

An infinite timed word θ = (w, τ) is diverging if for all t ∈ R≥0, there exists a posi-
tion i ∈ N such that τi ≥ t. We denote respectively by TΣ∗, TΣω and TΣω

td the sets of
all finite, infinite and infinite diverging timed words on Σ. In the sequel, it is often con-
venient to denote an (infinite) timed word (w, τ) by the sequence (w0, τ0)(w1, τ1) . . .
We proceed similarly for finite timed words. Since we are interested mainly in infinite
timed words, we often refer to them simply as timed words.

Remark 1 (Time divergence). In the sequel, we formalize the results for languages of
timed words that are not necessarily time divergent. Nevertheless, we systematically
explain informally how to obtain the results for diverging timed words.

Event clocks A clock is a real-valued variable whose value evolves with time elapsing.
We associate, to every letter σ ∈ Σ, a history clock ←−xσ and a prophecy clock −→xσ . We
denote respectively by HΣ the set {←−xσ | σ ∈ Σ} of history clocks and by PΣ the set
{−→xσ | σ ∈ Σ} of prophecy clocks on Σ, and we let CΣ = HΣ ∪PΣ be the set of event-
clocks on Σ. A valuation v of a set of clocks C ⊆ CΣ is a function C → R≥0 ∪ {⊥}.
We denote by V (C) the set of all valuations of the set of clocks C. We associate to
each position i ≥ 0 of a timed word θ = (w, τ) ∈ TΣω ∪ TΣ∗ a unique valuation
Valθi of the clocks in CΣ , defined as follows. For any x ∈ HΣ , Valθi (x) = ⊥ if there

is no j < i s.t. wj = σ. Otherwise, Valθi (x) = τi − τj where j is the largest position
s.t. j < i and wj = σ. Symmetrically, for any x ∈ PΣ , Valθi (x) = ⊥ if there is no
j > i s.t. wj = σ. Otherwise, Valθi (x) = τj − τi where j is the least position s.t. j > i
and wj = σ. Intuitively, this means that, when reading the timed word θ, the history
clock←−xσ always records the amount of time elapsed since the last occurrence of σ, and
the prophecy clock −→xσ always tells us the amount of time before the next occurrence
of σ. For a valuation v ∈ V (C) such that ∀x ∈ PΣ ∩ C: v(x) ≥ d, we denote by
v+d the valuation from V (C) that respects the following two conditions. First, for any
x ∈ HΣ ∩C: (v+ d)(x) = ⊥ if v(x) = ⊥; otherwise (v+ d)(x) = v(x) + d. Second,
for any x ∈ PΣ ∩ C: (v + d)(x) = v(x)− d if v(x) 6= ⊥; otherwise (v + d)(x) = ⊥.
For a valuation v ∈ V (C), and a clock x ∈ C, we write v[x := 0] the valuation that
matches v on every clock x′ 6= x and such that v(x) = 0.

An atomic clock constraint over the set of clocks C is either true or a formula of the
form x ∼ c, where x ∈ C, c ∈ N, and ∼∈ {<,>,=}. A clock constraint is a Boolean
combination of atomic clock constraints. We denote by Constr (C) the set of all clock
constraints ranging over the set of clocks C. We say that a valuation v satisfies a clock
constraint ψ, denoted v |= ψ according to the following rules: v |= true; v |= x ∼ c iff
v(x) 6= ⊥ and v(x) ∼ c ; v |= ¬ψ iff v 6|= ψ; v |= ψ1 ∨ ψ2 iff v |= ψ1 or v |= ψ2.
We say that a timed word θ satisfies a clock constraint ψ at position i ≥ 0, denoted
(θ, i) |= ψ iff Valθi |= ψ.

Alternating event clock automata Let X be finite set. A positive Boolean formula over
X is Boolean formula generated by:

ϕ ::= a | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | true | false

with a ∈ X , and ϕ1, ϕ2 positive Boolean formulas. We denote by B+(X) the set of
all positive Boolean formulas on X . A set Y ⊆ X satisfies a positive Boolean formula
ϕ ∈ B+(X), denoted Y |= ϕ if and only if replacing each y ∈ Y by true and each
x ∈ X \ Y by false in ϕ, and applying the standard interpretation for ∨ and ∧ yields
a formula which is equivalent to true. For example, ϕ = (q1 ∧ q2) ∨ q3 is a positive
Boolean formula on {q1, q2, q3}. Clearly, {q1, q2} |= ϕ, {q2, q3} |= ϕ, but {q1} 6|= ϕ.
Given a set X , and a positive Boolean formula ϕ ∈ B+(X), we denote by ϕ̃ the dual
of ϕ, which is the positive Boolean formula obtained from ϕ by swapping the ∨ and ∧
operators, as well as the true and false values.

An alternating event-clock automaton (AECA) is a tuple A = 〈Q, qin, Σ, δ, α〉,
where Q is a finite set of locations, qin ∈ Q is the initial location, Σ is a finite alphabet,
δ : Q × Σ × Constr (CΣ) 7→ B+(Q) is a partial function, and α is the acceptance
condition, which can be:

1. either a Büchi acceptance condition; in this case, α ⊆ Q,
2. or a co-Büchi acceptance condition; in this case, α ⊆ Q,
3. or a K-co-Büchi acceptance condition, for some K ∈ N; in this case, α ⊆ Q,
4. or a parity condition; in this case, α : Q 7→ Colours, where Colours ⊆ N is a finite

set of priorities.

Moreover, δ respects the following conditions:

(A1) For every q ∈ Q, σ ∈ Σ, δ(q, σ, ψ) is defined for only finitely many ψ.
(A2) For every q ∈ Q, σ ∈ Σ, v ∈ V (CΣ) there exists one and only one ψ ∈

Constr (CΣ) s.t. v |= ψ and δ(q, σ, ψ) is defined.

Runs and accepted languages Runs of AECA are formalised by trees. A tree T is a
prefix closed set T ⊆ N∗. The elements of T are called nodes, and the root of the tree is
the empty sequence ε. For every x ∈ T , the nodes x · c ∈ T , for c ∈ N are the children
of x, and x is the (unique) father of all the nodes x ·c. A node with no child is a leaf. We
refer to the length |x| of x as its level in the tree. A branch in the tree T is a sequence of
nodes π ⊆ T such that ε ∈ π, and for every x ∈ π, either x is a leaf, or there is a unique
c ∈ N such that x · c ∈ π. An X-labelled tree is a pair 〈T, `〉 where ` : T → X is a
labelling function of the nodes, that associates a label from X to each node of T . We
extend the function ` to (finite or infinite) branches: given a branch π = n1n2 · · ·nj · · ·
of T , we let `(π) be the sequence `(n1)`(n2) · · · `(nj) · · · Let A = 〈Q, qin, Σ, δ, α〉 be
an AECA, and θ be an timed word on Σ. Then, a Q-labelled tree R = 〈T, `〉 is a run of
A on θ iff the following hold:

– `(ε) = qin,
– for all x ∈ T , there exists a set S ⊆ Q s.t. (i) q ∈ S iff x has a child x · c ∈ T with
`(x · c) = q and (ii) S |= δ(`(x), w|x|, ψx), where ψx ∈ Constr (CΣ) is the unique
clock constraint s.t. δ(`(x), w|x|, ψx) is defined and (θ, |x|) |= ψx.

Let R = 〈T, `〉 be a run and x ∈ T . We note Rx the sub-run rooted at node x. A run
R = 〈T, `〉 is memoryless if for all levels i ∈ N, for all x, y ∈ T such that |x| = |y| = i
and `(x) = `(y), the sub-runs Rx = 〈Tx, `x〉 and Ry = 〈Ty, `y〉 are isomorphic.

Let 〈T, `〉 be an X-labelled tree, and let π be a branch of T . We let Occπ : X →
N∪{∞} be the function that associates, to any element ofX , its number of occurrences
in π. We further let Inf (π) = {x ∈ X | Occπ(x) =∞}. Let A be an AECA with set of
locations Q and acceptance condition α, and R = 〈T, `〉 be a run of A. Then, R is an
accepting run iff one of the following holds: α is a

– Büchi condition, and for all branches π ⊆ T , Inf (π) ∩ α 6= ∅,
– co-Büchi condition, and for all branches π ⊆ T , Inf (π) ∩ α = ∅,
– K-co-Büchi condition, and for all branches π ⊆ T ,

∑
q∈αOccπ(q) ≤ K,

– parity condition, and for all branches π ⊆ T , max{α(q) | q ∈ Inf (π)} is even.

A timed word θ is accepted by an AECA A iff there exists an accepting run of A
on θ. We denote by L(A) the language of A, i.e. L(A) = {θ | θ is accepted by A},
and by L(A)td the time diverging language accepted by A, i.e. L(A)td = {θ | θ ∈
TΣω

td and θ is accepted by A}.
For readability, we often refer to the language of an automaton A with co-Büchi

acceptance condition as LcoB(A). Similarly, we use LB(A) to denote the accepted lan-
guage of an automaton A with Büchi acceptance condition, LKcoB(A) in the case of an
automaton A with K-co-Büchi acceptance condition, and LP(A) for an automaton A
with parity acceptance condition.

Finally, let A = 〈Q, qin, Σ, δ, α〉 be an AECA with Büchi acceptance condition.
The dual of A, denoted Ã is defined as the AECA

〈
Q, qin, Σ, δ̃, α

〉
with co-Büchi

acceptance condition, where for any q ∈ Q, σ ∈ Σ and ψ ∈ Constr (CΣ), δ̃(q, σ, ψ) is

equal to ˜δ(q, σ, ψ) iff δ(q, σ, ψ) is defined. It is easy to check that LcoB(Ã) = TΣω \
LB(A).

Remark 2 (Time divergence). It is easy to see that LcoB(Ã)td = TΣω
td \ LB(A).

Syntactic restrictions Let us now define syntactic restrictions of AECA. Let A =
〈Q, qin, Σ, δ, α〉 be an AECA. Then:

1. If, for any q ∈ Q, σ ∈ Σ and ψ ∈ Constr (CΣ): δ(q, σ, ψ) is either undefined or
a purely disjunctive formula, then A is a non-deterministic event-clock automaton
(NECA for short).

2. If, for any q ∈ Q, σ ∈ Σ and ψ ∈ Constr (CΣ): δ(q, σ, ψ) is either undefined or a
purely conjunctive formula, then A is an universal event-clock automaton (UECA
for short).

3. If, for any q ∈ Q, σ ∈ Σ and ψ ∈ Constr (CΣ): δ(q, σ, ψ) is either undefined, or
δ(q, σ, ψ) ∈ Q, then A is a deterministic event-clock automaton (DECA for short).

4. If, for any q ∈ Q, σ ∈ Σ and ψ ∈ Constr (CΣ): either δ(q, σ, ψ) is undefined or
ψ ∈ Constr (HΣ), then A is a past event-clock automaton (PastECA for short).

5. If, for any q ∈ Q, σ ∈ Σ: δ(q, σ, true) is defined, then A is an alternating word au-
tomaton (AWA for short). In this case, since the third parameter of δ is always true,
we omit it. We refer to such automata as untimed word automata. We use the short-
hands NWA and DWA to refer to non-deterministic and deterministic (untimed)
word automata.

Given a NECA A and a timed word θ on Σ, if there exists an accepting run R =
〈T, `〉 of A on θ, then it is easy to see that there exists an accepting run with one branch
π. We denote such a run by the sequence qin, (σ0, τ0), q1, (σ1, τ1), · · · , qj , (σj , τj), · · ·
where qinq1 · · · qj · · · is the label `(π) of the single branch π of T .

Weak and strong equivalences for event-clock valuations We define two notions of
equivalence for valuations of clocks, the former called weak equivalence and the latter
called strong equivalence. The notion of weak equivalence applies to valuations for
both history clocks and prophecy clocks, while the notion of strong equivalence applies
to valuations for history clocks only. They are defined as follows.

Let C ⊆ HΣ ∪ PΣ , and let cmax ∈ N. Two valuations v1, v2 ∈ V (C) are weakly
equivalent, noted v1 ∼cmax v2, iff the following two conditions are satisfied:

(C1) ∀x ∈ C: v1(x) = ⊥ iff v2(x) = ⊥;
(C2) ∀x ∈ C: either v1(x) > cmax and v1(x) > cmax , or dv1(x)e = dv2(x)e and

bv1(x)c = bv2(x)c.

We note [v]∼cmax the weak equivalence class of v. We note wReg (C, cmax) the finite
set of equivalence classes of the relation ∼cmax , and call them weak regions.

Lemma 3. Let C ⊆ HΣ ∪ PΣ , and let cmax ∈ N. Two valuations v1, v2 ∈ V (C) are
weakly equivalent iff for all ψ ∈ Constr (C, cmax): v1 |= ψ iff v2 |= ψ.

Let C ⊆ HΣ , and let cmax ∈ N. Two valuations v1, v2 ∈ V (C) are strongly
equivalent, noted v1 ≈cmax v2, iff conditions C1 and C2 are satisfied and additionally:

(C3) ∀x1, x2 ∈ C: dv1(x1)e − v1(x1) ≤ dv1(x2)e − v1(x2) iff dv2(x1)e − v2(x1) ≤
dv2(x2)e − v2(x2).

We note [v]≈cmax the strong equivalence class of v, we note Reg (C, cmax) the fi-
nite set of equivalence classes of the relation ≈cmax , and we call them strong re-
gions, or simply regions. Note that our notion of strong equivalence for valuations

of history clocks is an adaptation of the classical notion of clock equivalence defined
for timed automata [AD94], hence it is a time-abstract bisimulation. For any region
r ∈ Reg (C, cmax), we say that r′ ∈ Reg (C, cmax) is a time-successor of r (written
r ≤t.s. r

′) if and only if for any valuation v ∈ r, there is some t ∈ R≥0 such that
v + t ∈ r′. Note that the relation ≤t.s. is a partial order over Reg (C, cmax). A region
r ∈ Reg (C, cmax) is initial if, for all v ∈ r, for all (history) clock x ∈ C: v(x) = ⊥.
Note that the initial region is unique and denoted rCin (when C is clear from the con-
text we denote it by rin). Finally, for all r ∈ Reg (C, cmax) and all x ∈ C, we note
r[x := 0] the region s.t. for all v ∈ r[x := 0], there is v′ ∈ r with v′[x := 0] = v.

Region automaton Given a set of history clocks C ⊆ HΣ and cmax ∈ N, the region
automaton RegAut (C, cmax) =

〈
Reg (C, cmax) ∪ {⊥}, rCin, ΣR, δR, α

〉
, is a DWA

where ΣR = Σ × Reg (C, cmax) and α = Reg (C, cmax) is a Büchi acceptance
condition. The transition relation δR is such that for all r, r′ ∈ Reg (C, cmax), and for
all σ ∈ Σ:

– δR(r, (σ, r′)) = r′[←−xσ := 0] if r ≤t.s. r
′, otherwise δR(r, (σ, r′)) = ⊥,

– δR(⊥, (σ, r′)) = ⊥.

Regionalizations of a timed word Given C ⊆ CΣ , cmax ∈ N, and a timed word θ =
(σ0, τ0)(σ1, τ1) · · · ∈ TΣω∪TΣ∗, let vi be the restriction of Valθi to the set of clocksC.
We define the weak region word associated to θ, denoted wrg(C, cmax , θ) as the (un-
timed) word (σ0, [v0]∼cmax)(σ1, [v1]∼cmax) · · · overΣ×wReg (C, cmax). Intuitively,
wrg(C, cmax , θ) describes, along with the sequence of letters, the sequence of weak re-
gions visited by θ. If C ⊆ HΣ , we also define the (strong) region word associated to
θ, denoted rg(C, cmax , θ) as the (untimed) word (σ0, [v0]≈cmax)(σ1, [v1]≈cmax) · · ·
over Σ×Reg (C, cmax). We extend wrg and rg to set of words L: wrg(C, cmax , L) =
{wrg(C, cmax , θ) | θ ∈ L} and rg(C, cmax , L) = {rg(C, cmax , θ) | θ ∈ L}.

Proposition 4. For all set of clocksC ⊆ HΣ and cmax ∈ N: LB(RegAut (C, cmax)) =
rg(C, cmax ,TΣω).

Remark 5 (Time divergence). We can extend the definition of region automaton to ob-
tain an automaton RegAuttd (C, cmax) that accepts all the infinite words over Σ ×
Reg (C, cmax) associated to diverging timed words. To achieve this, we must use a
generalized Büchi acceptance condition that guarantees time divergence on the regions
(see [AD94] for the details). Then, L(RegAuttd (C, cmax)) = rg(C, cmax ,TΣω

td).

Regionalizations of an AECA Let A = 〈Q, qin, Σ, δ, α〉 be an AECA, let C ⊆ CΣ be
the set of clocks and cmax ∈ N be the maximal constant appearing in A. We define the
weak regionalization ofA as the AWAwRg(A) = 〈Q, qin, Σ × wReg (C, cmax) , δ′, α〉
s.t. for all q ∈ Q, and (σ, r) ∈ Σ × wReg (C, cmax): δ′(q, (σ, r)) = δ(q, σ, ψ) where
ψ is the unique constraint such that δ(q, σ, ψ) is defined and v |= ψ for all v ∈ r.

Let A = 〈Q, qin, Σ, δ, α〉 be a PastECA, let C ⊆ HΣ be the set of history clocks
and cmax ∈ N be the maximal constant appearing in A. We define the (strong) re-
gionalization of A as the AWA Rg(A) = 〈Q, qin, Σ × Reg (C, cmax) , δ′, α〉 s.t. for
all q ∈ Q, and (σ, r) ∈ Σ × Reg (C, cmax): δ′(q, (σ, r)) = δ(q, σ, ψ) where ψ is the
unique constraint such that δ(q, σ, ψ) is defined and v |= ψ for all v ∈ r.

The following lemma links runs in an AECA, and its weak and (strong) regionaliza-
tion (when A is a PastECA).

Lemma 6. Let A be an AECA. For every timed word θ ∈ TΣω , R = 〈T, `〉 is
an accepting run tree of A over θ iff it is an accepting run tree of wRg(A) over
wrg(C, cmax , θ). Moreover, if A is a PastECA, R = 〈T, `〉 is an accepting run tree
of A over θ iff it is an accepting run tree of Rg(A) over rg(C, cmax , θ).

The following lemma states that, for all PastECA A, the words accepted by both
Rg(A) and by RegAut (C, cmax) are exactly the (strong) regionalizations of the timed
words accepted by A (whatever the acceptance condition of A is):

Lemma 7. For all PastECA A = 〈Q, qin, Σ, δ, α〉, with set of clocks C ⊆ HΣ and
maximal constant cmax : L(Rg(A)) ∩ LB(RegAut (C, cmax)) = rg(C, cmax , L(A)).

Proof. Let θ be a word in L(A). Then there is an accepting run R = 〈T, `〉 of A over θ.
By Proposition 4, rg(C, cmax , θ) ∈ LB(RegAut (C, cmax)). By Lemma 6, R is also a
accepting run of Rg(A) over rg(C, cmax , θ). Thus, rg(C, cmax , θ) ∈ L(Rg(A)).

Conversely, let w be a word in L(Rg(A)) ∩ LB(RegAut (C, cmax)). Since w ∈
LB(RegAut (C, cmax)), by Proposition 4, there is θ ∈ TΣω such that rg(C, cmax , θ) =
w. Let R = 〈T, `〉 be an accepting run of Rg(A) over w. By Lemma 6, R is also a ac-
cepting run of A over θ and thus θ ∈ L(A). ut

Remark 8 (Time divergence). If we restrict our attention to diverging timed words, then:
L(Rg(A)) ∩ L(RegAuttd (C, cmax)) = rg(C, cmax , L(A)td)

3 Solving language inclusion without determinization

In this section, we show how to complement AECA with Büchi acceptance condition.
This procedure allows us to solve the universality and language inclusion problems for
NECA with Büchi acceptance condition without resorting to determinization procedures
(like the one defined by Safra in [Saf88]) that are resistant to efficient implementation.

We start by showing how to transform a co-Büchi acceptance condition into a Büchi
condition when considering AECA. For that, we need the existence of memoryless runs:

Lemma 9. LetA be an AECA with co-Büchi acceptance condition. For all timed words
θ such that θ ∈ LcoB(A): A has an accepting memoryless run on θ.

Proof. Let C be the set of clocks and cmax be the maximal constant of A. Let θ
be a timed word accepted by A. By Lemma 6, wrg(C, cmax , θ) is accepted by the
AWA wRg(C, cmax , A). Let R = 〈T, `〉 be an accepting run of wRg(C, cmax , A) on
wrg(C, cmax , θ). By the result of Emerson and Jutla [EJ91, Theorem 4.4], we can make
the hypothesis thatR is memoryless. By Lemma 6,R is an accepting run ofA on θ. ut

The memoryless property of accepting runs in AECA with co-Büchi acceptance con-
dition allows us to represent those runs as DAGs where isomorphic subtrees are merged.
Formally, we associate to every memoryless run R = 〈T, `〉 of A = 〈Q, qin, Σ, δ, α〉
the DAGGR = 〈V,E〉, where the set of vertices V ⊆ Q×N represents the labels of the
nodes of R at each level. Formally, (q, l) ∈ V if and only if there is a node x ∈ T such
that |x| = l and `(x) = q. The set of edges E ⊆

⋃
l≥0(Q×{l})× (Q×{l+1}) relates

the nodes of one level to their children. Formally, ((q, l), (q′, l + 1)) ∈ E if and only if
there exists some node x ∈ T and c ∈ N such that x · c ∈ T and |x| = l, `(x) = q, and
`(x · c) = q′. Note that the width of the DAG is bounded by |Q|.

Now, we can apply results of [KV01] that characterize the structure of accepting
runs of alternating automata with co-Büchi acceptance condition. For that we need
some additional notations. For k ∈ N we write [k] for the set {0, 1, . . . , k} and [k]odd

for the set of odd elements of [k]. The following lemma is adapted from [KV01]:

Lemma 10. Let A be an AECA with n locations and co-Büchi accepting condition α.
The vertices of the DAG GR associated to a memoryless accepting run R of A can be
labelled by a ranking function f : V → [2n] having the following properties:

(P1) for (q, l) ∈ Q× N, if f(q, l) is odd, then q /∈ α,
(P2) for (q, l) and (q′, l′) such that (q′, l′) is reachable from (q, l), f(q′, l′) ≤ f(q, l),
(P3) in every infinite path π in GR, there exists a node (q, l) such that f(q, l) is odd and,

for all (q′, l′) in π reachable from (q, l): f(q′, l′) = f(q, l).

We use this ranking function to justify the transformation of an AECA with co-Büchi
acceptance condition into an AECA with Büchi acceptance condition.

Let A = 〈Q, qin, Σ, δ, α〉 be an AECA with co-Büchi acceptance condition, and let
|Q| = n. We define the AECA Rank(A) as 〈Q′, q′in, Σ, δ′, α′〉 with Büchi acceptance
condition, where Q′ = Q× [2n], q′in = (qin, 2n), and δ′ is defined using the auxiliary
function (we use the notations of [KV01]): release : B+(Q)× [2n] → B+(Q′), which
maps a formula φ ∈ B+(Q) and an integer i ∈ [2n] to a formula obtained from φ by
replacing each atom q ∈ Q by the disjunction

∨
j≤i(q, j). Then, for any (q, i) ∈ Q′,

σ ∈ Σ and ψ ∈ Constr (CΣ) such that δ(q, σ, ψ) is defined,

δ′((q, i), σ, ψ) =

{
release(δ(q, σ, ψ), i) if q /∈ α or i is even,
false if q ∈ α and i is odd.

Finally, α′ = Q× [2n]odd is a Büchi acceptance condition.
Remark that, by condition A2 of the definition of the transition relation in AECA,

for all q ∈ Q, σ ∈ Σ and valuation v ∈ V (C), there is exactly one clock constraint
ψ such that δ(q, σ, ψ) is defined and v |= ψ. Thus, by construction of Rank(A), for all
q ∈ Q, i ∈ [n] and valuation v ∈ V (C), there is exactly one clock constraint ψ such
that δ′((q, i), wk, ψ) is defined and v |= ψ. Thus, δ′ is well-formed. Let us establish the
relationship between the accepted languages of A and Rank(A)

Proposition 11. For all AECA A with co-Büchi condition: LB(Rank(A)) = LcoB(A).

Proof. Let θ = (σ, τ) ∈ TΣω be a timed word in LB(Rank(A)) and let us show
that θ ∈ LcoB(A). Let R′ = 〈T, `′〉 be an accepting run of Rank(A) on θ. Consider
R = 〈T, `〉 where for all x ∈ T , `(x) = q if `′(x) = (q, j) for some rank j. By
definition of Rank(A), R is a run of A on θ. Let us now show that it is an accepting
run of A. As R′ is accepting for Rank(A), we know that every branch has the following
property: from some level i ∈ N, the rank j is not changing anymore. This is because
the definition of the transition function of Rank(A) requires the ranks to decrease along
a path, while staying positive. Moreover, the acceptance condition imposes that this
rank is odd. Let π be such a branch. As accepting locations of A are associated to odd
ranks and cannot appear in runs of Rank(A) (it is forbidden by the transition relation),
we know that the branch π in R visits only finitely many accepting locations and so it
respects the acceptance condition of A.

Conversely, let θ ∈ LcoB(A) and let us show that θ ∈ LB(Rank(A)). Let R = (T, `)
be an accepting run of A on θ. Now consider the tree R′ = (T, `′), where `′ is s.t.
`(ε) = (qin, 2n) and for all x ∈ T , `′(x) = (`(x), f(x)). Following properties P1 and
P2 of Lemma 10, R′ = (T, `′) is a run of Rank(A) over the timed word θ. Let π be a
branch of R′. Then, property P3 in Lemma 10 ensures that at some point, all the states
in π are labelled by the same odd rank. Thus, any branch of R′ visits infinitely often a
state in Q× [2n]odd, and Rank(A) is accepting. ut

Next, we show that the construction due to Miyano and Hayashi [MH84] to trans-
form an alternating Büchi automaton into a nondeterministic one can be easily adapted
to AECA with Büchi acceptance condition. Formally, given an AECA with Büchi ac-
ceptance condition A = 〈Q, qin, Σ, δ, α〉, we define a NECA MH(A) as follows. For
any σ ∈ Σ, for any q ∈ Q, let Φσq = {ψ ∈ Constr (CΣ) | δ(q, σ, ψ) is defined}. By
condition A1 of the definition of an AECA, Φσq is finite. We also define, for any σ ∈ Σ,
for any subset S ⊆ Q, the set of formulas ΨσS = {

∧
q∈S ψq | ψq ∈ Φσq }. Intuitively,

ΨσS contains all the conjunctions that contain exactly one conjunct from each set Φσq
(for q ∈ S). Finally, for S ⊆ Q, O ⊆ Q, σ ∈ Σ, ψ =

∧
q∈S ψq ∈ ΨσS , we let

P (S,O) = {(S′, O′) | S′ |=
∧
q∈S δ(q, σ, ψq), O

′ ⊆ S′, O′ |=
∧
q∈O δ(q, σ, ψq)} if

O 6= ∅, and P (S,∅) = {(S′, S′) | S′ |=
∧
q∈S δ(q, σ, ψq)}.

Then, we define MH(A) as the AECA
〈
2Q × 2Q, ({qin},∅), Σ, δ′, 2Q × {∅}

〉
with

Büchi acceptance condition where, for any (S,O) ∈ 2Q × 2Q, for any σ ∈ Σ, for any
ψ ∈ ΨσS : δ′((S,O), σ, ψ) =

∨
(S′,O′)∈P (S,O)(S

′, O′ \ α) (and δ′ is undefined other-
wise). Remark that, by conditions A1 and A2, ΨσS is a finite set, and for any valuation v,
there is exactly one ψ ∈ ΨσS s.t. v |= ψ. Hence, δ′ respects the definition of the transition
relation of an AECA. The next proposition proves the correctness of the construction.

Proposition 12. For all AECA A with Büchi condition: LB(MH(A)) = LB(A).

Proof. Assume A = 〈Q, qin, Σ, δ, α〉. Let θ be a timed word in LB(A) and R = 〈T, `〉
be an accepting run ofA over θ. Then, let ρ = ({qin},∅), (σ0, τ0), (S1, O1), (σ1, τ1), · · ·
be the sequence such that, for all i ∈ N: (i) Si = {q | ∃x ∈ T, |x| = i, `(x) = q} and
(ii) Oi = Si \ α if Oi−1 = ∅; Oi = {q | ∃x · c ∈ T, |x · c| = i, `(x · c) = q, `(x) ∈
Oi−1} ∩ (Q \ α) otherwise (with the convention that O0 = ∅). It is easy to see that, as
in the original construction of [MH84], ρ is an accepting run of MH(A) over θ.

Conversely, given a run ({qin},∅)(σ0, τ0)(S1, O1)(σ1, τ1)(S2, O2) · · · of MH(A),
we consider a labelled tree 〈T, `〉 s.t. (i) `(ε) = qin and (ii) for any x ∈ T : {`(x · i) |
i ∈ N} ⊆ S|x|+1 and {`(x · i) | i ∈ N} |= δ(`(x), σ|x|, ψ), where ψ is the unique
constraint s.t. δ(`(x), σ|x|, ψ) is defined and (θ, |x|) |= ψ. Clearly, R is an accepting
run tree of A over θ. ut

Applications Let us show how to apply these constructions to complement an NECA.
Given a NECA A = 〈Q, qin, Σ, δ, α〉 with Büchi acceptance condition, we first con-
struct its dual Ãwhich is thus a UECA with co-Büchi acceptance condition s.t. LcoB(Ã) =
TΣω \ LB(A). Then, thanks to Proposition 11 and Proposition 12, it easy to check that
MH(Rank(Ã)) is a NECA with Büchi condition s.t. LB(MH(Rank(Ã))) = TΣω \
LB(A).

This construction can be applied to solve the language inclusion and language uni-
versality problems, because LB(A) is universal iff TΣω \LB(A) is empty and LB(B) ⊆
LB(A) iff LB(B) ∩ (TΣω \ LB(A)) is empty.

Remark 13 (Time divergence). All the constructions presented above are valid if we
consider the time divergent semantics. Indeed, L(A)td ⊆ L(B)td if and only if (L(A)∩
L(B)) ∩ TΣω

td = ∅

Remark 14 (Efficient implementation). In [DR10], it is shown how to use subsumption
to implement efficient emptiness test for automata defined by the Miyano and Hayashi
construction without explicitly constructing them. Those methods can be readily ex-
tended to the case of event-clock automata.

4 Safraless algorithm for realizability

In this section, we study the realizability problem for timed specifications expressed
by UECA. We restrict to event-clock automata with history clocks only as the use of
prophecy clocks leads to undecidability [DGRR09]. To formalize the realizability prob-
lem in this context, we rely on the notion of timed game.

Timed games A timed game (TG for short) is a tuple 〈Σ1, Σ2,W 〉 where Σi (i = 1, 2)
is a finite alphabet for player i (with Σ1 ∩ Σ2 = ∅), and W ⊆ TΣω is a set of timed
words, called the objective of the game (for player 1).

A TG is played for infinitely many rounds. At each round i, player 1 first chooses
a delay t1i and a letter σ1

i ∈ Σ1. Then, player 2 chooses either to pass or to overtake
player 1 with a delay t2i ≤ t1i and a letter σ2

i ∈ Σ2. A play in a timed game is a timed
word (w, τ) s.t. for any i ≥ 0 either (i) player 2 has passed at round i, wi = σ1

i and
τi = τi−1 + t1i , or (ii) player 2 has overtaken player 1 at round i, wi = σ2

i and τi =
τi−1+t

2
i (with the convention that τ−1 = 0). A timed word θ is winning in 〈Σ1, Σ2,W 〉

iff θ ∈ W . A strategy for player 1 is a function π that associates to every finite prefix
of a timed word (w0, τ0) . . . (wk, τk) an element from Σ1 × R≥0. A play θ = (w, τ)
is consistent with strategy π for player 1 iff for every i ≥ 0, either player 1 has played
according to its strategy i.e., (wi, τi − τi−1) = π((w0, τ0) . . . (wi−1, τi−1)) or player 2
has overtaken the strategy of player 1 i.e., wi ∈ Σ2, and π((w0, τ0) . . . (wi−1, τi−1)) =
(σ, τ) with τ ≥ τi − τi−1. The outcome of a strategy π in a game G = 〈Σ1, Σ2,W 〉,
noted Outcome (G, π) is the set of all plays of G that are consistent with π. A strategy
π is winning iff Outcome (G, π) ⊆W .

The realizability problem asks, given a universal PastECA A with co-Büchi accep-
tance condition, whose alphabet Σ is partitioned into Σ1 and Σ2, if player 1 has a
winning strategy in G = 〈Σ1, Σ2, LcoB(A)〉.

To solve this problem without using Safra determinization, we show how to reduce
it to a timed safety objective via a strengthening of the winning objective using K-co-
Büchi acceptance condition. We state the main result of this section:

Theorem 15. Given a universal PastECAAwith co-Büchi acceptance condition, whose
alphabet Σ is partitioned into Σ1 and Σ2, player 1 has a winning strategy in GT =
〈Σ1, Σ2, LcoB(A)〉 iff he has a winning strategy in GTK = 〈Σ1, Σ2, LKcoB(A)〉, for any
K ≥ (2nn+1n! + n)× |Reg (HΣ , cmax) | where n is the number of locations in A.

To establish this result, we use several intermediary steps. First, we show that we can
associate a game with an ω-regular objective, played on untimed words, to any timed
game whose objective is defined by a UECA with co-Büchi acceptance condition.

Region games A region game is a tuple GR = 〈Σ1, Σ2, cmax ,W 〉 where Σ = Σ1 ∪
Σ2,Σ1∩Σ2 = ∅, cmax ∈ N,W is a set of infinite words on the alphabet (Σ1]Σ2)×
Reg (HΣ , cmax), called the objective of the game (for player 1).

A play of a region game is an infinite (untimed) word on the alphabet (Σ1 ∪Σ2)×
Reg (HΣ , cmax). The game is played for infinitely many rounds. In the initial round,
player 1 first chooses a letter σ1 ∈ Σ1. Then, either player 2 lets player 1 play and the
first letter of the play is (σ1, rin), or player 2 overtakes player 1 with a letter σ2 ∈ Σ2

and the first letter of the play is (σ2, rin). In all the subsequent rounds, and assuming
that the prefix of the current play is (σ0, r0), · · · (σk, rk), player 1 first chooses a pair
(σ1, r1) ∈ Σ1×Reg (HΣ , cmax) such that rk[←−xσk

:= 0] ≤t.s. r
1. Then, either player 2

lets player 1 play and the new prefix of the play is ρk+1 = ρk · (σ1, r1), or player 2
decides to overtake player 1 with a pair (σ2, r2) ∈ Σ2 × Reg (HΣ , cmax), respecting
rk[
←−xσk

:= 0] ≤t.s. r
2 ≤t.s. r

1. In this case, the new prefix of the play is ρk+1 =
ρk · (σ2, r2). A play ρ is winning in 〈Σ1, Σ2, cmax ,W 〉 iff ρ ∈ W . As for timed
games, a strategy for player 1 is a function πR that associates to every finite prefix
(w0, r0) . . . (wk, rk) an element (σ, r) ∈ Σ1 × Reg (HΣ , cmax) such that rk[←−−xwk

:=
0] ≤t.s. r. A play ρ = (σ0, rin)(σ1, r1) · · · is consistent with strategy π for player 1
iff for all i ≥ 0, either player 1 has played according to its strategy, i.e., (σi, ri) =
π((σ0, rin) . . . (σi−1, ri−1)) (with the convention that (σ−1, r−1) = ε), or player 2 has
overtaken the strategy of player 1 i.e., σi ∈ Σ2, π((σ0, rin) . . . (σi−1, ri−1)) = (σ, r)
and ri ≤t.s. r.

Remark 16. All plays of 〈Σ1, Σ2, cmax ,W 〉 are in LB(RegAut (HΣ , cmax)).

The outcome Outcome (G, π) of a strategy π on a region game G and winning
strategies are defined as usual. The next proposition shows how a timed game can be
reduced to a region game.

Proposition 17. Let A be a universal PastECA with maximal constant cmax . Player 1
has a winning strategy in the timed game GT = 〈Σ1, Σ2, LcoB(A)〉 iff he has a winning
strategy in the region game GR = 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉. Moreover, for any
K ∈ N, player 1 has a winning strategy in GT = 〈Σ1, Σ2, LKcoB(A)〉 iff he has a
winning strategy in GR = 〈Σ1, Σ2, cmax , LKcoB(Rg(A))〉.

Proposition 17 tells us that we can reduce the realizability problem of timed games
to that of region games. Next we show that region games can be won thanks to a finite
memory strategy. For that, we expose a reduction from region games to parity games.

Parity games A parity game is a tuple G = 〈Q,E, q0,Colours, λ〉 where Q = Q1]Q2

is the set of positions, partitioned into the player 1 and player 2 positions, E ⊆ Q×Q
is the set of edges, q0 ∈ Q is the initial position, and λ : Q 7→ Colours is the coloring
function.

A play of a parity game G = 〈Q,E, q0,Colours, λ〉 is an infinite sequence ρ =
q0q1 · · · qj · · · of positions s.t. for any j ≥ 0: (qj , qj+1) ∈ E. Given a play ρ =
q0q1 · · · qj · · · , we denote by Inf (ρ) the set of positions that appear infinitely often in ρ,
and by Par (ρ) the value max{λ(q) | q ∈ Inf (ρ)}. A play ρ is winning for player 1 iff
Par (ρ) is even. A strategy for player 1 inG is a function π : Q∗Q1 → Q that associates,
to each finite prefix ρ of play ending in a Player 1 state Last(ρ), a successor position
π(ρ) s.t. (Last(ρ), π(ρ)) ∈ E. Given a parity game G and a strategy π for player 1, we

say that a play ρ = q0q1 · · · qj · · · of G is consistent with π iff for j ≥ 0: qj ∈ Q1

implies that qj+1 = π(q0 · · · qj). We denote by Outcome (G, π) the set of plays that
are consistent with π. A strategy π is winning iff every play ρ ∈ Outcome (G, π) is
winning.

It is well-known that parity games admit memoryless strategies. More precisely,
if there exists a winning strategy for player 1 in a parity game G, then there exists a
winning strategy π for player 1 s.t. for any pair of prefixes ρ and ρ′: Last(ρ) = Last(ρ′)
implies π(ρ) = π(ρ′). A memoryless strategy π can thus be finitely represented by a
function fπ : Q1 → Q, where, for any q ∈ Q1, fπ(q) is the (unique) position q′ s.t. for
any prefix ρ = q0 · · · q, π(ρ) = q′. In the sequel we often abuse notations and confuse
fπ with π when dealing with memoryless strategies in parity games.

Let us show how to reduce the region game 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉 to a par-

ity game. First consider the NWA R̃g(A) that dualizes Rg(A) and such that LB(R̃g(A)) =
Σω \ LcoB(Rg(A)). Then, using Piterman’s construction [Pit07], we can obtain a de-

terministic parity automaton D̃ such that LP(D̃) = LB(R̃g(A)), and by complementing
D̃, we obtain a deterministic (and complete) parity automaton D such that LP(D) =
LcoB(Rg(A)). We use this automaton and the region automaton RegAut (HΣ , cmax) as
a basis for the construction of the parity game.

A play in the parity game simulates runs over words in (Σ × Reg (HΣ , cmax))ω

of both D =
〈
QD, qDin, Σ × Reg (HΣ , cmax) , δD, αD

〉
and RegAut (HΣ , cmax) =〈

QR, qRin, Σ
R, δR, αR

〉
. Formally, GD =

〈
qGin, Q

G, EG,Colours, λG
〉
, where the posi-

tions of player 1 are QG1 = (QD × Reg (HΣ , cmax)), and the positions of player 2 are
QG2 = (QD × Reg (HΣ , cmax)) × (Σ1 × Reg (HΣ , cmax)). Intuitively, (q, r) ∈ QG1
means that the simulated runs are currently in the states q and r of respectively D and
RegAut (HΣ , cmax). From a position in QG1 , player 1 can go to a position memoriz-
ing the current states in D and RegAut (HΣ , cmax), as well as the next move accord-
ing to player 1’s strategy. Thus, (q, r, σ1, r1) ∈ QG2 means that we are in the states q
and r in the automata, and that (σ1, r1) is the letter proposed by player 1. Then, from
(q, r, σ1, r1), player 2 chooses either to let player 1 play, or decides to overtake him. In
the former case, the game moves a position (q′, r′) where q′ and r′ are the new states
in D and RegAut (HΣ , cmax) after a transition on (σ1, r1). In the latter case (over-
take player 1), the game moves to a position (q′′, r′′), assuming there are σ2 ∈ Σ2,
r2 ≤t.s. r

1 such that q′′ and r′′ are the new states of D and RegAut (HΣ , cmax) after a
transition on (σ2, r2). These moves are formalized by the set of edges EG = EG1]EG2
where:

EG1 = {
(
(q, r), (q, r, σ1, r1)

)
| σ1 ∈ Σ1, δ

R(r, (σ1, r1)) 6= ⊥}
EG2 = {

(
(q, r, σ1, r1), (q′, r′)

)
| (q′, r′) = (δD(q, (σ1, r1)), δR(r, (σ1, r1))}

∪
{(

(q, r, σ1, r1), (q′, r′)
) ∣∣∣∣∃σ2 ∈ Σ2, r

2 ≤t.s. r
1, δR(r, (σ2, r2)) 6= ⊥, and

(q′, r′) = (δD(q, (σ2, r2)), δR(r, (σ2, r2)))

}
Intuitively, player 1 chooses its next letter inΣ1 and a region. The definition ofEG1 uses
transitions of RegAut (HΣ , cmax) and hence enforces the fact that player 1 can only
propose to go to a region that is a time successor of the current region, and thus respects
the rules of the region game. Symmetrically, player 2 can either let player 1 play, or
play a letter from Σ2 with a region which is a time predecessor of the region proposed

by player 1. Again, the automatonD being complete, player 2 can play any letter inΣ2,
but he can only play in regions that are time successors of the current region. The initial
position is qGin = (qDin, rin). Finally, the labelling of the positions reflects the colouring
of the states in D: λG(q, r) = λG(q, r, σ1, r1) = αD(q). Hence, a play in the parity
game is winning for player 1 if and only if the word simulated is accepted by D. The
next proposition shows the relationship betweenGR and the corresponding parity game
GD.

Proposition 18. Player 1 has a winning strategy in the region game GR if and only if
he has a winning strategy in the corresponding parity game GD.

Because parity games admit memoryless strategies, and thanks to Proposition 18,
we can deduce a bound on the memory needed to win a region game whose objective is
given by LcoB(Rg(A)) for a universal PastECA A.

Lemma 19. Let A be a universal PastECA with n locations and maximal constant
cmax . If player 1 has a winning strategy in GR = 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉, then
he has a finite-state strategy, represented by a deterministic finite state transition system
with at most m states, where m = (2nnn! + 1)× |Reg (HΣ , cmax) |.

Proof. If player 1 has a winning strategy in 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉, then by
Proposition 18, and by the memoryless property of parity games, he has a memoryless
winning strategy in the parity game GD, πG : QG1 → QG2 . From this memoryless
strategy, one can define a finite-state strategy for player 1 in the original region game.
We first define π : QG1 → Σ1 × Reg (HΣ , cmax) as follows. For all q ∈ QD, r ∈
Reg (HΣ , cmax): π(q, r) = (σ1, r1) iff πG(q, r) = (q, r, σ1, r1). Then, we let Aπ
be the finite transition system

〈
QG1 , q

G
in, Σ × Reg (HΣ , cmax) , δπ

〉
where, for all q =

(q1, r1) ∈ QG1 , (σ, r) ∈ Σ × Reg (HΣ , cmax): δπ(q, (σ, r)) = (q′1, r
′
1) iff (i) q′1 =

δD(q1, (σ, r)) and (ii) r′1 = δR(r1, (σ, r))) and (iii) either π(q) = (σ, r), or π(q) =
(σ′, r′) and σ ∈ Σ2, and r ≤t.s. r

′. In the other cases, δ is undefined.
From π and Aπ , we can define the strategy πR to be played in the region game

as follows. Let ∆ : QG1 × (Σ × Reg (HΣ , cmax))∗ → QG1 ∪ {⊥} be the function
s.t. ∆(q, w) is the location reached in Aπ after reading the finite word w from lo-
cation q, or ⊥ if w cannot be read from q. Then, πR is defined as follows. For any
ρR = (σ1, r1) · · · (σn, rn), we let πR(ρR) = π(∆(qGin, ρ

R)) if ∆(qGin, ρ
R) 6= ⊥;

otherwise: πR(ρR) = (σ, rn) where σ is any letter in Σ1. Remark that, by defini-
tion of π and Aπ , the proposed region is always a time successor of the last region
of the play, so the strategy is correctly defined. Let us show that πR is winning: let
ρR = (σ0, r0) · · · (σj , rj) · · · be a play consistent with πR. By definition of πR, there
is a run R = qGin, (σ0, r0), q

G
1 , · · · , qGj , (σj , rj), · · · of Aπ over ρR. It is easy to see that

one can construct from this run a play in GD that is consistent with πG. Then, since πG
is winning, ρR ∈ LP(D) = LcoB(Rg(A)). Since this is true for any run that is consistent
with πR, it is a winning strategy.

Finally, observe that the number of states of Aπ is |QD| × |Reg (HΣ , cmax) |. By
the result of [Pit07], |QD̃| = 2nnn!. Then |QD| = 2nnn! + 1, and this establishes the
bound m = (2nnn! + 1)× |Reg (HΣ , cmax) |. ut

Thanks to Lemma 19, we can now prove that we can strengthen the co-Büchi con-
dition of the objective of the region game, to a K-co-Büchi condition:

Proposition 20. Let A be a universal PastECA with co-Büchi acceptance condition,
n locations and maximal constant cmax . Then, player 1 has a winning strategy in
GR = 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉 if and only if he has a winning strategy in GRK =
〈Σ1, Σ2, cmax , LKcoB(Rg(A))〉, with K = (2nn+1n! + n)× |Reg (HΣ , cmax) |.

Proof. First, observe that, since LKcoB(Rg(A)) ⊆ LcoB(Rg(A)), any winning strategy
for player 1 in GRK , is winning in GR.

Conversely, suppose player 1 has a winning strategy in GR. Then, by Lemma 19,
there is a strategy π and a transition systemAπ = 〈Qπ, qπin, Σ × Reg (HΣ , cmax) , δπ〉
withm locations (wherem = (2nnn!+1)×|Reg (HΣ , cmax) |) s.t. Outcome (GR, π) =
L(Aπ) and L(Aπ) ⊆ LcoB(Rg(A)). Let Rg(A) = 〈Q, qin, Σ × Reg (HΣ , cmax) , δ, α〉,
and let Aπ × Rg(A) = 〈Qπ ×Q, (qπin, qin), Σ × Reg (HΣ , cmax) , δ′〉 be the transi-
tion system s.t. for all (qπ, q) ∈ Qπ × Q, for all (σ, r) ∈ Σ × Reg (HΣ , cmax):
(qπ2 , q2) ∈ δ′((qπ1 , q1), (σ, r)) iff δπ(qπ1 , (σ, r)) = qπ2 and q2 appears as a conjunct in
δ(q1, (σ, r)) (recall that Rg(A) is universal). Clearly, each run ofAπ×Rg(A) simulates
a run of Aπ , together with a branch that has to appear in a run of Rg(A).

Then, let us show that there is, in Aπ × Rg(A), no cycle that contains a location
from Qπ × α. This is established by contradiction. Assume such a cycle exists, and let
(qπin, qin)(q

π
1 , q1)(q

π
2 , q2) · · · (qπj , qj) · · · be an infinite run of Aπ × Rg(A) that visits a

location from Qπ×α infinitely often. Moreover, let w be the infinite word labeling this
run. Then, clearly, qπinq

π
1 q

π
2 · · · qπj · · · is a run of Aπ that accepts w. On the other hand,

the run of Rg(A) on w necessarily contains a branch labelled by qinq1q2 · · · qj · · · .
Since this branch visits α infinitely often, Rg(A) rejects w because the acceptance con-
dition α of Rg(A) is co-Büchi. This contradicts the fact that L(Aπ) ⊆ LcoB(Rg(A)).

Then, any word accepted by Aπ visits at most m × n times an accepting state of
Rg(A), and L(Aπ) ⊆ LKcoB(Rg(A)), with K = (2nnn! + 1) × |Reg (HΣ , cmax) | ×
n = (2nn+1n! + n) × |Reg (HΣ , cmax) |. Thus, player 1 has a winning strategy in
〈Σ1, Σ2, cmax , LKcoB(Rg(A))〉 too. ut

Thanks to these results, we can now prove Theorem 15:
Proof of Theorem 15. Let K ≥ (2nn+1n! + n) × |Reg (HΣ , cmax) |. If there is a
winning strategy for player 1 inGT

K
then obviously there is a winning strategy for player

1 in GT . Conversely, suppose there is a winning strategy for player 1 in GT . Then, by
Proposition 17, he has a winning strategy in GR = 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉, and
by Proposition 20, he has a winning strategy in GRK = 〈Σ1, Σ2, cmax , LKcoB(Rg(A))〉,
with K = (2nn+1n! + n)× |Reg (HΣ , cmax) |. By applying again Proposition 17, he
has a winning strategy in the timed game GTK = 〈Σ1, Σ2, LKcoB(A)〉. Since K ≤ K,
LKcoB(A) ⊆ LKcoB(A). Hence player 1 has a winning strategy in GT

K
. ut

Solving games defined by UECA with K-co-Büchi acceptance condition For solving
those games, we show how to build, from a UECA A = 〈Q, qin, Σ, δ, α〉 with K-
co-Büchi acceptance condition, a DECA with 0-co-Büchi acceptance condition which
is denoted DetK(A), that accepts the same timed language. The construction of this
DECA is based on a generalization of the subset construction. When applied to an
untimed universal automatonAwith set of locationsQ, the classical subset construction
consists in building a new automaton A′ whose locations are subsets of Q. Thus, each
location of A′ encodes the set of locations of A that are active at each level of the run
tree. In the case of K-co-Büchi automata, one needs to remember how many times

accepting states have been visited on the branches that lead to each active location.
As a consequence, the locations of the subset construction should be sets of the form
{(q1, n1), . . . , (q`, n`)}, where each qi is an active location that has been reached by a
branch visiting exactly ni accepting states. However, in this case, the set of locations in
the subset construction is not finite anymore. This can be avoided by observing that we
can keep only the maximal number of visits (up toK+1) to accepting locations among
all the branches that reach q. So, the states of the deterministic automaton are functions
F : Q 7→ {−1, 0, 1, . . . ,K,K + 1}, where F (q) = −1 means that q is not currently
active, F (q) = k with 0 ≤ k ≤ K means that q is currently active and that the branch
with maximal number of visits to α that leads to q has visited accepting states k times,
and F (q) = K + 1 means that q is currently active and that the branch with maximal
numbers of visits to α that leads to q has visited accepting states more than K times. In
this last case, the timed word which is currently read has to be rejected, because of the
K-co-Büchi condition.

Formally, DetK(A) = 〈F , F0, Σ,∆, αK〉 where the following holds. F = {F |
F : Q → {−1, 0, 1, . . . ,K,K + 1}}. If we let (q ∈ α) be the function that returns 1
if q ∈ α and 0 otherwise, F0 ∈ F is such that F0(q0) = (q0 ∈ α) and F0(q) = −1
for all q ∈ Q and q 6= q0. Now, ∆(F, σ, ψ) is defined if there exists a function h :
{q ∈ Q | F (q) ≥ 0} → Constr (PΣ) s.t. (i) ψ is equal to

∧
q|F (q)≥0 h(q) and this

formula is satisfiable, (ii) for all q ∈ Q such that F (q) ≥ 0, δ(q, σ, h(q)) is defined. In
this case, ∆(q, σ, ψ) = F ′ where F ′ is the counting function such that for all q ∈ Q,
F ′(q) equals: max

{
min

(
K +1, F (p)+ (q ∈ α)

) ∣∣∣ q ∈ δ(p, σ, h(p))∧F (p) 6= −1}.
Finally, αK = {F ∈ F | ∃q ∈ Q · F (q) = K + 1}.

Proposition 21. For all UECA A, for all K ∈ N: LKcoB(A) = L0coB(DetK(A)).

From this deterministic automaton, it is now easy to construct a timed safety game
for solving the realizability problem. We do that in the next section when solving the
realizability problem of a real-time extension of the logic LTL.

Remark 22 (Time divergence). Handling time divergence in timed games requires tech-
niques that are more involved than the ones suggested in previous sections. In the timed
games considered in this section, if the set of winning plays only contains divergent
timed words, then clearly player 1 can not win the game, no matter what the objective
is. Indeed, as player 2 can always overtake the action proposed by player 1, he can eas-
ily block time and ensure that the output of the game is a convergent timed word. To
avoid such pathological behaviors, the specification should declare player 1 winning in
those cases. In [dAFH+03], the interested reader will find an extensive discussion on
how to decide winner in the presence of time convergence.

5 Application: realizability of LTLC

The LTLC logic The logic LTLC we consider here is a fragment of the Event Clock
Logic (ECL for short) [Ras99,RS98,HRS98]. ECL is an extension of LTL with two real-
time operators: the history operator CI ϕ expressing that ϕ was true for the last time t
time units ago for some t ∈ I , and the prediction operatorBI ϕ expressing that the next
time ϕ will be true is in t time units for some t ∈ I (where I is an interval). LTLC is
obtained by disallowing prediction operators. The realizability problem for ECL is as

in the previous section with the exception that the set of winning plays is defined by
an ECL formula instead of a UECA. The realizability problem has recently [DGRR09]
been shown 2EXPTIME-complete for LTLC but undecidable3 for the full ECL. In this
paper, we further restrict ourselves to the case where expressions of the form CI ϕ
appear with ϕ = a only, where a is some alphabet letter. Remark that this last restriction
is not necessary to obtain decidability [DGRR09], but it makes the presentation easier.
Our results carry on to the more general case.

Formally, given an alphabet Σ, the syntax of LTLC is as follows (with a ∈ Σ):

ψ ∈ LTLC ::= a | ¬ψ | ψ ∨ ψ | ψ S ψ | ψ U ψ | CI a

The models of an LTLC formula are infinite timed words. A timed word θ = (w, τ)
satisfies a formula ϕ ∈ LTLC at position i ∈ N, written θ, i |= ϕ, according to the
following rules:

– if ϕ = a, then wi = a;
– if ϕ = ¬ϕ1, then θ, i 6|= ϕ1;
– if ϕ = ϕ1 ∨ ϕ2, then θ, i |= ϕ1 or θ, i |= ϕ2;
– if ϕ = ϕ1 S ϕ2, then there exists 0 ≤ j < i such that θ, j |= ϕ2 and for all
j < k < i, θ, k |= ϕ1;

– if ϕ = ϕ1 U ϕ2, then there exists j > i such that θ, j |= ϕ2 and for all i < k < j,
θ, k |= ϕ1;

– if ϕ = CI a, then there exists 0 ≤ j < i such that wj = a, τi − τj ∈ I , and for all
j < k < i, wk 6= a;

When θ, 0 |= ϕ, we simply write θ |= ϕ and we say that θ satisfies ϕ. We denote
by [[ϕ]] the set {θ | θ |= ϕ} of models of ϕ. Finally, we define the following shortcuts:
true ≡ a ∨ ¬a with a ∈ Σ, false ≡ ¬true, ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 ≡
¬ϕ1 ∨ ϕ2, ♦ϕ ≡ trueU ϕ, �ϕ ≡ ϕ ∧ ¬♦(¬ϕ), ©ϕ ≡ falseU ϕ, 	ϕ ≡ falseS ϕ,
and ♦-ϕ ≡ trueS ϕ. We also freely use notations like ≥x to denote the interval [x,∞),
or <x for [0, x), etc. in the C operator.

Let Σ = Σ1]Σ2 be an alphabet that is partitioned into a set Σ1 of player 1 events
(controllable events), and Σ2 of player 2 events (uncontrollable events), and let ϕ be
an LTLC formula on Σ. Then, ϕ is realizable iff Player 1 has a winning strategy in the
TG 〈Σ1, Σ2, [[ϕ]]〉. The realizability problem for LTLC asks, given an LTLC formula ϕ
whether ϕ is realizable.

An efficient algorithm to solve realizability of LTLC Let us now show how to exploit
the results from the previous section to obtain an incremental algorithmic schema that
solves the realizability problem of LTLC. From an LTLC formula ϕ, we build, using
standard techniques [Ras99,RS98], a NECA with Büchi acceptance condition A¬ϕ s.t.
LB(A¬ϕ) = [[¬ϕ]]. Then, we consider its dual Ã¬ϕ, which is thus a UECA with co-
Büchi acceptance condition s.t. LcoB(Ã¬ϕ) = [[ϕ]]. As a consequence, solving the re-
alizability problem for ϕ now amounts to finding a winning strategy for player 1 in
the timed game

〈
Σ1, Σ2, LcoB(Ã¬ϕ)

〉
. Theorem 15 tells us that we can reduce this to

finding a winning strategy in a timed game whose objective is given by an automaton

3 Note that the undecidability proof has been made for a slightly different definition of timed
games, but the proof can be adapted to the definition we rely on in the present paper.

with K-co-Büchi acceptance condition (for a precise value of K). In this game, the
objective of player 1 is thus to avoid visiting accepting states too often (no more than
K times), and this is thus a safety condition. The automaton DetK(Ã¬ϕ) can be used to
define a timed safety game. Such games can be solved by tools such as UPPAAL TIGA
[BCD+07].

The drawback of this approach is that the value K is potentially intractable: it is
doubly-exponential in the size of ϕ. As a consequence, DetK(Ã¬ϕ) and its underlying
timed safety game are unmanageably large. To circumvent this difficulty, we adopt an
incremental approach. Instead of solving the game underlying DetK(Ã¬ϕ), we solve
iteratively the games underlying Deti(Ã¬ϕ) for increasing values of i = 0, 1, As
soon as player 1 can win a game for some i, we can stop and conclude that ϕ is realiz-
able. Indeed, L0coB(Deti(Ã¬ϕ)) = LicoB(Ã¬ϕ) by Proposition 21, and LicoB(Ã¬ϕ) ⊆
LKcoB(Ã¬ϕ) ⊆ [[ϕ]]. In other words, realizability of L0coB(Deti(Ã¬ϕ)) implies realiz-
ability ofϕ. Unfortunately, if ϕ is not realizable, this approach fails to avoid considering
the large theoretical bound K. To circumvent this second difficulty, we use the prop-
erty that our games are determined: ϕ is not realizable by player 1 iff ¬ϕ is realizable
by player 2. So in practice, we execute two instances of our incremental algorithm in
parallel and stop whenever one of the two is conclusive. The details of this incremental
approach are given in [FJR09], and it is experimentally shown there, in the case of LTL
specifications, that the values that one needs to consider for i are usually very small.

To sum up, our incremental algorithm works as follows. Fix an LTLC formulaϕ, and
set i to 0. Next, if player 1 has a winning strategy in

〈
Σ1, Σ2, L0coB(Deti(Ã¬ϕ))

〉
, then

ϕ is realizable; else if player 2 has a winning strategy in
〈
Σ1, Σ2, L0coB(Deti(Ãϕ))

〉
,

then ϕ is not realizable; else, increment i by 1 and iterate.

Experiments with UPPAAL TIGA We have thus reduced the realizability problem of
LTLC to solving a sequence of TG of the form 〈Σ1, Σ2, L0coB(A)〉, whereA is a DECA.
Solving each of these games amounts to solving a safety game played in an arena which
is defined by A (where the edges are partitioned according to Σ1 and Σ2). In practice,
this can be done using UPPAAL TIGA [BCD+07], as we are about to show thanks to
a simple yet realistic example. Our example consists of a system where a controller
monitors an input line that can be in two states: high or low. The state of the input line
is controlled by the environment, thanks to the actions up and down, that respectively
change the state from low to high and high to low. Changes in the state of the input
line might represent requests that the controller has to grant. More precisely, whenever
consecutive up and down events occur separated by at least two time units, the controller
has to issue a grant after the corresponding down but before the next up. Moreover,
successive grants have to be at least three time units apart, and up and down events
have to be separated by at least one time unit. This informal requirement is captured by
the LTLC formula ϕ ≡ Hyp → Req1 ∧ Req2 on Σ = Σ1] Σ2 where Σ1 = {grant},

1 2 3 4 5 6 7 8

up down up updown

input
hi

lo
grants no grant allowed

grant

1 2 3 4 5 6 7 8

up down up updown

input
hi

lo
grants no grant allowed

grant

Fig. 1. Two examples of execution of the systems. The state of the input is represented on top,
grants are represented at the bottom. Each dot represents a grant event. Thick lines represent the
period during which the controller cannot produce any grant because of Req2.

Σ2 = {up, down} and:

Hyp ≡ �
(
up →

(
¬down U(down ∧C≥1 up)

))
∧

�
(
down →

(
¬up U(up ∧C≥1 down)

))
Req1 ≡ �

(
(down ∧C>2 up)→ (¬up U grant)

)
Req2 ≡ �(grant → ¬C<3 grant)

Remark that ϕ does not forbid the controller from producing grant events that have
not been requested by the environment. However, a controller producing grants too
often might hinder itself because Req2 requires each pair of grants to be separated from
each other by at least 3 time units. Fig. 1 illustrates this by showing two prefixes of
executions. The left part shows a prefix that respects ϕ. The right part of the figure
shows a case where the controller has issued an unnecessary grant that prevents him
from granting the request that appears with the down event at time 5.75.

Let us now apply the algorithmic schema presented above to this example. We first
build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-
ton has two parts, identified by the names of the states: the top part (corresponding to
the states 1, . . . 7) accepts the models of [[¬(Hyp→ Req1)]] and the lower part (states
1, 2, . . . , 6) accepts the models of [[¬(Hyp→ Req2)]], so the whole automaton accepts
exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi
acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above,
for i = 1. In order to ease the presentation, we have applied this construction separately
on the two parts of the automaton, to obtainG1 andG2, given in Fig. 3. These automata
are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are
plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,
down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA
uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage
the reset of those clocks. Finally, observe that we have used the synchronisation mech-
anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous
product of these two automata (which corresponds to the counting function construction
applied to A¬ϕ).

We provided this model to UPPAAL TIGA together with the synthesis objective
control: A[not BadState], where BadState is true iff one of the automata
reaches one of its Bad locations (that corresponds to one of the counters being > 1).
In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means

1

2

3

4

5

6

7

8

grant

grant

grant grant

grantgrant ,up, down

down

up

up
d ≥ 1down

u ≥ 1

down , u > 2

grantup
d ≥ 1

down
u ≥ 1

up, d ≥ 1

up
d ≥ 1

down
u ≥ 1

grant

2

3

4

5

6

grant

grant

grant

grant

grant

down

up

grant , g < 3

up
d ≥ 1

down
u ≥ 1

grant , g < 3

grant , g < 3

up
d ≥ 1

down
u ≥ 1

up

down

1
Fig. 2. The NECA A¬ϕ

that player 1 is capable of ensuring that, on any branch of any run of Ã¬ϕ, accepting
states occur at most one time. This strategy thus ensures that all the plays are accepted
by Ã¬ϕ, and so they all satisfy ϕ. Hence, ϕ is realizable. This example shows that,
although an exponentially-large K might be needed to prove realizability of an LTLC
formula, in practice, small values of i (here, 1) might be sufficient. A larger set of
experiments (on large LTL formulas) exploiting the same techniques can be found in
[FJR09]. These experiments confirm that small values of i are sufficient in practice.

Remark 23 (Time divergence). In this example, time divergence is not an issue. Indeed,
the objective is such that, on the one hand, player 1 wins the game if player 2 proposes
to play up followed by down, or down followed by up without waiting at least one time
unit (because of Hyp), and, on the other hand, player 1 violates Req2 if he plays two
grant actions too close in time (less than 3 t.u. apart).

References

[AD94] R. Alur and D.L. Dill. A Theory of Timed Automata. TCS, 126(2), 1994.
[AFH99] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: a determinizable class

of timed automata. TCS, 211(1-2), 1999.
[BCD+07] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime. Uppaal-

tiga: Time for playing games! In CAV07, LNCS 4590, Springer.
[dAFH+03] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The

element of surprise in timed games. In CONCUR03, LNCS 2761, Springer.
[DGRR09] L. Doyen, G. Geeraerts, J.-F. Raskin, and J. Reichert. Realizability of real-time

logics. In FORMATS09, LNCS 5813, Springer.
[DR10] L. Doyen and J.-F. Raskin. Antichain algorithms for finite automata. In TACAS10,

LNCS 6015, Springer.

grant!

up!

grant!

grant!

g:=0

up!

down!

d:=0

down!

up!down!

grant!

u>=1 and u<=2

Q1

d>=1

d>=1

Bad

Q2

Q4

Q3

u:=0

g:=0g:=0

g:=0

d:=0
u>2

u:=0

u:=0

d:=0

grant?grant?

up?
down?

grant?

up?

grant?

down?

grant?
u := 0

u:=0

d := 0

g:=0

grant?
grant?

d:=0

g:=0

g := 0

g:=0

grant?

down?

up?

grant?

grant?grant?

up?

grant?

down?

g<3

d>=1

g<3

Q1
Q2

g<3

u>=1

g>=3 g>=3
g<3

Bad2Bad1 Bad3 Bad4

Q3

Q4
Q7

Q5

Q6

g:=0

g:=0g:=0

u:=0
d:=0

g:=0

g:=0

g:=0
u:=0

g:=0

d:=0g>=3

g >= 3

d >= 1

g<3

g:=0

g>=3

u >=1

g<3

g >= 3

Fig. 3. The DECA obtained from the two parts of A¬ϕ, when applying the counting functions
construction for i = 1. Unreachable states, as well as transitions to the state F with F (q) = −1
for any q are not shown.

[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy. In
FCS91, IEEE.

[FJR09] E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for ltl realizability. In
CAV09, LNCS 5643, Springer.

[HRS98] T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time languages.
In ICALP98, LNCS 1443, Springer.

[KV01] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. ACM
Trans. Comput. Log., 2(3), 2001.

[KV05] O. Kupferman and M. Y. Vardi. Safraless decision procedures. In FOCS05, IEEE.
[MH84] S. Miyano and T. Hayashi. Alternating finite automata on ω-words. TCS, 32, 1984.
[Pit07] N. Piterman. From nondeterministic Büchi and Streett automata to deterministic

parity automata. LMCS, 3(3), 2007.
[Ras99] J.-F. Raskin. Logics, Automata and Classical Theories for Deciding Real Time. PhD

thesis, FUNDP (Belgium), 1999.
[RS98] J.-F. Raskin and P.-Y. Schobbens. The logic of event clocks: decidability, complexity

and expressiveness. Automatica, 34(3), 1998.
[Saf88] S. Safra. On the complexity of ω-automata. In FOCS88, IEEE.
[SF07] S. Schewe and B. Finkbeiner. Bounded synthesis. In ATVA07, LNCS 4762, Springer.

