
  

  
Abstract—Using an Altera Cyclone kit with NIOS II 

processor, we show how reconfigurable computing can be 

used to introduce many optimizing issues of image processing 

and media applications together with basic notions: replacing 

software functions by hardware operators, customizing 

instructions, defining and using SIMD instructions. This 

approach can be used both for EE and CS students at 

undergraduate or graduate levels. Teaching can be organized 

as an introduction with a couple of lectures and labs within a 

computer organization, reconfigurable computing or image 

processing course or it can be extended as a semester “self-

contained” course on “Image Processing with Reconfigurable 

Computing”. 

 
Index Terms— SIMD, customized instructions, FPGA soft-

cores, image processing.  

 

I. INTRODUCTION 

This paper is based on lectures and labs in “advanced 

computer architecture” for fourth year undergraduate 

students in the Computer Sciences department of Paris Sud 

University. These students have previously had basic 

courses in “Logic design” and “Computer architecture and 

Organization”, but have no knowledge of hardware 

description language and image processing. The 

“Advanced Computer Architecture” course focuses on 

program optimizations according to architectural features 

of the computing systems for the different classes of 

applications including the embedded systems. 

The Altera NIOS Development kit (Cyclone edition) 

includes the NIOS soft-core for which customized 

instructions can be defined [1]. Custom logic can be added 

in parallel to the 32-bit processor ALU to customize 
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different types of instructions, as shown in Fig. 1. 

Combinational hardware (single cycle instruction) is the 

simplest approach to introduce first. The customization of 

instruction is the basic technique that is used, first to 

replace software C functions by customized hardware 

instructions, then by defining and introducing SIMD 

instructions for low level image processing. Simple 

examples are used to introduce the SIMD concept and the 

main issues of SIMD programming: data formats and data 

handling for parallel computation. 

 

 
 

Fig. 1.  Customizing instructions for the NIOS II processor 

 

In this paper, we first introduce the hardware and 

software environments that are used, and the implemented 

image processing algorithms: two 3x3 image convolutions. 

Then, we present the different steps that are followed in the 

optimization procedure using customized instructions and 

the corresponding results. Possible extensions are then 

presented. 

II.  THE TEACHING ENVIRONMENT 

We use the Altera NIOS development kit (Cyclone 

Edition) which includes the EP1C20F400C7 FPGA device. 

In the Labs, we use the NIOS II/f version of the processor, 
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which main features are summarized in Table I. Processor 

clock frequency is 50-MHz. For parameterized features, we 

mention the cache sizes that we used in the labs. All 

information on the device and processor features can be 

found in [2].  

All the programs that we considered have been compiled 

with the Altera Integrated Development Environment 

(IDE) [3], which uses the GCC tool chain. –O2 or –O3 

option has been used in release mode. Execution times 

have been measured with the high_res_timer that provides 

the number of processor clock cycles for the execution 

time. As we use different image sizes, the results are 

presented with the Cycle per Pixel metric, which is the total 

number of clock cycles divided by the number of pixels. 

For each program, the execution time has been measured at 

least 5 times and we have taken the average value. 

During the different lab experiments, students must go 

through and learn every hardware and software steps that 

are needed before being able to execute their program on 

the FPGA device. They must design the custom logic to 

implement every customized instruction using VHDL (or 

Verilog) description, compile and test it using the Quartus 

software. Using the SOPC builder, they must choose and 

configure one NIOS version, add the customized 

instructions and generate the system (Verilog/VHDL files 

for the overall system). They must finally compile this 

system. Similarly, they learn how to use the Integrated 

Development Environment to write the different C/C++ 

versions of their programs and they learn how to measure 

execution times on the hardware board by using the 

“high_resolution_timer”. All these steps are typical on the 

hardware and software issues when using soft-cores in 

FPGA boards. We now focus on the original aspects: using 

customized instructions to teach SIMD computing and 

image and media processing. 

III. A FIRST CONVOLUTION KERNEL WITHOUT ARITHMETIC 

COMPUTATION: THE MIN FUNCTION  

We consider NxN images for each pixel corresponds to a 

byte (8-bit gray levels) to which we apply 3x3 filters. The 

first one is the Min3x3() function that replaces the center 

pixel in a neighborhood with the minimum value in that 

neighborhood for each 3x3 neighborhood in the image. 

The initial C program uses a C Min function shown in 

Fig. 2. In the second version, we replace the C Min 

function by a customized MIN32 instruction that delivers 

the min value of two 32-bit unsigned numbers. As a 32-bit 

RISC, the processor zero-extends the pixel “unsigned char” 

values. The VHDL code for the MIN32 function is trivial, 

even for novice students having no (or a minimal) 

knowledge of VHDL language. 

 

unsigned char min (unsigned char a, unsigned 

char b) 

{if (a <b) return a; else return b;} 
 

Fig. 2.  C Min function 

 

In the third version, we customize a MIN_SIMD 

instruction that computes the MIN of each corresponding 

byte of two 4-byte words, as shown in Fig 3. Each 4-byte 

word contains 4 consecutive pixel values. This simple 

example raises one significant SIMD issue: some 

supplementary data handling instructions to correctly align 

the data before SIMD operations are introduced. The 

processor loads (and stores) 32-bit words, which means 4 

pixel values with memory accesses aligned on word 

boundaries. But 3x3 filters mean that for any pixel (byte) 

on a line, the two neighbor pixels are needed. As unaligned 

word accesses are prohibited, shift byte right and left 

instructions are needed that access to two consecutive 4-

byte words and generate the words with pixel values (j+2, 

j+1, j, j-1) and (j+4, j+3, j+2, j+1) when the aligned 

accessed word contains (j+3, j+2, j+1 and j) pixel values. 

These instructions are shown in Fig. 4.  
 

a3 a2 a1 a0

b3 b2 b1 b0

min

s3 s2 s1 s0

min min min

 
 

Fig. 3.  SIMD Min customized instruction 
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Fig. 4.  Shift byte left and Shift byte right SIMD instructions 

Table II presents the execution times for the different 

versions according to the NxN image size. The 32-bit Min 

TABLE I 

NIOS II/F PROCESSOR FEATURES 

Fixed features Parameterized features 

32-bit RISC processor 4 KB instruction cache 

Branch prediction 2 KB data cache 

Dynamic branch predictor  

Barrel shifter  
. 



  

customized instruction is more than two times faster than 

the corresponding C function. The SIMD version, which 

uses both the 4x8 Min SIMD instructions and the different 

alignment instructions (SBL and SBR) are 2.9 times faster 

than the corresponding scalar version while the ideal speed-

up is 4. It outlines the cost of data handling that is 

necessary for SIMD computation. 

This simple example raises another issue. The pixels that 

lie on the sides of the image have no “outside” neighbor. 

With scalar computation, we can easily neglect applying 

the filter to the pixels on the first and last line and column 

of the image. The situation is more complicated with SIMD 

4-byte accesses: without considering the word accesses that 

are respectively before the first word and after the last word 

of each line, 8 pixels per line are not processed instead of 

only 2 in the scalar case. In table II, we computed CPP as 

the execution time divided by (N-2)*(N-2) for the scalar 

cases and (N-2)*(N-8) for the SIMD case. However, 

improving the SIMD version to process (N-2)*(N-2) pixels 

would be necessary for actual applications. 

IV. CONVOLUTION KERNELS WITH ARITHMETIC 

COMPUTATIONS: LAPLACIAN AND GAUSSIAN KERNELS 

Typical low-pass spatial filters as Gauss filter (Fig. 5 

left) or high-pass filter as Laplacian filter (Fig 5 right) raise 

another issue for SIMD computation.  
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Fig. 5.  Gauss and Laplace kernels 

 

These filters use multiplication or division by powers of 

2, that can be implemented by shift and add/sub arithmetic 

operations. Starting with byte pixel values, the intermediate 

computations need more than byte values. This is not an 

issue for scalar computation, as 32-bit processors zero or 

sign-extend the byte values to 32-bit integer values and all 

computations use 32-bit integers. For SIMD computations, 

the only solution that keeps the computing accuracy 

consists in zero-extending each 8-bit value to a 16-bit value 

before using SIMD arithmetic operations. In our case, 

ADD and SUB SIMD instructions implement 2x16 

arithmetic operations. Now, the optimal speed-up versus 

scalar case is 2. Table III lists the customized instructions 

that are used for image digital filtering with integer 

computation.  

Table IV presents the results for the Gauss kernel and 

Table V presents the corresponding results for the 

Gaussian kernel. In both cases, the SIMD speed-up is close 

TABLE III 

SIMD INSTRUCTIONS 

Instruction Action Clocks 

B2HL (A) Two lower bytes of word 

A are zero-extended to a 

2x16-bit word  

1 

B2HL (A) Two higher bytes of word 

A are zero-extended to a 

2x16-bit word  

1 

H2BL (A) The 2x16-bit of word A 

are truncated to 2 lower 

bytes of a word. The two 

higher bytes of the result 

are zeroed. 

1 

H2BH (A,B) The 2x16-bit of word A 

are truncated and placed in 

the two higher bytes of b. 

The lower bytes of b are 

unchanged. 

1 

SBL (A,B) The three lower bytes of 

word A and the higher 

byte of B are shifted one 

byte left. 

1 

SBR (A,B) The lower byte of A and 

the higher byte of B are 

shifted one byte right 

1 

ADDH (A,B) 2x16 bit addition 1 

SUBH (A,B) 2x16 bit subtraction  1 

SL1 (A) Each 16-bit sub-word is 

shifted one position left 

1 

SL2 (A) Each 16-bit sub-word is 

shifted two positions left 

1 

SR4 (A) Each 16-bit sub-word is 

shifted four position right 

(logical shift) 

1 

MINB (A,B) 4x8 unsigned Min 

operation 

1 

MINW (A,B) 32-bit unsigned Min 

operation 

1 

. 

TABLE II 

MIN FILTER EXECUTION TIMES (CPP) 

N*N image 64 128 256 

C Min function 126.4 126.1 126.1 

32-bit Min function 53.9 53.6 53.6 

4x8-bit SIMD Min 

instruction 18.7 18.3 18.3 

HW Instruction/C function 

speed-up 2.3 2.4 2.4 

SIMD/Scalar HW 

instruction speed-up 2.9 2.9 2.9 
. 



  

or equal to 2, which means that the data handling overhead 

is insignificant. 

Other low-pass or high-pass filters could be used. For 

low-pass filters, some divisions by constants that are not 

power of 2 raises other complications for SIMD 

computations. 

V. INTEGER OR FLOATING POINT COMPUTATIONS? 

For more complex image processes, a careful 

examination of the data dynamic range during each 

processing step is needed. Research of “points of interest” 

within an image is such a typical image processing 

application that is used for image stabilization in robotics: 

the objective is to reduce the image to a limited set of 

points considered as the most representative of the whole 

set to be used as an index for this image. Fig. 6 shows the 

Achard and Harris algorithms.  
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Fig. 6.  Achard and Harris algorithms for detection of Points of Interest 

(POI). 

 

These algorithms share most computations and differ by 

the final step. They include a 3x3 Sobel gradient followed 

by 3x3 Gauss filters. The common part is typical of low 

level image processing. For integer computations, initial 

images with 8-bit gray levels have unsigned char format to 

code the pixels. Sobel gradient computations lead to short 

format to avoid overflow and the following multiplications 

lead to int. format. 

The SIMD instruction defined for Laplacian and Gauss 

kernels (Table III) can be used to speed-up the computation 

of the Sobel gradient. Then, the remaining part of the 

computations uses 32-bit integers and there is no way to 

define and use SIMD instructions because of the typical 

drawback of SIMD integer instructions: the output format 

of arithmetic operations is different from the input format 

(multiplying two 16-bit words provides a 32-bit word). 

One interesting alternative consists in using floating-

point numbers. Obviously, simple precision FP number is 

not a solution for many reasons: first, we need to 

implement the 32-bit FP addition and multiply instructions, 

which is rather complicated even with simplifying 

assumptions (no denormals, truncation instead of 

rounding); second, there is no way to implement SIMD 

simple precision FP instructions within 32-bit words. 

Third, using multi-cycles FP 32-bit instructions instead of 

32-bit integer instructions will slow down the computation 

versus the scalar integer version.  

Using 16-bit FP instructions that we have studied both 

for general purpose processors and embedded processors in 

previous papers [4,5] is an interesting alternative. The 

“half” format, introduced in the OpenEXP format [6] and 

in the Cg language [7] defined by NVIDIA is presented in 

Fig. 7. A number is interpreted exactly as in the other IEEE 

FP formats. The exponent is biased with an excess value of 

15. Value 0 is reserved for the representation of 0 (Fraction 

=0) and of the denormalized numbers (Fraction ≠ 0). Value 

31 is reserved for representing infinite (Fraction = 0) and 

NaN (Fraction ≠ 0). For 0<E<31, the general equation for 

calculating the value in a floating point number is (-1)S x 

(1.fraction) x 2(Exponent field-15). The range of the 

format extends from 2-24 = 6 x 10-8 and (216-25) = 

65504. In the remaining part of this paper, the 16-bit 

floating point format will be called half or F16. 
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Fig. 7.  “half” format (F16 format) 

 

From teaching point of view, introducing FP computing 

instructions is interesting. The students must implement 

VHDL pipelined versions of FP operators, which is a 

significant VHDL lab. Considering 16-bit FP numbers, 

without denormals and with the simplest rounding mode 

(truncation) makes things easier. It turns out that using 16-

bit FP numbers instead of 32-bit FP number has no impact 

on the image processing for the considered benchmarks, as 

we have shown in [4]. The student can also consider this 

TABLE V 

LAPLACIAN EXECUTION TIMES (CPP) 

 
 

64 

 

128 256 

C version 35.1 34.8 34.7 

C version with 

SIMD instructions 19.2 17.4 17.4 

Speed-up 1.8 2.0 2.0 
. 

TABLE IV 

GAUSSIAN EXECUTION TIMES (CPP) 

 
 

64 

 

128 256 

C version 58.3 57.9 57.9 

C version with 

SIMD instructions 31.1 28.6 29.6 

Speed-up 1.9 2.0 2.0 
. 



  

issue by using PSNR metrics. 

The F16 SIMD instructions presented in Table VI are 

the FP versions of the integer SIMD instructions defined in 

Table III. A specificity is that the shift instructions that are 

used for data alignment can be combined with byte to F16 

conversions (Fig. 8) to minimize the number of instructions 

and the execution time. 
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Fig. 8.  Byte to F16 and shift conversion instructions 

 

Tables VII and VIII give the execution time (CPP) for 

Achard and Harris algorithms. As the algorithms have a 

large common part, the results are close and significant of 

algorithms including a lot of low-level image processing. 

We have also added the results for simple precision 32-bit 

FP computations. The F32 arithmetic instructions are 

similar to the F16 versions (no denormals, truncation as 

rounding mode). The F32 add and mul latencies are 

respectively 4 and 3 cycles. As expected, the F32 version is 

slower than the original integer C version. The F16 version 

is more than 50% faster than the original C version. The 

speed-up of the F16 version versus F32 is more than 2: it 

comes from the SIMD implementation of F16 instructions 

and the lower latencies of the F16 arithmetic instructions 

versus the F32 corresponding arithmetic instructions. 

Obviously, many other different image processing 

benchmarks could be used.  

VI. FURTHER DEVELOPMENTS 

So far, we have concentrated the experiments on the 

image processing optimization issues by using customized 

SIMD instructions with the NIOS II processor. Applying a 

kernel or a more complex algorithm to an actual image is 

not necessary to measure the execution time of the 

different versions. In our experiment, we have considered 

N*N array filled up with an arbitrary initialization instead 

of actual images. Using actual image is a significant 

improvement, at least to check the correctness of the 

different versions and verify that the “optimized” versions 

produce the same image than the original C version of the 

program. Introducing the communication mechanism 

between the PC server and the FPGA board to download 

images to the board and upload the resulting image is 

another more “computer science oriented” step in a set of 

labs. The connection of a frame grabber to the FPGA 

board can also be introduced to present bus performances 

and DMA transfers. 

Examining the hardware costs of the customized 

TABLE VIII 

HARRIS  EXECUTION TIMES (CPP) 

N*N image 64 128 256 

C integer original program 348 359 365 

F16 212 230 240 

F32 568 586 NA 

F16/Int speed-up 1.6 1.6 1.5 

F16/F32 speed-up 2.7 2.5 NA 
. 

TABLE VI 

F16 SIMD INSTRUCTIONS 

Instruction Action Clocks 

B2F16L (A) Converts the two lower bytes 

of A into two F16 

1 

B2F16H (A) Converts the two higher bytes 

of A into two F16 

1 

F2BL (A) Converts two F16 of A into 

two unsigned bytes in the 

lower part of a 32-bit word 

and zero in the higher part. 

1 

F2BH (A,B) Converts two F16 in A into 

two unsigned bytes in the 

higher part of B (lower part is 

unchanged) 

1 

S2F16 (A) Converts two 16-bit integers in 

A into two F16 

1 

F2S (A) Converts two F16 in A into 

two 16-bit integers 

1 

B2FSRL 

(A,B) 

Converts the high order byte 

of A and the low order byte of 

B into two F16 

1 

B2FSRH (A) Converts the two middle bytes 

A into two F16 

1 

FSR (B,A) Put the low order F16 of word 

B into high order F16 of 

result. Put the high order byte 

of word A into low order F16 

of result. 

1 

ADDF (A,B) F16 SIMD addition 2 

SUBF (A,B) F16 SIMD subtraction (A-B) 2 

MULF (A,B) F16 SIMD multiplication   2 
. 

TABLE VII 

ACHARD  EXECUTION TIMES (CPP) 

N*N image 64 128 256 

C integer original program 349 360 366 

F16 217 235 245 

F32 560.5 578.5 NA 

F16/Int speed-up 1.60 1.53 1.49 

F16/F32 speed-up 2.7 2.5 NA 
. 



  

instructions is also an interesting aspect. For instance, the 

hardware cost for all the SIMD integer instructions of 

Table III is 176 logic cells (LC) to compare with the 2,062 

LCs for the CPU and 280 LCs to implement the custom 

instructions interface. One reason is that many instructions 

only shuffle input and output ports! In [5], we have shown 

that the hardware cost for all the F16 instructions in Table 

VI is 1,188 LCs, which is an acceptable overhead to the 

CPU cost. 

To study more ambitious customization techniques, we 

can modify the currently used 16-bit floating point format 

by tuning the number of bits dedicated to fraction and 

exponent parts according to the dynamic range and 

accuracy that are needed by a specific application. 

So far, the concepts that are presented in this paper have 

been experimented with the “light” version for computer 

science students having a minimal knowledge in advanced 

logic design and hardware description languages. The labs 

have mainly focused on the optimization issues. For such 

students, it is wise to prepare and provide (if needed) the 

VHDL files of the customized instructions. One potential 

drawback is that compiling the whole system including the 

NIOS processor needs around 20 minutes on a 1.6-GHz 

Pentium-4 PC, which means that everything must be 

carefully prepared between launching the compilation. The 

student feedback was good. 

VII. CONCLUDING REMARKS 

In this paper, we have shown that FPGA devices with a 

soft-core CPU are powerful devices to introduce most of 

the optimization issues of image processing, from 

elementary low-level image processing to more 

sophisticated image treatment. Customizing instructions 

with the hardware resources of the FPGA gives significant 

insight on most of the hardware/software trade-offs. At the 

same time, the approach can be used at different teaching 

levels. For students with limited knowledge in electrical 

engineering (and hardware description languages), most of 

the VHDL operators that are needed to customize the 

instructions are so simple that they can easily implement 

them. For students having passed basic courses in logic 

design (including hardware description language) and 

computer architecture), far more complicated pipelined 

operators can be used and the course can evolve from an 

introduction to image processing and SIMD computation to 

an advanced course. 
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