
Performance Analysis of an Ultrasound
Reconstruction Algorithm for Non

Destructive Testing

Antoine PEDRON a, Lionel LACASSAGNE a, Victor BARBILLON a,
Franck BIMBARD b, Gilles ROUGERON a and Stéphane LE BERRE a

a CEA, LIST, F-91191 Gif-sur-Yvette, France
b Institut d’Electronique Fondamentale, UMR 8622,

Université Paris-Sud 11, F-91405 Orsay, France

Abstract. The CIVA software platform developed by CEA-LIST offers vari-
ous simulation and data processing modules dedicated to non-destructive testing
(NDT). In particular, ultrasonic imaging and reconstruction tools are proposed in
the purpose of localizing echoes and identifying and sizing the detected defects.
Because of the complexity of data processed, computation time is now a limitation
for the optimal use of available information. In this article, we present performance
results on parallelization of one computationally heavy algorithm on general pur-
pose processors (GPP) and graphic processing units (GPU). Although GPU imple-
mentation makes an intensive use of atomic intrinsics, it gave the highest perfor-
mances. Only a dual 6-core GPP catches up its performances. Both architectures
have been evaluated with different APIs : OpenMP, CUDA and OpenCL.

Keywords. non-destructive testing, ultrasonic reconstruction, parallelization,
general purpose processors, graphic processing units

Introduction

Non destructive testing (NDT) consists in examining specimen or material integrity with-
out damaging it. Ultrasonic Testing is one of the most used method, because of its sen-
sitivity, its depth penetration, and its accuracy for positioning and dimensioning internal
defects as well as its simplicity of implementation.

Ultrasonic testing consists in scanning the component under examination and ac-
quiring signals at each probes positions. Acquired data are processed for visualization
and analysis purpose, and different views are proposed. Besides these views visualizing
raw data, different reconstruction algorithms can be proposed to give a representation of
the data in real space.

This work is done in the context of the development at CEA LIST of the CIVA soft-
ware platform dedicated to simulation and processing of NDT data [1]. Because of the
complexity of the data to be processed, computation time remains a limitation for an op-
timal use of reconstruction algorithms. Acceleration of reconstruction and visualization
algorithms would be a great step forward for the tools of analysis and automatic diag-
nosis. In this perspective, parallelization and exploitation of GPU are investigated. An
ultrasound reconstruction algorithm called True Cumulated Views (TCV) has been cho-



sen for optimization and parallelization with the two most common hardware platforms
used nowadays, general purpose processors (GPP) and graphic processing units (GPU).
GPU are well known to give high speedups, particularly when computations are highly
parallel [2].

This article is organized as follow: first of all, section 1 presents TCV algorithm.
Then, parallel implementations are detailed in section 2. After that, sections 3 deals with
implementations analysis and finally 4 give experimental and performance results.

1. True Cumulated View Algorithm

	  

SIDE	  VIEW

TOP	  VIEW

FRONT	  VIEW

SIDE	  VIEW FRONT	  VIEW TOP	  VIEW

SPECIMEN	  VIEW RAY	  PATH	  WAVE	  PROPAGATION

TRANSDUCER

Figure 1. In the top part : views computed by True Cumulated View algorithm. In the bottom part : views
assembled on a 3D model.

The True Cumulated View algorithm (TCV) offers a complete visualization of the
data through top, side and front views of the specimen (figure 1). This algorithm pos-
tulates that both the specimen geometry and material properties are known. In complex
cases, the geometry can be given as a CAD description.

First, a description of the algorithm will be given in subsection 1.1 and then, initial
implementation will be presented in subsection 1.2.

1.1. Algorithm description

The inputs are organized as follow:

• N signals (N is the number of ultrasonic shots) : amplitude in function of time.
The signals are results of an experimental acquisition or a simulation calculation.

• N ray-paths : geometrical polylines, which represent the path of theoretical beam
deviation inside the specimen. At each vertex of the polyline is associated the
time of flight value of the wave to reach this point. Time of flight between two



vertex are obtained through simple linear interpolation. These ray-paths are pre-
calculated with CIVA simulation code [3].

• Area of reconstruction : 2D regular grid (that can be confused with the final im-
age).

The Output is:

• An image : amplitude is assigned to each point of the reconstruction area.

The algorithm proceeds as follows. First, a projection of the signal to the ray-path
is done. Each value (amplitude, time) of the signal is localized on the ray-path and con-
verted to a (amplitude, (x,y,z)) value. Then the value is projected on a pixel. Second step
consists in applying a mathematical morphology dilation filter to the output image in
order to fill the holes between pixels with values.

The holes are the consequence of the gap between two ray-paths and also from sig-
nal sampling. The dilation filter is commonly used in image processing. TCV algorithms
resemble to Maximum intensity projection algorithms which use this filter to refine the
projections [4]. Moreover, this type of filter is well-known and benefit of many optimiza-
tions such as kernel separability [5] or Van Herk algorithm [6].

This algorithm has an irregular workload whose intensity depends on the data.
Ray-paths can be either well aligned or disorganized, short or long, with a few or many
segments and in most cases can be source of memory conflicts in case of parallelization.

1.2. Initial implementation

The initial implementation is a direct mapping of the physical algorithm. Sequential
implementation samples each ray-path along. In the inner loop, each sample is projected
onto a pixel. Then, dilation filter is applied. Usually, the dilation step is very fast and do
not take more than 5% of the total time.

2. Parallel Implementations

Ultrasonic image reconstruction has to deal with important amount of data. Numerous
elements are processed with the same operation. This pattern can be mapped onto GPU
computing pattern which is based on large data sets with high parallelism and minimal
dependency between data elements. Unlike GPP, GPU has to run a large number of
threads to be efficient. GPU threads are not like GPP ones : launching a kernel with ten
thousands threads takes about 12 µs with synchronization [7]. As a result, parallelization
strategies are usually different. Two different strategies are discussed in this section, one
on GPP and one on GPU. Post-processed dilation step, as discussed in subsection 1.2,
will not be taken into account in this benchmark.

In subsections 2.1 and 2.2, GPP and GPU implementations will respectively be dis-
cussed.

2.1. GPP implementations

The GPP approach is straight-forward and, if using a p-core GPP, ray-paths are dis-
tributed among p threads. These threads are created by using the OpenMP library that
automatically distributes a loop computation without modifying the existing code. Each
thread runs the TCV algorithm and generates a local image. Then the images are merged
by extracting the maximum value in each pixel (reduction).



2.2. GPU implementations

GPU implementation strategy is different. Assuming that GPU need to launch a very
large number of threads (thousand of them), multiple image reconstruction cannot be
used. Instead, one unique output image is used. Since different threads can potentially
access the same address at the same time, max operations has to be done synchronously
to be correct. These operations exist on Nvidia GPU since compute capability 1.1 hard-
ware and are called atomic operations. They allow to create a mutual exclusion section to
enforce serial access to memory. At the moment, sections are restricted to basic operators
like cas, max, add, or a few other unitary operators. Atomics operations were slow with
1.x hardware, but Nvidia announced with the latest generation of GPU (2.x) that they
have improved their atomic instructions up to a factor ×20 [8][9].

Like CPU, one implementation have been realized. TCV kernel parallelize the upper
loop of algorithm so as to run one thread per ray-path. Each thread computes its own
ray-path projection, using the same image as all threads, with the use of atomicMax.

3. Implementations Analysis

Benchmarks in this section have been carried out with two Nvidia GPU : Tesla C1060
with 240 cores running at 1.3 GHz and Tesla Fermi C2070 with 448 cores running at 1.5
GHz.

One ultrasound defect response dataset has been selected as a representative subset
of data that TCV use to deal with. PMF is a 150k ray-paths with 1k sample per signal set
representing a 150M point projection for a full reconstruction.

Subsection 3.1 will present a benchmark of atomic performance on TCV computa-
tions. Then subsection 3.2 will be discussed.

3.1. Impact of using atomic instructions

0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

0.8	  

128	   256	   384	   512	   640	   768	   896	   1024	  

Ti
m
e	  
(s
)	  

Image	  side	  size	  

C1060	  atomicMax	   C1060	  Max	   C2070	  atomicMax	   C2070	  Max	  

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

128	   256	   384	   512	   640	   768	   896	   1024	  

Ti
m
e	  
(s
)	  

Image	  side	  size	  

C1060	  atomicMax	   C1060	  Max	   C2070	  atomicMax	   C2070	  Max	  

(a) Random accesses (b) TCV projection

Figure 2. (a) Pseudo-random atomicMax and max operation evaluation for an image size from 128× 128

to 1024 × 1024. (b) TCV GPU computation time for a fixed number of pixel accesses (PMF dataset, 150M
point projection) with a variation on image size between 128× 128 and 1024× 1024

Given that GPU implementation is using atomics intrinsics and pseudo-random ac-
cesses depending on projection and control data, one can wonder about the performance
of these operations.



On C1060, global memory is not cached [10] whereas C2070 includes two levels of
cache. L1 is local to a streaming multiprocessor whereas L2 is global. L1 cache is not
useful in our case because TCV has an intense atomics use whose memory transactions
are done in L2. But since concurrent access intensity is low (i.e. compared to a histogram
view), one can wonder how caches impact on TCV and more generally what cost has to
be paid.

Figure 2 (a) presents the results of a pseudo-random access computation of
atomicMax andmax operators (ignoring concurrent accesses) with C1060 and C2070.
150M points are written in a 1D array so as to be able to compare with the experimental
results of TCV. The results from the two computations are not equal, but this test allows
to better understand the cost of the atomic operation compared to a lock-free one.

C1060 atomicMax curve is very noisy and basically slow. When compared to a
simple max operator, atomicMax is about 2.5× slower. With C2070, synchronization
is still expensive when access intensity is high but the gap between atomicMax and
max has been reduced with a slowdown lower than 50% for images larger than 350×350
meaning that atomic instructions latency has been greatly improved.

Figure 2 (b) shows TCV side view projection time on C1060 and C2070 with
atomicMax and max operators. For images larger than 192 × 192, C1060 curves are
outspread of a 1.5× factor meaning that lock latency is basically free when access inten-
sity is high enough. Lock latency increase with smaller images with up to a 3× factor for
128× 128 images. That show how expensive atomics intrinsics are on GT200 hardware.

On C2070, both curves are different than C1060’s. Max curve is very stable with a
10% compute time increase between 128 × 128 and 1024 × 1024. The main difference
come from atomicMax curve which is deceasing over time like C1060’s but instead of
following max curve with a factor, it reaches max performance for images greater than
800 × 800. This means atomicMax computation is not more expensive than a simple
max operation when concurrency does not impact. Moreover, performance gain is sig-
nificative between C1060 and C2070 with a 1.5× to 2.8× factor between atomicMax
computation for 1024× 1024 images.

In TCV algorithm, the use of atomics is mandatory to avoid errors of computations.
But TCV projection show that with Fermi GPU, atomics can be used with a low perfor-
mance decrease almost like others non-atomic operators for random accesses as soon as
concurrency intensity is not too high.

3.2. Access sparsity

In order to get a better understanding of the differences between the three views and as-
sociated computation times, an histogram of the different memory access has been done
on the different views. These histograms shows that PMF front and top views are very
different than side view. For each view, the total amount of memory accesses is equal.
The histogram focus on the distribution of these accesses and the memory footprint. For
example, on side view, some pixels are written 3000 times, compared to up to 8000 times
on top view and 14000 times on front view.

These differences mean that even with higher access intensity, atomic intrinsics can
be faster when locality is higher than fully random accesses. Top view is the fastest be-
cause of its memory alignment. Given that atomics are passing through L2 cache, some
accesses are using this cache to improve performance. On C1060, behavior is different
because its L2 cache is read-only compared to Fermi’s which is read-write. View differ-



Table 1. Profiling sample of PMF dataset processing for the three views on C2070.

time (ms) # DRAM writes ipc

View type

Side View 592 2.56e7 0.60

Top View 457 1.04e7 0.87

Front View 628 1.96e7 0.56

ences can be verified with profiler data where top view implies less DRAM writes than
other views (table 3.2) which means that many accesses are using cache features.

4. Performance Benchmark

A benchmark has been run on two computers equipped with a quad core Intel Xeon
E5472 running at 3.0 GHz, a dual 6-core Xeon X5690 running at 3,47GHz and two
Nvidia Fermi graphic cards : a Tesla C2070 and a Geforce GTX 580. Since dilation com-
pute time, fusion compute time or image output transfer time are negligible, it has been
chosen to only include projection compute time. An OpenCL implementation has been
developed to run on both GPP and GPU. Both Intel 1.1 and AMD 2.4 OpenCL imple-
mentations have been targeted. Rewriting from CUDA to OpenCL has been straightfor-
ward.

Subsection 4.1 will present OpenMP scalability results. Then, subsection 4.2 will
compare OpenMP to OpenCL results on GPP. Subsection 4.3 will compare GPU per-
formances with CUDA and OpenCL. Eventually, subsection 4.4 will conclude on global
performances and OpenCL usage.

4.1. OpenMP Scalability

GPP compute time between the three views is very stable. For that reason, only Side View
has been tested here. Results are presented in Table 4.1. As for the previous benchmark,
OpenMP scheduler is set to guided since it gave in all tests cases the best performance.

Table 2. OpenMP scalability on PMF side view projection.

1 thread 4 threads 12 threads 24 threads 4:1 12:1 24:1

E5472 4296.7 1105.0 n/a n/a 3.88 n/a n/a

X5690 2705.8 679.8 266.9 169.3 3.98 10.13 15.98

Both GPP scale almost perfectly. On this GPP, 12 thread parallelization give a good
performance with a 10× acceleration. Best performance is reached using all 24 threads
with a 16× ratio. An additional 33% performance gain comes from hyperthreading which
improves core usage.

4.2. GPP : OpenMP and OpenCL

Table 4.2 present a comparison between OpenMP and OpenCL GPP implementations.
On one side, OpenCL implementations run the same kernel using atom_max to handle
concurrent accesses. On the other side, OpenMP implementation is lock-free and per-
forms between 25% and 30% faster than both OpenCL’s. Both OpenCL implementations



Table 3. X5690 projection compute time on OpenMP and OpenCL implementations from AMD and Intel

Side Top Front

OpenMP 169.3 172.0 170.7

OpenCL AMD 215.3 220.0 217.1

OpenCL Intel 217.3 214.7 218.3

are very close. Compared to mono-thread OpenMP implementation, OpenCL gives a
rough 12× acceleration compared to the 16× with multi-thread OpenMP. These results
show that OpenCL can be a viable alternative to OpenMP. Of course, OpenMP has got a
simpler interface when one wants to parallelize loops, but OpenCL brings multi-platform
targeting which can be very interesting when an application runs on different hardware.

4.3. GPU : CUDA and OpenCL

Table 4. CUDA and OpenCL PMF side view projection time

CUDA OpenCL
Side Top Front Side Top Front

C2070 257.8 109.7 295.6 254.1 107.1 298.7

GTX580 209.2 103.9 227.2 207.0 101.0 225.4

Table 4.3 give CUDA and OpenCL GPU results. Performances differ depending on
the view. For a simple application as TCV can be, we observe that CUDA or OpenCL are
very close in terms of performances. In terms of development complexity, CUDA and
OpenCL are quite the same. These observations make OpenCL also a good alternative to
compute on graphic processing units.

4.4. Overall Comparison

For TCV projection, OpenCL has given very interesting performances. The same code,
initially developed for CUDA ran both on GPP and GPU without efforts. The dual 6-
core X5690 runs between the best and the slowest computations on C2070 and GTX580.
Top view being in favor of GPU caches, GPU are almost 60% faster than the X5690,
whereas side and front views are more than 50% slower. GPU performances depend a
lot on memory alignment and atomic performance. When GPP OpenCL performance is
compared to GPU (CUDA or OpenCL), one can see that both GPU run in worse cases at
the same speed than the GPP.

Multi-GPU implementation has not been evaluated yet, but adding a second GPU
should give a very efficient result. It would only require a merge step as for GPP OpenMP
implementation (which is non significative being very fast). This would also apply to a 3
or 4-GPU solution. In these conditions, a GPU solution would be the fastest.

Even if the top OpenMP performance is not reached in OpenCL, the difference can
be acceptable. OpenCL is a fast growing standard that would avoid code legacy. Devel-
opments and evolutions should be easier. Moreover, the runtime portability allows the
application to select the best target platform present on any hardware.



Conclusions and Future Work

This article has presented a study on the optimization and parallelization of a non-
destructive evaluation ultrasound reconstruction algorithm. High performance have been
reached on both GPP and GPU, more specifically with the latest generation of Nvidia
GPU : Fermi. Both architectures have been evaluated on two different parallelization
languages: OpenMP and CUDA as native API, and OpenCL which is able to target both
platforms.

Although GPU performances depend on data, best results were obtained with this
architecture. However, a dual 6-core Intel GPP narrows the gap reaching similar results.
Even though best performances have been reached in native languages, OpenCL has
shown to be profitable allowing a same code to run efficiently on different architectures.

Software optimizations combined to parallelization allow the user to get a very fast
reconstruction in human interactive time which is a major step into NDE ultrasound
reconstruction. These results are indeed very motivating and other algorithms studies
are on the way. GPU are on fast growing curve and multicore GPP are evolving with
a core number increasing each year and architecture improvements. Given that at the
moment, both allow to reach high performances, the evaluation of future architectures is
mandatory. In light of these facts, the usage of API like OpenCL can be very profitable
allowing the user to mutualize the effort of optimization and parallelization.

References

[1] “CIVA : State of the art simulation software for Non Destructive Testing,” http://www-civa.cea.
fr/.

[2] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hardwick, Scott Morton, Everett
Phillips, Yao Zhang, and Vasily Volkov, “Parallel computing experiences with cuda,” IEEE Micro, vol.
28, pp. 13–27, 2008.

[3] G.Ribay, C.Poidevin, G.Rougeron, and B.Chassignole L.de Roumilly, “UT Data Reconstruction in
Anisotropic and Heterogenous Welds,” 8th International Conference on NDE in Relation to Structural
Integrity for Nuclear and Pressurised Components Abstracts, 2010.

[4] Jos B T M Roerdink, “Multiresolution maximum intensity volume rendering by morphological adjunc-
tion pyramids.,” IEEE Trans Image Process, vol. 12, no. 6, pp. 653–60, 2003.

[5] T. Saidani, L. Lacassagne, J. Falcou, C. Tadonki, and S. Bouaziz, “Parallelization Schemes for Memory
Optimization on the Cell Processor : A Case Study on the Harris Corner Detector,” HiPEAC journal,
2008.

[6] Marcel van Herk, “A fast algorithm for local minimum and maximum filters on rectangular and octago-
nal kernels,” Pattern Recogn. Lett., vol. 13, pp. 517–512, July 1992.

[7] Vasily Volkov and James Demmel, “LU, QR and Cholesky Factorizations using Vector Capabilities
of GPUs,” technical report, Electrical Engineering and Computer Sciences University of California at
Berkeley, May 2008.

[8] David Patterson, “The top 10 innovations in the new nvidia fermi architecture, and the top 3 next
challenges,” Tech. Rep., NVIDIA, 2009.

[9] “Whitepaper, NVIDIA’s Next Generation CUDA Compute Architecture : Fermi,” Tech. Rep., NVIDIA,
2009.

[10] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas Moshovos, “De-
mystifying GPU Microarchitecture through Microbenchmarking,” ISPASS, pp. 235–246, 2010.


