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Abstract— Modern computer architectures are mainly com-
posed of multi-core processors and GPUs. Consequently, solely
providing a sequential implementation of algorithms or compar-
ing algorithm performance without regard to architecture is no
longer pertinent. Today, algorithms have to address parallelism,
multithreading and memory topology (private/shared memory,
cache or scratchpad, ...). Most Connected Component Labeling
(CCL) algorithms are sequential, direct and optimized for pro-
cessors. Few were designed specifically for GPU architectures
and none were designed to be adapted to different architectures.
The most efficient GPU implementations are iterative; in order
to manage synchronizations between processing units, but the
number of iterations depends on the image shape and density.
This paper describes the DLP (Distanceless Label Propagation)
algorithms, an adaptable set of algorithms usable both on GPU
and multi-core architectures, and DLP-GPU, an efficient direct
CCL algorithm for GPU based on DLP mechanisms.

INTRODUCTION

Connected Component Labeling (CCL) and Connected
Component Analysis (CCA) algorithms play a central part
in machine vision because they often constitute a mandatory
step between low-level image processing (filtering) and high-
level image processing (recognition, decision). As such, CCL
algorithms have a lot of applications and derivate algorithms
like convex hull computation, hysteresis filtering or geodesic
reconstruction. The CCL processes the output data from bi-
nary segmentation (fig. 1 top-left) and produces an image of
labels easily understandable by humans (fig. 1 middle-right).
The CCA also provides information on labels, typically the
bounding box and the first statistical moments.

The first proposition of a direct algorithm [13] was sequen-
tial and focused on the memory management of equivalence
labels. Since, many optimizations were provided for CPU
implementations of direct algorithms. In [1], the authors evalu-
ated these optimizations in a sequential and multi-core context,
provided a methodology to adapt all direct algorithms to multi-
core processors and established a benchmark procedure that
highlights their adaptation to CPU-based architectures. The
fastest CCL and CCA algorithm is LSLRLE (a direct run-
based one), the fastest pixel-based direct algorithm is HCS2

DT ARemSP [2]. In order to take advantage of the SIMD
instructions and the increasing number of cores, the authors
of [7] proposed an adaptation of iterative algorithms for such
architectures and concluded that iterative algorithms had the
potential to match and outperform direct algorithms from
the tile synchronization point of view. But the dependency

(variable number of iterations) to the image shape and density
is a considerable limitation of iterative algorithms.

The contribution presented in this paper consists of two
elements:

• The Distanceless Label Propagation algorithms (DLP),
the missing link between direct and iterative algorithms
enhanced with a recursive union-find algorithm. This
adaptable set of mechanisms allows for creating various
implementations of CCL algorithms finely tuned to each
architecture.

• The DLP-GPU: a GPU-dedicated implementation of DLP
that provides an efficient CCL stage for computer vision
GPU applications.

This paper is organized as follows: the first section presents
the specifics of direct and iterative algorithms, the second sec-
tion presents the DLP mechanisms, the third section presents
the DLP-GPU specialization, and the last section presents
the performance analysis of reproducible benchmarks on two
GPUs architectures and a comparison with one of the fastest
pixel-based CCL algorithm on CPU.

I. DIRECT AND ITERATIVE CCL ALGORITHMS
SPECIFICITIES

Historical algorithms were designed by pioneers like Rosen-
feld [13] and Lumia [8] who designed direct pixel-based
algorithms, Ronse [11] for direct run-based algorithms and
Haralick [3] for pixel-recursive iterative algorithms. Modern
algorithms are derived from the algorithms of the 80’s and try
to make improvements by replacing some components with
more efficient ones in terms of architecture. An extensive
bibliography can be found in [5] and [15].

A. Direct algorithms

Direct algorithms process the input image pixel by pixel
with a neighborhood mask and an equivalence table that
holds a graph structure (oriented forest) to represent the label
connections (fig. 1 bottom). beling (fig. 1 center-right), to
replace temporary label by the final label (usually the smallest
one of the component). All direct algorithms share the same
three steps: 1) A first labeling (fig. 1 middle-left), that assigns
a temporary/provisional label to each pixel and builds labels
equivalences. 2) The label equivalences solving, that computes
the transitive closure of the graph. 3) the final labeling
(fig. 1 center-right), to replace each temporary label by its
final label (usually the smallest one within the component).
Consequently, the main improvements come from the shape



of the considered neighborhood and the optimization of the
graph manipulation with Union-Find implementations.
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Fig. 1. An example of 8-connected component labeling with Rosenfeld’s
direct algorithm. Top-left: binary image, top-right: predecessor pixels direct
mask and predecessor labels direct mask, middle-left: image of temporary
labels, middle-right: image of final labels, bottom: equivalence table and its
associated graph.

B. Iterative algorithms

Where direct CCL algorithms use an additional equivalence
table to manage the connexion information, iterative algo-
rithms propagate the labels step by step across the image.
The number of iterations depends on the blob shapes within
the image. The main implementations are: embarrassingly
parallel (EP ), pixel-recursive with forward scan (F ) and pixel-
recursive with forward-backward (FB) scans. EP is funda-
mental to understanding the behavior of iterative algorithms
and their drawbacks.
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Fig. 2. Iterative EP: top-left: binary image, top-right: image of final labels,
bottom-left: The initialization with unique labels, bottom-right: labeling in
progress.

1) The EP iterative algorithm: It uses two images of labels,
one for the input and one for the output. The initialization
consists in providing a unique temporary label to each non-
zero pixel (fig. 2, bottom left). Then the iterations consist
in computing the minimal positive (min+) value over a

neighborhood (typically 3×3 like fig. 3 left) from the input and
writing this new value to the output. All these computations
are independent and can be done in parallel. The procedure is
repeated (swapping input and output) until there is no more
change (fig. 2, top-right).
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Fig. 3. Left: EP 3×3 propagation mask, center-left: forward (F) 3×2
propagation mask (identical to the direct one), center: backward (B) 3×2
propagation mask, center-right: DLP 3×3 propagation mask, right: DLP 2×2
propagation mask (used for DLP-GPU).

As the number of iterations is data-dependent, the execution
time can not be predicted and is a major drawback for
implementation with time constraints. For a 5× 5 square (fig.
4), five iterations are required after the initial labeling: four
to reach the stability and another one to detect it. But for the
same square with a hole, the number of iterations is eight.
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Fig. 4. The impact of the shape on labels propagation. Top: 5 iterations for
a full 5 × 5 square. Bottom: 8 iterations for the same square with a hole.
Labels in light gray are not stabilized, labels in dark gray are stabilized.

The number of iterations is the longest geodesic distance
[12] between two pixels belonging to the shape plus one.
Figure 5 provides four examples of geodesic distances (gd)
for 5 × 5 shapes. If for the full square, the longest geodesic
distance is gd = 4 (the length of the diagonal in discrete
geometry), for a Z or a spiral gd = 12. The spiral is usually
considered as the worst case for iterative CCL: for a n × n
image, the number of iterations is n2/2 + 1 with n even and
(n+ 1)× (n− 1)/2 + 1 with n odd.
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Fig. 5. The geodesic distance of four 5×5-pixel shapes (8 connected). From
left to right: full square (gd=4), square with a hole (gd=7) a “Z” (gd=12) and
a spiral (gd=12).

2) The pixel-recursive algorithms: The pixel-recursive al-
gorithm (F ) consists in using only one image for input and
output. As the min+ is written into the input image, it is
available for the following computations. We can use either
a forward (F) scan (fig. 3 center-left - equivalent to direct
mask) or a forward-backward (FB) scan (fig. 3 center-left
and center), invented by Haralick [4] and detailed in [7]. Note
that such a pixel-recursive scan creates a serialization that is
unsuitable for GPU.



II. DLP: BEYOND THE MASK HORIZON

The pixel-recursive algorithms are nonetheless limited by
the mask’s size. Increasing the size is not a valid solution
as it will lead to a reduction of the number of iterations
but also to an increase of the complexity of each iteration.
The DLP paradigm is about vanishing the mask influence by
providing a distanceless propagation procedure. For the sake of
understanding, we will first describe the different steps in DLP
in a non pixel-recursive context (with a couple of images Ek,
Ek+1) but they are suitable and more efficient for recursive
ones.

A. DLP-I: labels initialization

DLP-I initializes all non-zero pixels p(i, j) with a unique
label e(i, j) = i× w + j + 1 with w the image width. (fig. 6
center and fig. 7 center). Doing so, a graph structure is added
into the image: the address of the implicit equivalence table T
differs from the image E from one element: T [e] ≡ E[e− 1]
that is E[e− 1] = e after the initialization.

In figure 6, a single-line image (left) is initialized with DLP-
I (center). Once the image is labeled (right) all labels point to
the minimum label (root) of their connected component.

1 11 1 110 1
0 654321 7

1 32 5 760 8
0 654321 7

1 11 5 550 5
0 654321 7

Fig. 6. From left to right: binary image, image initialized with e(i) = i+1,
after the labeling (any method) all labels point to their root.

B. DLP-SR: propagate labels with a gather-scatter

If classical iterative algorithms gather non-zero values and
set the min+ to the current label, DLP-SR (alg. 1) also scatters
the min+ (using SetRoot procedure - alg. 2) back to every
root of the mask. The SetRoot procedure ensures that the
assigned label is always minimal even in a multi-threaded
context, thanks to an atomic min instruction.

Algorithm 1: DLP-SR
Input: The RoI Ek can be either a tile or a full image
Result: The updated RoI is Ek+1

1 foreach ex of coordinates (i, j) in RoI do
. Gather labels

2 a1 ← Ek[i-1][j-1] a2 ← Ek[i-1][j+0] a3 ← Ek[i-1][j+1]
3 a4 ← Ek[i+0][j-1] a5 ← Ek[i+0][j+0] a6 ← Ek[i+0][j+1]
4 a7 ← Ek[i+1][j-1] a8 ← Ek[i+1][j+0] a9 ← Ek[i+1][j+1]
5 ε← min+(a1, . . . , a9)

. Scatter ε
6 foreach ap ∈ [1, 9] do
7 if ap 6= 0 and ap 6= ε then
8 SetRoot(Ek, Ek+1, ap, ε)

For the spiral (fig. 7), DLP-SR seems still limited by the
mask size, but as the image is also considered as a graph, we
can see (fig. 8) that this step creates a connection between the
labels of the two remaining connected components: 1 and 11.

After the first iteration, the labels are not all connected.
An additional iteration is needed to achieve correct labeling:

Algorithm 2: SetRoot(Ek, Ek+1, e, ε)
1 v ← Ek[e− 1]
2 if v > ε then
3 Ek+1[e− 1]← ε

. For the pixel-recursive version Ek+1 = Ek = E

. For multi-threaded version, the atomic min instruction is used
to implement the SetRoot procedure: atomic min(E, e, ε)

the maximal number of iterations still depends on data. DLP-
SR can be used with different labeling masks. For GPU, the
minimal 2 × 2 neighborhood (fig. 3 right) will be used as it
reduces the amount of memory accesses per label.
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Fig. 7. From left to right: binary image, DLP-I labels initialization (with
e(i,j) = i× 5 + j + 1) and first DLP-SR iteration with the 2× 2 mask.
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Fig. 8. Duality between image of labels and the graph structure: after the
first DLP-SR iteration, only two distinct connected components remain.

C. DLP-R: simultaneous relabeling and transitive closure

Thanks to the duality (fig. 8) between the image of labels
and the graph structure (equivalence table), both the relabeling
and the transitive closure are performed by replacing a label
by the root of its tree. For iterative algorithms this step is not
mandatory but, depending on the architecture, it can accelerate
the propagation as it regularizes the image. DLP-R flattens
the graph and makes the geodesic distance limitation (fig. 9
center-left and right) disappear. With these three procedures
(DLP-I, DLP-SR, DLP-R), the 5×5 spiral can be labeled in 2
iterations after initialization: (DLP-SR + DLP-R) + (DLP-SR +
DLP-R) as represented in figure 9 and an additional iteration
is needed to detect stabilization. Compared to the classical
iterative algorithms, the n2/2+ 1 iterations for a n× n spiral
(here 13) are replaced by only 2 iterations regardless of n.
This is a significant improvement but the number of iterations
is still data-dependent in other cases.

This dependency comes from race conditions between la-
bels. In the spiral case (fig. 9), the second iteration is needed
due to a race condition between 2 labels: 22 (connected to
11) and 24 (connected to 1) at the site of the original label
23. It leads to lose the information “24 is connected to 23”.
For direct algorithms, such a kind of conflicts is solved with
a Union-Find procedure, while classical iterative algorithms
iterate until stabilization. In fact, very few points of conflict
exist but they still trigger an additional processing of the



Iteration #1 Iteration #2
DLP-SR DLP-R DLP-SR DLP-R
1 1 2 3 4

4
10
15
2020221616

11
11 11 12

1 1 1 1 1
1
1
1
11111111

11
11 11 11

1 1 1 1 1
1
1
1
11111111

11
1 11 11

1 1 1 1 1
1
1
1
11111

1
1 1 1

Fig. 9. Left: result after the first iteration of DLP-SR and DLP-R, right:
after the second iteration. The root 1 is equivalent (assigned) to the root 11
by writing 1 to the original position of 11.

entire image. To solve these conflicts, a Union-Find procedure
should replace the SetRoot procedure (alg. 2). As a Union-
Find procedure can only be implemented in a pixel-recursive
context (one image), all DLP procedures will be considered
– in the remainder of the paper – in a pixel-recursive and
multi-thread context to present their full potential.

D. RUF: Recursive Union-Find for pixel-recursive algorithms

Algorithm 3: RUF(E, ek, ε): a recursive Union-Find
1 er ← E[ek − 1] . Is ek a root?
2 if er = ek then
3 E[ek − 1]← ε
4 else
5 if er > ε then
6 RUF (E, er, ε)
7 else
8 if er < ε then
9 RUF (E, ε, er)

In a pixel-recursive context, SetRoot procedure is replaced
by a recursive union procedure to ensure the graph is always
up-to-date: RUF (alg. 3). So, DLP-RUF can label the whole
image in one iteration. In a mono-thread context, DLP-RUF
combined with the forward mask (fig. 3 center) is equivalent
to the classical Rosenfeld algorithm. And in a multi-thread
context, the atomic min instruction is mandatory to address
concurrency issue (alg. 4). Thanks to DLP-RUF, the number of
iterations is no more data-dependent and no additional stability
check is needed: DLP procedures had created a bridge between
iterative and direct algorithms.

Algorithm 4: atomicRUF (E, ek, ε)

1 if ek > ε then
2 minResult = atomicMin(&E[ek − 1], ε)

3 if ε > minResult then
. minResult < ε < ek

4 atomicRUF (E, ε, minResult)
5 else
6 if ek >minResult then

. ε < minResult < ek
7 atomicRUF (E, minResult, ε)

III. DLP-GPU: DLP IMPLEMENTATION FOR GPU
GPUs are good candidates for a DLP implementation: they

give access to efficient global and local (shared memory)

atomic min instructions used in SetRoot and RUF procedures
and provide a high number of execution units (2816 with our
reference card Nvidia GTX 980Ti).

A. Related works

There are few works on GPUs. In [6], the authors compare
the row-col algorithm with an algorithm close to DLP-I + a
classical iterative propagation called “Label Equivalence”. In
[10], the authors compare labeling with “Label Equivalence”
and labeling with an iterative Union-Find procedure close to
RUF but based on a while loop. Both implementations were
quite slow and inefficient. [16] is the most recent iterative
algorithm that is an improved version of a previous algorithm
[17]. In [14], the authors present a pyramidal algorithm:
iterative labeling of tiles, border tiles relabeling and iterative
tile fusion in a pyramidal way. All results were obtained on
a different and very restricted set of images that does not
allow for concluding on performance regarding the images
characteristics and thus to completely compare our results with
existing benchmarks. However, we provide indications based
on two partial images extracted from the Stava [14] paper
(the most efficient of these algorithms) using the same GTX
480. For a low density (d) image (2%< d <6%, 2048×2048)
DLP-GPU is a least 1.3× faster and for a higher density
image (12%< d <36%, 2048×2048), DLP-GPU is a least
1.6× faster. To allow for an efficient comparison with future
works, we based our benchmark on a reproducible procedure
described in the benchmark section.

B. DLP-GPU

Creating an efficient algorithm for the GPU programming
model implies minimizing the thread-divergence. Our proposi-
tion is to combine and tune the DLP mechanisms to minimize
the execution time of each step.

Algorithm 5: DLP-GPU
. Step 1: tile labeling [in shared memory]

1 foreach tile do
2 DLP -I(tile)
3 DLP -SR(tile) [optional]
4 DLP -R(tile) [optional]
5 DLP -RUF (tile)
6 DLP -R(tile)
7 Labeltranslation

. Step 2: border merging [in global memory]
8 DLP -RUF (Borders)

. Step 3: whole image relabeling [in global memory]
9 DLP -R(Image)

DLP-GPU is a three-step algorithm (alg.5): a local tile-
labeling, a global border merging and a global relabeling.
Step 1: tile labeling As the GPU works on sets of threads
grouped in blocks, the image is divided into tiles (fig. 10 top-
left).

1) DLP-I is locally applied to each tile (fig. 10 top-
center) allowing the whole step to be executed in shared
memory.



2) DLP-SR is applied with a 2 × 2 mask (fig. 10 top-
right) in order to reduce the amount of divergences
by reducing the number of tests. The south (blue) and
east (red) borders are not processed. The tile is labeled
regardless of the neighboring tiles. Thanks to DLP-SR
gather propagation, each pixel (even from the borders)
contributes to the labeling (fig. 10 top-right).

3) A first DLP-R is applied to the whole tile to accelerate
propagation (fig. 10 bottom-left).

4) DLP-RUF is applied to solve the remaining conflicts.
When two threads address the same labels, atomic-RUF
recursively ensures that the connected labels are at the
roots of connected components. In figure 10 bottom-
center: when 10 and 7 are detected as connected, atomic-
RUF detects than 10 is already connected to 1 and then
7 is connected to 1.

5) A second DLP-R is applied to obtain the final image of
labels without an additional iteration to check stability.

6) At this point, the tiles are locally labeled (localLab)
and need to be translated into global labels (globalLab)
with regard to the global tile & image coordinate system:
globalLab = tileIndex + localLab + nline × (wI -wT )
with:

• localLab = tile[i× wT + j + 1],
• nline = blocalLab/wT c,
• tileIndex = BY × wI +BX ,
• (BX , BY ) the tile’s coordinates,
• wT and wI the tile and image width.
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Fig. 10. Top-left: original tile, top-center: DLP-I, top-right: DLP-SR, bottom-
left: first DLP-R, bottom-center: DLP-RUF, bottom-right:second DLP-R.

Step 2: border merging.

7) DLP-RUF is applied once to each pixel of the south
(step 2a) and east (step 2b) borders. These processing
are done separately for efficiency. Indeed, east borders
generates non-coalescent accesses.

Step 3: relabeling

8) DLP-R is applied to each pixel of the image.

The calls to DLP-SR(2) and DLP-R(3) are optional. This
is a preprocessing to regularize the labels within the tile. It
appears (see benchmark section) that DLP-RUF + DLP-R are
very time consuming. In order to reduce entropy (expressed
here in sparse memory accesses), building a partial tree with
DLP-SR and doing transitive closure to flatten the trees with
DLP-R saves a lot of time.

(a) g = 1 (b) g = 4 (c) g = 16

Fig. 11. random images with density = 35% at granularity g ∈ 1, 4, 16.

IV. DLP-GPU BENCHMARK AND ANALYSIS

To allow for a fair and reproducible comparison with future
works (quite difficult with data-dependent algorithms), we
used the reproducible benchmark extensively detailed in [1].
The benchmark is based on random images – generated with
Mersenne Twister MT19937 [9] – with variable granularity
(from hard-to-label unstructured images to structured ones).
The density d varying from 0% to 100% and the granularity
g (size of the base pixel block) ∈ [1 : 16] (fig. 11). Two
generations of high-end Nvidia GPUs were benchmarked (tab.
1). The results are expressed with two metrics: the execution
time t (in ms) and the throughput Tp (in giga-pixels/s) to allow
an easy comparison between GPU generations and several
architectures like multi-core processors and FPGA. The image
size varies from 256× 256 up to 8192× 8192.

Table 1. Reference cards
Card architecture # cores frequency bandwidth
GTX 780Ti Kepler 2880 1020 MHz 336.0 GB/s
GTX 980Ti Maxwell 2816 1064 MHz 336.5 GB/s

A. Benchmark results and analysis

Global performance: Table 2 presents the mean execution
time (ms) and the mean throughput (Gp/s) over density for g ∈
{1, 4, 16}. For both GPUs, real-time performance is achieved.
If the execution time depends on the granularity. With g = 16,
an image is processed respectively×1.5 and ×1.6 than for
g = 1 on the GTX 780Ti and GTX 980Ti.
Table 2. Mean execution performance over density for 2048× 2048 images

with granularity g ∈ {1, 4, 16} on a GTX 980Ti.

Granularity
g = 1 g = 4 g = 16

GTX 780Ti t (ms) 1.56 1.27 1.05
GTX 780Ti Tp (Gp/s) 2.68 3.30 4.01
GTX 980Ti t (ms) 0.96 0.81 0.71
GTX 980Ti Tp (Gp/s) 4.37 5.19 5.87

GPU evolution: While the GPU characteristics are similar
(number of cores and frequency), DLP-GPU is approxima-
tively 50% faster on the 980Ti than on the 780Ti. The reason is
that DLP-GPU takes advantages of the efficient native shared
memory atomic min instruction on Maxwell architecture for
the first step and the increase of the L2 cache (2MB on
Maxwell versus 256KB on Kepler).

Block size adaptations to each step: The modular con-
ception of DLP-GPU allows for finely tuning the block size
for each step. Optimal performance was obtained with the
following configuration: step 1: (84 × 8), step 2a (112 × 1),
step 2b: (96× 1), step 3 (64× 2).

Relative efficiency of each step: Figure 12 shows the
execution time for step 1 (green), step 2 (red) and step 3



(yellow). We can notice that, when g increases, the curves
flatten and come closer to a straight line (for g=16).

If we focus on the cpp (cycle per pixel and per core) versus
the execution time (tab. 3), the border processing (step 2)
is very cycle consuming. It takes quite the same time that
the relabeling (step 3) while it only processes borders, which
have seven times less data. It comes from the noncoalescent
accesses to the east borders pixels and to the equivalence table
within the image.
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Fig. 12. DLP-GPU: execution time for 2048 × 2048 images, for g = 1
(left) and g = 16 (right) on a GTX 980Ti.

Table 3. cpp and execution time of DLP step on 980Ti - g=16

step cpp data (Mpixel) t (ms)
step 1 421 4.00 0.48
step 2 897 0.57 0.14
step 3 158 4.00 0.18

Efficiency of the optional processing step: In step 1
(alg. 5), the optional preprocessing (DLP-SR and DLP-R)
provides an average speedup of ×1.5 for low-density images
and increase up to ×2.5 for high-density images. The reason
is that the preprocessing performs a path compression of the
equivalence table that can be viewed as a regularization.

Sustained peak performance: Finally, the throughput per-
formance (fig. 13) increases with g and the peak is quickly
reached. The image size for which half of the peak perfor-
mance (N1/2 metric) is reached is around 640×640. That is –
by far – less than for linear algebra and matrix multiplication:
DLP-GPU is well-adapted to GPU and the peak performance
of the GPU is quickly available.
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Fig. 13. Throughput versus g ∈ {1, 4, 16} for DLP-GPU on a 980Ti (top)
and HCS2+ARemSP on a 4-core i7 6700K (bottom).

The execution time of the algorithm proposed in [16] is 3.7
ms for a 1024×768 image and 85 ms for a 4K image resulting
in a throughput of 272 and 12 MPix/s on a GTX 680. DLP
reaches a throughput of 1700 MPix/s in the same conditions.

CPU comparison: we compare it with one of the fastest
pixel-based CCL on CPU: HCS2+ARemSP (all algorithms are

very close on CPU, as they are memory bound). Fig 13 shows
the performance of the 4-core i7 Skylake running at 4 GHz.
The GPU Thoughtput is betweeen 3.5 and 6 Gpix when the
CPU is between 0.7 and 2.5 (before the cache overflow). There
is a factor 2.4 for g=16 and 5.0 for g=1. For single chip, pixel-
based DLP algorithm for GPU outperform pixel-based CPU
ones.

V. CONCLUSION

In this paper, we have presented DLP, a new set of algo-
rithms for multicores and GPUs. DLP-GPU deeply takes into
account the architectural properties to be efficient. Thanks
to a recursive union-find with atomic instructions, DLP is
no more iterative but direct like the algorithms for multi-
core processors. The equivalence table is embedded within the
image in order to reduce the number of memory accesses and
also to simplify and combine transitive closure and relabeling
operations. Moreover, a pre-processing step is used to speedup
the border processing. In the future, we plan to port DLP and
its competitors on an embedded platform like Nvidia Jetson,
to compare the performance of the embedded CPU with GPU.
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