
Video-rate Image Segmentation by means of Region
Splitting and Merging

Kanur Aneja, Florence Laguzet, Lionel Lacassagne, Alain Merigot
Institute for Fundamental Electronics, University of Paris South

Orsay, France
kanur.aneja@gmail.com, florence.laguzet@u-psud.fr

lionel.lacassagne@u-psud.fr, alain.merigot@u-psud.fr

Abstract—This paper proposes a fast method for image seg-
mentation. After an optimal split of the image into rectangular
regions, this paper focuses on the fast merging of these regions.
Since the computation time is very small, hence it is suitable for
real time applications, while producing a good segmentation for
tracking purposes.

I. INTRODUCTION

Image segmentation aims to group pixel in an image into
regions, based on their similarity in terms of grey level, color
or texture. It is an important step in practical application
of image analysis as it is frequently a preliminary pass for
object localization, recognition or tracking, etc. While many
sophisticated methods have been proposed, most are presently
unable to perform this segmentation on the fly, as it is required
in many time-critical applications like vehicle guidance, and
so on.

We present in the paper a very fast segmentation scheme
based on image splitting and merging. A classical Split and
Merge segmentation method was proposed in [1]. It splits
the image recursively in squares until all the squares are
homogenous enough. It has some drawbacks inspite of the
fact that it is very time effective. It is incapable of adapting
itself to the image characteristics i.e. it produces large number
of regions for boundaries other than the horizontal and vertical
ones. Also these region boundaries are highly dependent even
on simple tranformations like translation and scaling. Hence
we choose instead the Optimal Split method[2]. Here if a
given rectangle is not homogenous enough, we select an
optimal split position, i.e. a position that will lead to the most
homogeneous subregions. The computation of this position
can be very efficiently done with the help of the ‘scans’ or
‘prefix sum’ that can dramatically accelarate the computation
of global sums over square regions, in order to calculate, for
instance, the average intensity and variance of these regions.
A binary tree data structure is used to maintain the list of these
homogenous regions obtained during the split phase. The main
interest of this approach is that the splitting is adapted to the
image charateristics which largely reduces the initial number
of regions without any significant change in the computational
cost. This paper presents a new method for merging the regions
obtained from the optimal split method. A region is merged
with its neighbours till it can merge no further so as to have
the variance of all the regions below a given threshold.

II. IMPLEMENTATION

Our segmentation method proceeds in the following manner.
Firstly, in the split phase, the initial split is performed in

order to get the representation of the image as a set of
homogenous regions. Each homogenous region is assigned
a unique label. Then a region adjacency graph (RAG) is
constructed corresponding to this region set so that each region
gets references to its neighbours. In the merging phase, every
region is merged with its surrounding regions to get larger
regions which are still homogenous enough. This RAG is
updated until no more regions can be merged further. Merge
synoptic (Fig. 1) is the flow diagram representing the various
steps of our method. Here the boundary and rgb images have
been used to help in understanding the algorithm mechanism.
The next section presents the region merging algorithm and
all the above mentioned aspects will be described in detail in
the following sections.

initial
image

Split

initial split

rgb image

boundaries
image

Iterative
Merge

image of
labels

adjacency
table

final merge
image

rgb image

boundaries
image

Fig. 1. Merge synoptic

A. Algorithm
B. Image of labels

During splitting, a binary tree data structure is used to
maintain the list of the regions. So by scanning the binary
tree, all the regions can be accessed. But only the leaf nodes
of this tree will represent the homogenous regions obtained
upon the termination of the splitting process. Each leaf node
represents its corresponding homogenous region and hence
while traversing the tree, the labels are assigned to these nodes
and a new image of labels is then formed where each region
is filled by its corresponding label.

Algorithm 1:
foreach valid region ek do

select its best neighbour fk

if neighbour fk is valid then
if ((gray level(ek) ∼= gray level(fk)) then

Region is merged with its best neighbour if the
homogeneity criterion is followed
Update information for this new region in the
following-:

• Image of labels
• Adjacency table (representing RAG so formed)
• Properties of the region after merging (average

intensity, variance,size, etc)
Continue merging the new region so formed
(updated ek) until it cannot merge any further

else
select another neighbour fk for ek

end
else

invalidate the region ek (remove it from the list)
end

end

C. Adjacency table
This table is based on the image of labels so as to maintain

the list of neighbours for each region in the original image after
the split phase is over. Because of the optimal splitting process,
the image is divided into several rectangular regions. So while
scanning the image of labels, there are four possibilities which
can be encountered by the scanning element (Fig. 2 top right)

• vertical border
• horizontal border between two adjacent regions having

different labels
• corner formed by three adjoining regions and
• the case where the element remains inside the same

region

horizontal
border
(a<>x=b)

vertical
border
a=x<>b

inside
(a=x=b)

corner
(a<>x<>b)

a

xb

#1

#2

#3

#4

#5#6

#7

#8

Fig. 2. Automaton and the scanning element

In order to accelerate the building of the adjacency table,
a finite state automaton (Fig. 2) has been created to represent
all the possible transitions. Hence, the labels are added to
each other’s list of neighbours if and only if, a vertical border
or a corner is encountered by the scanning element (cases
(5),(6),(7),(8) of Fig. 3). Because when the element moves
inside (i.e. within) the same region, it does not encounter a
transition. The transition in case of the horizontal border is
insignificant because it ultimately leads to a vertical border or
a corner. While adding the label to the neighbours list of a
particular region (i.e. represented by another label) it is also
ensured beforehand that that label is not present in the list

being considered. As the merging progresses, this adjacency
table is modified to contain the combined list of neighbours
of the regions being merged.

#1: corner -> horizontal

a

xb

a

xb

a

xb

a

xb

#2: horizontal -> horizontal

a

xb

a

xb

#3: vertical -> inside

a

xb

a

xb

#4: inside -> inside

a

xb

a

xb

#8: inside -> corner

a

xb

a

xb

#7: inside -> vertical

a

xb

a

xb

#6: horizontal -> vertical

a

xb

a

xb

#5: horizontal -> corner

Fig. 3. Transitions

D. Selection of the next region to merge
It can be done using several methods:
• the region is selected randomly from the list of available

valid regions
• the region having minimum variance(i.e. the most ho-

mogenous region) is selected every time from the updated
list of valid regions

• the region with the largest size can be selected to com-
mence the merging process

It appears that these methods lead to similar results in terms of
the quality of the segmentation. As a simple random selection
is much faster, this is what will be used in this paper.

E. Best neighbour selection
Every region in the image obtained after splitting has its

own list of neighbours (i.e connected regions) as contained
in the adjacency table. If the difference of average gray level
intensities of the selected region and its neighbour is less than
the average threshold (0.4 × variance threshold gives good
results), then the neighbour is considered to be eligible. This
is done to check the similarity of the grey levels of the regions
being merged because otherwise, by only considering variance
based criteria, a small region could be absorbed by a much
larger one, whatever its gray level may be. Then the combined
global variance of the main region (under consideration) and
one of its eligible neighbours is calculated. The neighbour
giving smallest value of variance after merging is selected as
the “best neighbour” from the list of eligible neighbours of
the main region. If a region does not have an eligible best
neighbour then it cannot merge further, and it is removed from
the list of valid regions. But it is possible that later this invalid
region can qualify as a best neighbour of some other newly
formed valid region.

F. Merging rows
When the region and its corresponding best neighbour are

selected considering the above mentioned criteria in mind, it
must be ensured that the variance of the selected region is less
than the maximum variance value. The threshold value of the
variance for the split and merge phase is the same. The regions
are then merged and their list of neighbours is combined. The

new neighbours list when merging region B to region A is
the initial neighbours list of A− {B}+ the neighbours of B
that are not neighbours of A. Hence the list of neighbours is
updated for the new region(region R i.e. updated region A)
so formed in the adjacency table. The size of the region R
is the sum of the size of region A and B. A common label
i.e. the label of the main region being merged (region A) is
assigned to region R. Also the average grey level intensity of
this region R is modified and updated.

The merging for a region is done in this manner till it can
merge no further. The region becomes invalid when it cannot
merge any more. Then another region is selected and is merged
with its neighbours in the similiar way. This merging process
continues till no more valid regions (that can merge further)
exist.

III. DIFFERENT APPROACHES

A. Original method
Simple merging consists of selecting a region, merging it

with its best neighbour, then selecting another region, and so
on till no more valid regions exist. Good results were achieved
using this approach but the time taken to perform the merging
was much more than expected. Thus, we experimented several
variants of this baseline method and compared them with re-
spect to their computation time and quality of the segmentation
(number of regions, final variance, etc).

B. One region at a time
In this method, one region is selected for merging and it is

merged until it cannot merge any further. Then another region
is selected and so on. This method gives almost the same
segmentation quality but it with a much better execution time
(that is improved up to 30 times).

C. Other considered modifications
• To increase the accuracy further,the modification made

during ’best neighbour selection’ was to check that if
the ’main region’ (under consideration) is also the best
neighbour of its selected ’best neighbour’. So the merging
was performed only if both the regions being merged
were best neighbours of each other respectively. But this
leads to highly selective merging and very few regions
can be merged effectively. For instance, on the “cam-
eraman” image with 1730 initial regions, the number of
regions after merging were 1603 (instead of 531 regions
otherwise).

• An expensive aspect in the merging, is the updating of the
neighbour list. To ease neighbour search and selection,
this list needs to sorted. Then we can use merge sort when
performing the actual merging. An initially considered
solution was to initially sort all the neighbor lists. The
associated execution time was important, and we chose
instead to perform the sorting “on demand”, only for the
case where the list needs to be merged. This leads to a
dramatic reduction in the execution time (54 ms vs 1849
ms for the merge time for the “cameraman” image)

• A trick which has been used to decrease the compu-
tational merging time further is to modify the random
selection of the main region in order to improve the
execution time. In our method, the list of regions is
written in the adjacency table and then random selection
is performed by picking any region from this table. This

table can be updated at any time during the merging
process when a region is removed. But the problem is
that it will require many useless copies and moves in
the table. So instead we choose a “lazy” scheme, where
the table is not modified but a new parallel list of all the
regions is maintained in the beginning. Each time a region
is picked randomly from this list, its validity is checked.
If it is valid, it gets selected. But if it is invalid, then it
is swapped with the last element of this list and the size
of the list is decreased by one. In this way, this new list
gets modified each time an invalid region is picked from
the list so as to decrease the number of invalid regions
in it and gradually increase the probability of picking out
a valid region being picked out during random selection.
This optimization makes the selection process faster. The
same amount of merging is done in 36 ms instead of 54
ms for cameraman image.

D. Test image segmentation results

Three classical images have been used for benchmarking:
cameraman, image and peppers. The computer used is a
PowerPC G5 running at 2.5 GHz using gcc 4.0.

Figure 4 shows some segmentation results for several im-
ages. We display the original image, the segmented image
(obtained by replacing pixel value in every region by the
region average gray level) and the boundary image after merge
for different thresholds of variance. The visually good results
were obtained for a variance threshold of 30–40 for the given
examples. The associated numbers represent the number of
regions, before and after merging.

We can see that, despite some artifacts that are inherent to
the method, mostly when dealing with regions with oblique
frontiers, the overall segmentation is quite correct and can
produce in real time a good starting point for a localization or
recognition task.

IV. GRAPHS

A. Variance vs total Time

Figure 5 presents the total computation time for the bench-
marked images for variance threshold range of (20-70). We can
remark that the computation time lies in the range 20–45 ms
leading to a possible implementation in real video framerate.

B. Detailed analysis of the execution time

Figure 7 presents the detailed contributions of the different
passes of the algorithm for the image image for different
variances. We can notice that the split time is in general
negligible (around 5 ms), and the most important contribution
is the initial adjacency table construction, and the actual
merging step. This later time increases with the variance, as the
the deeper merging performed supersedes the smaller number
of regions produces at the initial image slitting.

C. Variance vs Number of regions

For all images (Fig. 6) the number of regions decrease with
increase the value of variance threshold because greater the
value of the threshold, more the number of regions will be
merged.

(a) Cameraman (b) After optimal split(var -30) (c) Boundary image after merge, var-
15,nb(2233,1528)

(d) Boundary image after merge, var-
30,nb(1730,643)

(e) Boundary image after merge, var-
50,nb(1441,230)

(f) Final segmented image(var 30)

(g) Peppers (h) Boundary image after merge, var-
40,nb(2039,571)

(i) Boundary image after merge, var-
65,nb(1741,168)

(j) Image (k) Boundary image after merge, var-
35,nb(2631,775)

(l) Boundary image after merge, var-
60,nb(2078,380)

Fig. 4. Examples of segmentation results

D. Table

For a variance threshold varying between 20 to 70, the
average time and standard deviation is computed for each
image in this table.

cameraman image peppers
Average time (ms) 30 45 38
Standard deviation 8.0 6.8 6.3

20 25 30 35 40 45 50 55 60 65 70
15

20

25

30

35

40

45

50

55

60
time

variance

tim
e(
m
s)

cameraman
image
pepers

Fig. 5. computation time for the benchmarked images

20 25 30 35 40 45 50 55 60 65 70
0

500

1000

1500

2000

2500
regions

variance

nb
 re

gi
on

s

cameraman
image
pepers

Fig. 6. number of regions for the benchmarked images

20 25 30 35 40 45 50 55 60 65 70
0

10

20

30

40

50

60
image!time

variance

tim
e(
m
s)

total
merge
split
adjacency
labels

Fig. 7. computation time for image example

V. COMPARISON WITH HOROWITZ PAVLIDIS ALGORITHMS

20 25 30 35 40 45 50 55 60 65 70
10

20

30

40

50

60

70

80
time

variance

tim
e(
m
s)

cameraman
image
pepers

Fig. 9. computation time for HP2 algorithm

20 25 30 35 40 45 50 55 60 65 70
0

20

40

60

80

100

120

140

160

180

200
time

variance

tim
e(
m
s)

cameraman
image
pepers

Fig. 10. computation time for HP4 algorithm

As we can see (Fig. 9), HP2 is the only real-time algorithm
(<40 ms). HP4 provides better split (Fig. 8) but is twice slower
(Fig. 10) than HP2. finally the Optimal Split & Merge is as
fast as HP2, but with better split & merge stages.

VI. CONCLUSION

This paper has presented a real-time merging phase of a
real-time segmentation scheme suitable for time critical appli-
cations. As it relies on an initial optimal split of the image,
the quality of segmentation is much higher that most others
methods based on classical split and merge, and it can be used
for fast pre-segmentation purposes for localization or tracking.
The quality of the segmentation can be further improved by
postprocessing steps (for instance the segmentation done using
successive steps[3]). Presently considered extensions are also
to extend the method to color images.

REFERENCES

[1] S. Horowitz and T. Pavlidis, Picture segmentation by a tree traversal
algorithm, Journal of the ACM, 23:368388, 1976.

[2] Alain Merigot, Revisiting image splitting, 12th IEEE International Confer-
ence on Image Analysis and Processing (ICIAP 2003), 17-19 September
2003, Mantova, Italy, pp. 314–319.

[3] Andre Gagalowicz et Olivier Monga, A new approach for image seg-
mentation. In Proceedings, Eighth International Conference on Pattern
Recognition, IEEE Publ. 86CH2342-4, pp. 265–267, Paris, France,1986.

(a) Cameraman HP2 (b) Cameraman HP2 boundaries (c) Cameraman HP4 (d) Cameraman HP4 boundaries

(e) pepers HP2 (f) peper HP2 boundaries (g) peper HP4 (h) peper HP4 boundaries

(i) image HP2 (j) image HP2 boundaries (k) image HP4 (l) image HP4 boundaries

Fig. 8. Examples of Horowitz Pavlidis (HP2 & HP4) results

