
LIGHT SPEED LABELING FOR RISC ARCHITECTURES

L. Lacassagne & B. Zavidovique

Institut d’Electronique Fondamentale (IEF/AXIS) – Université Paris Sud

ABSTRACT
This article introduces a fast algorithm for Connected Compo-
nent Labeling of binary images called Light Speed Labeling.
It is segment-based and a line-relative labeling that was espe-
cially thought for RISC computers. An extensive benchmark
on both structured and unstructured images substanciates that
the algorithm, the way it is designed, is faster and more run-
time predictable than Wu’s algorithm claimed to be the world
fastest in 2007.

Index Terms— Connected Component Labeling, run
length coding, Real-Time implementation.

1. INTRODUCTION

Binary Connected Component Labeling (CCL) algorithms
deal with graph coloring and transitive closure computation.
CCL algorithms play a central part in machine vision, because
they often constitute a mandatory step between low-level im-
age processing (filtering) and high-level image processing
(recognition, decision). As such, CCL algorithms have a
lot of applications and derivate algorithms like convex hull
computation, hysteresis filtering or geodesic reconstruction.

Designing a new algorithm is challenging both from con-
sidering the overwhelming literature and from the very per-
formance of best existing algorithms. Goals could be a faster
algorithm on some class of computer architecture or minimiz-
ing the number of over-created labels or the smallest theoret-
ical complexity. Yet another issue is to be most predictable.

Now, from the current state of the computing technology,
reaching decent performances in actuality requires for CCL
algorithms to take into account two specificities/capacities
of RISC architectures: the processor pipeline and its cache
memories. That amounts to minimize conditional statements
(like tests and comparisons) to reduce the number of pipeline
stalls and limit random sparse (typically vertical) memory
accesses, to lower cache misses.

Our new algorithm, Light Speed Labeling (LSL) is specif-
ically designed in view of RISC architectures. It uses a seg-
ment approach combined with the Selkow’s automaton [1],
to minimize the number of created labels. Its major improve-
ment is the introduction of a new line-relative labeling to sim-
plify equivalence building between segments.

Exhaustive benchmarks were run to compare and evaluate
two types of CCL algorithms. At first we priviledge the sole

execution point of view. There, we put a fair stress on the
statistical standard deviation of the algorithm execution-time
when processing random and quite unstructured images.

But an other important point to consider when designing
a CCL algorithm is its goal. It bridges semantic visual levels
in providing bounding rectangle and the first order statistical
moments . So if a standalone CCL algorithm can be consid-
ered at first step, the couple “CCL+feature computation” is
the procedure to be actually evaluated at end. Whence bench-
marking on real images, and rather stressing the distance be-
tween actual and optimal execution.

Historical algorithms were designed by pioneers like
Rosenfeld [2], Haralick [3] and Lumia [4] for pixel-based al-
gorithm and Ronse [5], for segment-based algorithm. Modern
algorithms derive from the historical ones and try improve-
ments by replacing some components by a more efficient one,
like Path Compression, Decision Tree [6] and smart segment-
based algorithms using efficient run length coding. A more
extensive bibliography can be found in [7] and [6].

2. LIGHT SPEED LABELING

LSL focuses on quickly finding out the segment adjacency.
It is reformulated by introducing a new line-relative labeling
that helps limiting conditional statements. The line-relative
labeling is combined with a Selkow’s automaton to make LSL
the most data independent as possible. Run Length Coding is
extensively used at each step of the algorithm. Last but not
least, a peculiar attention was paid to data structures and their
implementation to minimize cache misses and pipeline stalls.
Let define the following notations: er, ea and a, a relative,
absolute and ancestor label and ner, the number of segments
of ERi. X is a binary image of size h × w, Xi and Xi−1

are the current and previous lines of X . ER and EA are the
associated images of relative and absolute labels. RLCi, a
table holding the run length coding of segments and ERAi

holds the association between er and ea: ea = ERAi[er].
EQ holds the equivalence classes. LEAi is a list of absolute
labels per line.

The LSL algorithm is designed to fit RISC processor ar-
chitectures: memory caches and pipeline execution. LSL ac-
counts for the pipeline by minimizing the number of tests and
comparisons performed to detect segments and to find the seg-
ment adjacency out. Classically a test makes pipeline to stall



Xi-1

Xi

1 6544332
0 10 1 1 1 1 1 1 1

1 1
2 3 4 5 6 7 8 910

ERi-1

ERi

j

0 852 4 8
2 9

RLCi-1

RLCi

2 3 4 510j

0 021 0 3
0 1

2 3 4 510e

ERAi-1

ERAi

211EQ
2 310

0
e

step #1

step #2

Fig. 1. step #1 and step #2: lines i and i− 1

as the processor needs to know the result of the currently ex-
ecuted instruction before launching the next one. The deeper
the pipeline the bigger the impact on the performance. LSL
is not a 2-pass algorithm but a 3-pass one. It introduces a pre-
pass that performs a line relative labeling devoted to speedup
the next passes. The main drawback of segment-based al-
gorithms is they behave like a fusion sort, but with a more
complex automaton as segments have length unlike points do.
Let us underline that LSL can directly find out the number of
adjacent segments and their labels, without performing com-
plex adjacency tests. LSL is composed of five steps: step#1 is
the first relative labeling, step#2 is the equivalence building,
step#3 is second labeling (first absolute labeling), step#4 is
equivalence resolution and step#5 is the final labeling (only
useful for humans).

Two versions are presented: LSLSTD is the most data-
independent with its systematic step#1 and pixel-based steps
#3 and #5; LSLRLE is data-dependent as optimized with a
conditional step#1, a segment-based step #3 and #5, but in the
special case of feature computation, no more step#5.

Algorithm 1: LSL segment detection STD
Input: Xi a binary line of width w
Result: ERi, RLCi and ner
x1 ← 0 [previous value: X[j − 1]]; f ← 0 [front detection]
b← 0 [right border correction]; er ← 0 [initial label]
for j = 0 to w − 1 do

x0 ← Xi[j]
f ← x0 ⊕ x1 [XOR front detection]
RLCi[er]← j − b [begin/end of segment store]
b← b⊕ f [XOR end of segment correction]
er ← er + f [label incrementation if front detected]
ERi[j]← er
x1 ← x0: [register rotation to save one LOAD]

x0 ← 0; f ← x0 ⊕ x1; RLCi[er]← n− b
er ← er + f ; ner ← er [number of label]

Step#1 performs a relative labeling of each line. For each
line Xi the ERi table holds the associated relative label er
of each segment. relative refers to that a same numbering
(restarting from zero) is performed for every line. As seg-
ments are separated by slices of background pixels, an ef-
ficient trick consists in assigning even numbers to segments

and odd numbers to background (Fig. 1). Such a kind of num-
bering is known in the field of parallel computing as refering
to the scan concept [8]. While labeling segments, their run
length code (begin and end [j0, j1] of each segment) is also
stored into the RLCi table. The loop epilog is to tackle the
last line-point problem. The RLE version of this algorithm
tries to optimize it by making all instructions using f condi-
tional to the f value (if f = 1 then ...). Note that the STD
algorithm is fully data independent but not the RLE one.

Algorithm 2: LSL equivalence construction
Input: X a binary line of width n
Result: ne the number of relative labels on the line X
for k = 0 to n step 2 do

er ← k + 1; j0 ← RLCi[k]; j1 ← RLCi[k + 1]
[check extension in case of 8-connect algorithm]
if j0 > 0 then j0 ← j0 − 1
if j1 < n− 1 then j1 ← j1 + 1
er0 ← ERi−1[j0]; er1 ← ERi−1[j1]
if er0 is even then er0 ← er0 + 1 [check label parity]
if er1 is even then er1 ← er1 − 1 [check label parity]
if er1 ≥ er0 then

ea ← ERAi−1[er0]; a← EQ[ea]
for erk = er0 + 2 to er1 do

eak ← ERAi−1[erk]; ak ← EQ[eak]
if a < ak then

EQ[eak]← a [min propagation]
else

a← ak; EQ[ea]← a; ea← eak;

ERAi[er]← a [global min]
else

nea← nea + 1 [no adjacency→ new label]
ERAi[er]← nea

Step#2 is the equivalence construction (Algo. 2). For
each segment er, its boundaries [j0, j1] are read from RLCi

to direcltly obtain the relative labels of every adjacent seg-
ment in the previous line: er0 is the label of the first segment
and er1 the label of the last segment. As background slices
are labeled with even numbers, a correction, based on parity
check is applied to er0 and er1. If there is an adjacency, the
absolute label ea of the first segment is read from the associa-
tive table ERAi−1. The ancestor a, that is the smallest label
of the equivalence class is initialized with EQ[ea]. The loop
consists of extracting the absolute label eak and the ancestor
ak of each adjacent segment then propagating the minimum
ancestor to every label. At the end of the loop, a is equal to
the global minimum of all ancestors ak. That value becomes
the new absolute label of segment er and is memorized into
the ERAi table. In the case of no adjacent label, a new la-
bel is created and the total number of absolute labels nea is
incremented.

Step#3 consists in replacing the relative label of every
segment by its absolute label: ERAi can be interpreted as
a Look Up Table to be applied to ERi to create EAi: for each
pixel of coordinates (i, j): EAi[j]← ERAi[ERi[j]].



1 3 52 4
0

ERi-1

ERi

EAi

EAi-1 1 2 3 alsolute labels

relative labels

1
1

1 1 1

0 0

0

0
6

relative labels

alsolute labels

lin
e 

i-1
lin

e 
i

Fig. 2. Propagation of absolute labels

Step#4 is the resolution of the equivalence classes. The
EQ table is packed into the associative table of ancestors A:
for each e, EQ[e]← EQ[EQ[e]].

Step#5 is identical to step #3: every absolute label ea is
replaced by its ancestor a: EAi[j]← EQ[EAi[j]].

The RLE version performs compression (step#2) by stor-
ing the list of ea into the LEA table and then uncompressing
LEA thanks to RLC table during step#3 and step#5.

3. BENCHMARKS

3.1. Benchmark procedures

CCL algorithms are data dependent and benchmarking such
algorithms is not obvious. A four stages process depending
on the a priori data complexity is proposed.

First stage: to evaluate the algorithms in the worst case,
intuitively here represented by totally unstructured data, thou-
sand 512 × 512 random images are generated with a density
varying from 0 to 1000 by steps of 1/1000. It serves to evalu-
ate the algorithms behavior but also the impact of the density
on the number of generated labels vs. the execution time.

Second stage: to test slightly structured images, a 3 × 3
morphological dilation is applied to previous images, to re-
move stand-alone pixels and to cluster others. Homotheties
are used to evaluate the impact of the relative ratio object /
image sizes. Such data enable to separate between the num-
ber of components and the image size when execution time
varies.

Third stage to test highly structured data where the
number of labels and ancestors are kept exactly the same
for all algorithms, images are paved with squares of size
k ∈ {4, 8, 16, 32, 64, 128}. For a given square size k (Fig.
3), a set of homothetical images are generated according to a
scale factor.

Finally, real images are tested that involve many labels
to be representative enough. OCR images are interesting as
OCR is an important application that requires realtime execu-
tion (Post Offices for example). Cadastral images are harder
to label: some regions are even smaller and split into sub re-
gions (due to black and white hatching) and they are rounded
by very large regions (street, buildings).

Comparing algorithms from a quantitative point of view,
we chooose to rely on the cpp (Cycle Per Point): cpp =
(t × F )/n2. Where t is the execution time, F the processor
frequency and n2 the number of pixels to process, per pro-
cessor. The cpp is an architectural metric to estimate the ade-
quacy of an algorithm to an architecture [9]. As the execution

Fig. 3. homothetical images famillies

time is normalized by the processor frequency and the image
size, results from one algorithm running on one architecture
can be compared to other ones. A Penryn Intel processor at
2.8 GHz has been used for the following set of benchmarks,
as it is the current State-of-the-Art architecture. More details
about the LSL implementation and more benchmarked pro-
cessor results (PowerPC G4 and G5) are available in [10].

Three algorithms are evaluated in this paper: R the world
fastest optimized implementation of Rosenfeld’s algorithm by
Wu [6] with Decision Tree and Path Compression. LSLSTD

is the most systematic version of LSL and LSLRLE is the
most optimized and the more data dependant one using RLE
compression for steps 3 and 5. Images are available at [11].

For each benchmark, we provide the cpp but also the stan-
dard deviation that is a fair indicator of the global behavior of
each algorithm: the smaller, the more runtime predictable.
For structured data, two cpp are provided - with/without fea-
ture computation - to assess the algorithm behavior in a real
application. Usual feature computation are bounding rectan-
gles (geometrical features) [i0, i1]×[j0, j1] and first order sta-
tistical moments (S, SX , SY ) used to calculate the centroid
(xG, yG) = (SX/S, SX/S). The computation of these fea-
tures can be accelerated through the use of Bernoulli polyno-
mials: sx([j0, j1]) = ϕ1(j1 − 1)− ϕ1(j0 − 1) with ϕ1(n) =
n(n + 1)/2.

3.2. Benchmarks results

Rosenfeld LSLSTD LSLRLE

Random images: average cpp and standard deviation
cpp 27.2 17.1 29.7

std-dev 8.7 2.9 10.5

Dilation images: average cpp and standard deviation
cpp 22.1 11.1 9.1

std-dev 2.6 1.0 6.2

average cpp for Homothety
without Features Computation 12.0 9.0 5.3

with Features Computation 21.5 6.0 4.5
OCR and cadastre average cpp with Features Computation

OCR 19.8 6.1 5.1
Cadastre 42.8 6.6 6.8

Table 1. Results: average cpp and standard deviation

For random images, LSLSTD is ×1.6 faster than R and



0 100 200 300 400 500 600 700 800 900 10000

5

10

15

20

25

30

35

40

45
penryn−random

density

cp
p

 

 
Rosenfeld
LSLSTD
LSLRLE

LSL-RLE

LSL-STD

Rosenfeld

Fig. 4. cpp for random images
its standard deviation ×3 smaller than R. For dilation im-
age, LSLSTD is×2.0 faster than R and its standard deviation
drops down to 1.0 that is×2.6 smaller than R. LSLRLE is in
average×2.4 faster than R. For images with a density smaller
than 0.7 it is up to ×4.2 faster than R. For Homothety, cpp
of all versions decrease, but the ratio remains the same when
there is no feature computation: LSLRLE is ×2.3 faster than
R. When there are some feature computations, R becomes
×1.8 slower, while LSL performances increase: LSLRLE ,
thanks to RLE compression is then ×4.7 faster than R. For
OCR, LSL is ×3.2 and ×3.9 faster than R. One can no-
tice too that with feature computation, OCR is as complex as
dilation images for R. For very complex image like cadas-
tre with a huge number of labels and concavities, R is much
more data sensitive (×2.2) than LSL (×1.1 and ×1.3). In
that case, LSL outperform R by a factor greater than ×6. As
a matter of fact, the LSL execution times for this 512 × 512
images benchmark are 1.6 ms for random images, 0.47 ms for
OCR and 0.61 for cadastre on a 2.8 Ghz Penryn.

To conclude on the test result analysis, LSL is always
faster and more data independent than Wu’s algorithm even
in the worst case of random images. For unstructured images,
choose LSLSTD, for other images, choose LSLRLE . More
important, if random images can be considered the worst case
and homothety images the best one then OCR/cadastre im-
ages should represent the real average case. Under this as-
sumption, LSL execution time is by far closer to the best case
than to the worst. For real and complex images, when a com-
ponent labeling algorithm is considered a part of a processing
chain, that is associated with some feature computation, the
speed ratio reaches a level of 4, proving the importance and
the impact of software (cache and pipeline) and algorithmic
(line relative labeling and RLE compression) optimizations.

4. CONCLUSION AND FUTURE WORK

A new algorithm called Light Speed Labeling optimized for
RISC architectures has been presented. It optimizes pipeline
execution by reducing the number of stalls, and limits the
memory footprints and cache misses. We introduce a new
line-relative labeling that makes the segment adjacency de-
tection more efficient. Combined with Selkow’s automaton,
this algorithm has much less conditional statements, whence
reducing the number of pipeline stalls. As memory man-
agement of tables is also a weak point of segment-based
algorithms, the implementation of user data structures was
optimized too. Two versions were presented: the first one,
LSLSTD is the most systematic and data-independent pos-
sible and is designed for noisy images (pseudo random im-
ages with few structuration) and for systems where runtime
predictability is important. The second one, LSLRLE , is
highly optimized for real images and feature computation.
All results point out that LSL is faster (up to ×6) and more
runtime predictable (up to ×2) than 2007 Wu’s world fastest
algorithm. More generally, these results also provide some
hints and a new methodology to design data-dependent al-
gorithms that peculliary fit RISC architectures. Future work
will consider parallel versions of LSL for multi-core proces-
sors and its application to derivate algorithms like geodesic
reconstruction or level lines labeling [12] [13].

5. REFERENCES

[1] S.M. Selkow, “One pass complexity analysis of digital pictures proper-
ties,” Journal of ACM, vol. 19,2, pp. 283–295, 1972.

[2] A. Rosenfeld and J.L. Platz, “Sequential operator in digital pictures
processing,” Journal of ACM, vol. 13,4, pp. 471–494, 1966.

[3] R.M. Haralick and L.G. Shapiro, Computer and Robot Vision, Addison-
Wesley ISBN 0-201-56943-4, 1981.

[4] R. Lumia, L. Shapiro, and O. Zungia, “A new connected components
algorithms for virtual memory computers,” Computer Vision, Graphics
and Image Processing, vol. 22-2, pp. 287–300, 1983.

[5] C. Ronse and P.A. Dejvijver, “Connected components in binary images:
the detection problems,” in Research Studies Press, 1984.

[6] K. Wu, E. Otoo, and A. Shoshani, “Optimizing connected component
labeling algorithms,” Pattern Analysis and Applications, 2008.

[7] L. He, Y. Chao, and K. Suzuki, “A run-based two-scan labeling algo-
rithm,” in ICIAR. LNCS 4633, 2007, pp. 131–142.

[8] G.E. Blelloch, Vector Models for Data-Parallel Computing, MIT Press,
1990.

[9] L. Lacassagne, M. Milgram, and P. Garda, “Motion detection, labeling,
data association and tracking in real-time on risc computer,” in ICIAP.
IEEE, 1999, pp. 520–525.

[10] L. Lacassagne and B. Zavidovique, “Light speed labeling: efficient
connected component labeling on risc architectures,” JRTIP, to appear.

[11] L. Lacassagne, “Images data base used for benchmarking www.ief.
u-psud.fr/˜lacas/Download/LSL/LSL.html,” .

[12] F. Guichard, S. Bouchafa, and D. Aubert, “A change detector based on
level sets,” in International Symposium on Mathematical Morphology,
2000.

[13] M. Gouiffès and B. Zavidovique, “A color topographic map based on
the dichromatic reflectance model,” Journal on Image and Video Pro-
cessing, vol. doi:10.1155/2008/824195, 2008.


