
 1

Customizing 16-bit floating point instructions on a NIOS II processor for FPGA
image and media processing

Daniel Etiemble *, Samir Bouaziz ** and Lionel Lacassagne**

*LRI, ** IEF, University of Paris Sud
91405 Orsay, France

{de@lri.fr, Samir.Bouaziz@ief.u-psud.fr ; lionel.lacassagne@ief.u-psud.fr }

Abstract
We have implemented customized SIMD 16-bit floating

point instructions on a NIOS II processor. On several
image processing and media benchmarks for which the
accuracy and dynamic range of this format is sufficient, a
speed-up ranging from 1.5 to more than 2 is obtained
versus the integer implementation. The hardware overhead
remains limited and is compatible with the capacities of to-
day FPGAs.

1. Introduction

Graphics and media applications have become the

dominant ones for general purpose or embedded
microprocessors. While some applications need the
dynamic range and accuracy of 32-bit FP numbers, a
general trend is to replace FP by integer computations for
better performance in embedded applications for which
hardware resources are limited. In this paper, we show
that 16-bit FP computations can produce a significant
performance advantage over integer ones for significant
image processing benchmarks using FPGA with soft core
processors while limiting the hardware overhead. By
customizing SIMD 16-bit instructions, we significantly
improve performance over integer computations without
needing the hardware cost of 32-bit FP operators.

1.1 16-bit floating point formats

16-bit floating formats have been defined for some DSP
processors, but rarely used. Recently, a 16-bit floating
point format has been introduced in the OpenEXP format
[1] and in the Cg language [2] defined by NVIDIA. This
format, called “half”, is presented in Figure 1.

S Exponent Fraction

1 5 10

S Exponent Fraction

1 5 10

Figure 1: NVIDIA “half” format

A number is interpreted exactly as in the other IEEE FP
formats. The exponent is biased with an excess value of
15. Value 0 is reserved for the representation of 0
(Fraction =0) and of the denormalized numbers (Fraction
≠ 0). Value 31 is reserved for representing infinite
(Fraction = 0) and NaN (Fraction ≠ 0). For 0<E<31, the

general equation for calculating the value in a floating
point number is (-1)S x (1.fraction) x 2(Exponent field-15). The
range of the format extends from 2-24 = 6 x 10-8 and (216-
25) = 65504. In the remaining part of this paper, the 16-bit
floating point format will be called half or F16. We have
considered 16-bit operations for general purpose
processors in previous papers [3, 4]. For all applications
for which this format is useful, we have shown that a
simplified version of the half format gives similar results
compared to the 16-bit version of the IEEE FP formats.
By comparing the images resulting from computations
with different FP formats (according to PSNR measures),
we have shown that denormalized numbers are useless and
that rounding towards 0 (truncating the low order bits of
the final mantissa after adding or multiplying mantissas)
gives similar results to other rounding modes. In other
words, the simplest hardware solution is sufficient. In the
rest of the paper, the 16-bit FP format will be called F16
and the usual “float” format will be called F32.

1.2 Data format for image and media processing

Image processing generally need both integer and FP
formats. Convolution operations with byte inputs need 32-
bit integer formats for the intermediary results. Geometric
operations need floating point formats. In many cases,
using the “half” format would be a good trade-off: the
precision and dynamic range of 32-bit FP numbers is not
always needed and 16-bit FP computations are compatible
with byte storage if efficient byte to/from half format is
available.

Research of points of interest within an image is a
typical application: the objective is to reduce the image to
a limited set of points considered as the most
representative of the whole set to be used as an index for
this image. Figure 2 shows the Achard and Harris
algorithms. They share most computations and differ by
the final step. They include a 3x3 Sobel gradient followed
by 3x3 Gauss filters. The common part is typical of low
level image processing. For integer computations, initial
images with levels of gray have unsigned char format to
code the pixels. Sobel gradient computations lead to short
format to avoid overflow and the following multiplications
lead to int. format. The 16-bit floating point numbers keep

 2

the same format all along the computations without any
overflow and a SIMD implementation is straightforward.

Image
Ix

Iy

3 x 3 gradient
(Sobel) Ix*Ix

Ix*Iy

Iy*Iy

Sxx

Sxy

Syy

Final
image

(Sxx*Syy-Sxy2)
- 0.05 (Sxx+Syy)2

Unsigned char short

int int

3 x 3 Gauss filters

Iyy*Sxx+Ixx*Syy-
2*Ixy*Sxy

Harris

Achard

Image
Ix

Iy

3 x 3 gradient
(Sobel) Ix*Ix

Ix*Iy

Iy*Iy

Sxx

Sxy

Syy

Final
image

(Sxx*Syy-Sxy2)
- 0.05 (Sxx+Syy)2

Unsigned char short

int int

3 x 3 Gauss filters

Iyy*Sxx+Ixx*Syy-
2*Ixy*Sxy

Harris

Achard

Figure 2: Achard and Harris algorithms for detection
of Points of Interest (POI).

Non standard FP formats have been proposed for image
and media processing. In [5], Fang et al propose
lightweight floating point arithmetic to enable FP signal
processing applications in low-power mobile applications.
Using IDCT as benchmark, the authors show that FP
numbers with 5-bit exponent and 8-bit mantissa are
sufficient to get a Peak-Signal-to-Noise-Ratio similar to
the PSNR with 32-bit FP numbers. These results illustrate
another case for which the “half” format is adequate

1.3 FPGA with soft core processor.

FPGAs with soft core processors are now currently
available from many suppliers. Customizing F16
instructions for the soft core is thus a simple approach to
consider. Customized instruction-sets for embedded
processors have been considered for a while [6]. Recently,
transparent customization has been considered for ARM
instruction set [7]. In this paper, we consider the
customization of SIMD F16 instructions for the NIOS II
processor provided by Altera for several boards.
According to the different benchmarks, we consider the
instructions to customize. Then, we measure the execution
times of the different benchmarks with and without these
supplementary instructions and we evaluate the
corresponding hardware overhead.

2. Methodology

2.1. Description of benchmarks

For image processing, we first consider convolution
operators: the horizontal-vertical versions of Deriche
filters and Deriche gradient [3, 4]: these filters operate on
2D arrays of pixels (unsigned char), do some computation
by using integers and deliver byte results. They are
representative of spatial filters and have a relatively high
computation to memory accesses ratio.

Then, we consider some algorithms that can be
considered as intermediate level image processing. Achard
and Harris algorithms for the detection of points of
interests belong to this category. They have already been
introduced in Figure 2. Optical flow algorithms belong to

the same category. It is a function which is used to
understand the difference between images caused by the
motion. Points of interest and Optical flow are mainly used
for image stabilization.

For media processing, we consider the FDCT functions
of JPEG 6-a which are included in MediaBench [8]. There
are three different versions of FDCT and IDCT functions
called “integer”, “fast integer” and “float”. In [3, 4], we
have shown that there is no significant difference between
the original image and the final image (after coding and
decoding) when using F16, integer or F32 formats. It is
worthy to evaluate the execution time of the F16 format.

 The code for all the benchmarks is provided in [9].

2.2. Hardware and software support
All the experiments have been done with the Altera

NIOS development kit (Cyclone Edition) which includes
the EP1C20F400C7 FPGA device. We used the NIOS II/f
version of the processor, which main features are
summarized in Table 1. All information on the device and
processor features can be found in [10].

The NIOS II processor has a 50-MHz clock
frequency when used with the Cyclone kit. As our
benchmarks typically consist in loop nests for which
branch outcomes are determined at compile time, the
dynamic branch predictor is not useful. For integer
computation, adding hardware multiplier and divider
has a significant impact. A larger data cache size
could also slightly improve performance. There is no
hardware FP support: FP computations are done by
software.

All the benchmarks have been compiled with the
Altera Integrated Development Environment (IDE),
which uses the GCC tool chain. –O3 option has been
used in release mode. Execution times have been
measured with the high_res_timer that provides the
number of processor clock cycles for the execution
time. Most of the results use the Cycle per Pixel
metrics, which is the total number of clock cycles
divided by the number of pixels. For each benchmark,
the execution time has been measured at least 5 times and
we have taken the averaged value.

Table 1: NIOS II/f processor features

Fixed features Parameterized features
32-bit RISC processor
Branch prediction
Dynamic branch predictor
Barrel shifter

HW integer multiplication
HW integer division
4 KB instruction cache
2 KB data cache

2.3. 16-bit floating point operators

The 16-bit floating point operators have been designed
from a VHDL library developed by P. Belanovic [11] for

 3

embedded applications : it includes a 4-cycle pipelined
version of an adder and a multiplier without all IEEE
format specificities (no denormals, no NaN, etc). It has
been written with behavioral VHDL code, which is the
best way to profit from the Altera Quartus II compiler
ability to exploit the FPGA features and the parameterized
library of operators optimized for the FPGA devices. We
first corrected some mistakes of the original design. After
getting correct implementations of the 4-cycle adder and
multiplier, we defined 2-cycle versions of the same
operators to get the smaller latency compatible with the
50-MHz clock frequency. To compare performance, 32-bit
FP add/sub (4-cycles) and multiplier (3-cycles) circuits
have also been implemented.

The 16-bit divider has been implemented the non-
pipelined divider provided by another VHDL library [12].

2.4 Customization of instructions

The technique to customize instructions for the NIOS
processor is described in [13]. This technique is quite
simple. Hardware operators defined with HDL language
(VHDL or Verilog) can be introduced between input and
output registers of the processor register file. Two types
of operators can be defined. The combinational operators
are used when the propagation delay is less than the
processor cycle time. In that case, the defined interfaces
are the 32-bit input data (dataa and datab) and the output
data (result). When the propagation delay is greater than
the clock cycle time, multi-cycle operations must be used.
They have the same data interface than the combinational
operators, plus clock and control signals: clk (processor
clock), clk_enable, a global reset (reset), a start signal
(active when the input data are valid) and a done signal
(active when the result is available for the processor). As
the processor need a 32-bit data interface, it is natural to
define all our instructions as SIMD instructions: each one
operates simultaneously on two 16-bit FP operands. This
is a big advantage of using F16 operands as it doubles the
throughput of operations.

Using the customized instructions in a C program is
straightforward. Two types of “define” are used as the
instructions can have one or two input operands:

- #define INST1(A)
__builtin_custom_ini(Opcode_INSTR1, (A))

- #define INST2 (A, B) __builtin_custom_inii
(Opcode_INSTR2, (A), (B))

3. The SIMD 16-bit FP instructions

SIMD F16 instructions include data computation and

data manipulation. Load and store instructions use the 32-
bit NIOS load and store instructions.

3.1 Definition of SIMD F16 instructions
An image generally consists of 8-bit data, coding levels

of gray or each of the three basic colors. Data conversion
instructions are thus needed, from/to bytes to/from F16
formats. As a 32-bit access load or store four bytes, two
types of conversion instructions are needed, one for the
low order bytes of a 32-bit word and the other for the high
order bytes. Conversion instructions between 16-bit
integer and F16 formats are also needed.

Low level image processing uses a lot of filters that
compute a new pixel values according to the neighbor
pixel values. The SIMD version of the code for these
filters needs to correctly align the SIMD values before
SIMD computation. Assuming that j = 0 mod 4, a 32-bit
access loads the bytes T[i][j], T[i][j+1], T[i][j+2] and
T[i][j+3] while the four neighbors are T[i][j+1], T[i][j+2],
T[i][j+3] and T[i][j+4] or T[i][j-1], T[i][j], T[i][j+1] and
T[i][j+2] In any case, a special treatment is needed as one
byte belongs to a word and the three other ones to another
word. The trick is to combine the conversion with the shift
as shown in Figure 3. The shift is not for free as some
shifts require two memory accesses.

Table 2 presents the different data conversion and
manipulation instructions that are needed.

i+3 i+2 i+1 i i-1 i-2 i-3 i-4

B2FSRL

B2FSRH

i+3 i+2 i+1 i i-1 i-2 i-3 i-4

B2FSRL

B2FSRH

Figure 3: Byte to F16 and shift conversion instructions

Table 2: SIMD conversion, conversion and shift and
shift only instructions

INST Effect
B2F16L Converts the two lower bytes of a 32-bit word into

two F16
B2F16H Converts the two higher bytes of a 32-bit word into

two F16
F2BL Converts two F16 into two unsigned bytes in the

lower part of a 32-bit word
F2BH Converts two F16 into two unsigned bytes in the

higher part of a 32-bit word
S2F16 Converts two 16-bit integers into two F16
F2S Converts two F16 into two 16-bit integers
B2FSRL Converts the high order byte of a word and the low

order byte of a word into two F16
B2FSRH Converts the two middle bytes of a word into two

F16
FSR
(B,A)

Put the low order F16 of word B into high order
F16 of results. Put the high order byte of word A
into low order F16 of result.

 4

Although the conversion and shift instructions have
been defined as shift right instructions, it is easy to show
that they can be used for shift left instructions. To shift left
one position four bytes belonging to A (one byte) and B (3
bytes), the instruction B2FSRL (A, B) delivers the high
part and B2FSRH (B) delivers the lower part.
Supplementary mnemonics can be used for readability of
right and left shifts without needing more hardware
operators.

The arithmetic instructions are given in Table 3.
Addition and Subtraction are implemented by a shared
two-cycle operator. One control bit selects the operation.
All the arithmetic instructions are multi-cycles instruction,
except DP2 that divides by a power of 2 just by
subtraction on the F16 exponents.

Table 3: SIMD arithmetic instructions

INST Effect Cycles
Notation Word X consists of two F16 (XH and

XL)

ADDF RL ←AL + BL ; RH ← AH + BH 2
SUBF RL ←AL – BL ; RH ← AH - BH 2
MULF RL ←AL * BL ; RH ← AH * BH 2
DIVF RL ←AL / BL ; RH ← AH / BH 5
DP2 RL ←AL / 2 BL ; RH ← AH / 2HL 1

3.2 Hardware cost of the SIMD F16 instructions

The number of logic elements can be used as a rough
metrics to evaluate the hardware cost of each customized
instructions. Other metrics could also be considered such
as the number of connections, but they would basically
complicate the comparison without giving more
significantly precise information. At least, the “logic
element” metrics gives a rough estimation of the chip area
that is used. To evaluate the operator’s complexity, we use
two different percentage values.

The first one is the percentage increase of the number
of logic elements compared to the reference version of the
basic computing system including the CPU + the main
system overhead (JTAG, I/O, timers). This figure
corresponds to the overhead resulting from the use of
customized instructions versus the reference system. There
exists a “custom instruction” overhead that is needed when
at least one custom instruction is added to the CPU ISA.
It is also interesting to include the overhead corresponding
to integer hardware multiplication and division.

The second one is the percentage of logic elements
versus the overall number of logic elements available on
the FPGA device (Cyclone kit in our experiments). This
figure indicates the percentage of “logic element”
resources that are lost for the rest of the applications.

The reference version of the NIOS II:f processor uses
2,409 logic elements and the system overhead uses 415

logic elements. The reference version is the one presented
in Table 1 without hardware multiplication and division.

Table 4: Hardware cost of “customized instructions”

Operators LE Overhead Use

HW Mul 563 20.6% 2.8%

HW Mul+Div 791 28.9% 3.9%

CI overhead 415 15.2% 2.1%

ADDF/SUBF 439 16.0% 2.2%

MULF 561 20.5% 2.8%

DIVF 962 35.1% 4.8%

DP2 17 0.6% 0.1%

B2FH 36 1.3% 0.2%

B2FL 29 1.1% 0.1%

B2FSRH 33 1.2% 0.2%

B2FSRL 7 0.3% 0.0%

F2BL 66 2.4% 0.3%

F32 ADD/SUB 528 19.3% 2.6%

F32 MUL 1094 40.0% 5.5%

Table 4 gives the hardware cost of the customized

instructions. Overhead is the percentage of supplementary
logic elements versus the reference computing system. Use
is the percentage of logic elements used versus the overall
number of logic elements available in the FPGA device.

As expected, the arithmetic operators use most of the
extra resources with an overhead of respectively 16%,
21% and 35% for the addition, multiplication and division
to add to the CI overhead (15%). The overhead for the
other instructions is small: the total overhead for all
conversion instructions sums to 6.3%, which is far less
than any basic arithmetic instruction (except D2P). Using
all the F16 instructions of table leads to 93.7% overhead
versus the reference version. Considering the FPGA
device use, all the F16 instructions correspond to 12.8%
of the LE resources while the computing system is 14.5%.
F32 scalar operations use far more hardware resources.

The supplementary F16 resources that are needed look
quite reasonable. All the operations are not needed for all
benchmarks, as shown in the next section.

3.3 F16 instructions used by the benchmarks

Table 5 shows the instructions that are used by our
benchmarks. Not surprisingly, data conversions with and
without shifts are present in all the image processing
benchmarks, which also use the basic arithmetic
instructions (ADDF, SUBF, MULF and DP2). Division is
rare: it is only used by the optical flow benchmark. The
DCT only use the three main arithmetic operations.

4. Measured results

 5

4.1 Basic loops
We first give the execution time for some basic loops

that help to evaluate the actual execution time of the main
instructions (load, store, loop overhead, addition,
multiplication, etc), either when using the usual integer
instructions (with hardware multiplication and division) or
when using SIMD F16 instructions. Table 6 gives the
corresponding execution time (in clocks per iteration). In
the SIMD case, the execution time corresponds to two
F16 operations or two iterations of the inner loop when
using F16 data. These figures will be useful to explain the
measured execution times for the different next
benchmarks. They both include the operation execution
times and the data access time including the cache effects.

Table 5: F16 instructions used by the different
benchmarks (1: Deriche HV; 2: Deriche gradient; 3:
Achard; 4: Harris; 5: Optical flow, 6: DCT).

Instructions 1 2 3 4 5 6
ADDF X X X X X X
SUBF X X X X X
MULF X X X X X
DIVF X
DP2 X X X

B2FH X X X X X
B2FL X X X X X

B2FSRH X X X X
B2FSRL X X X X

F2BL X X X X
F2BH X X X X

Table 6: Execution time of basic loops (Cycles per
iteration (int or F32) or for two iterations (F16)

Loop N=10 N=100 N=256
X[i] = A[i] 14.2 14.9 18.9
X[i] = i 6.7 6.6 6.25
X[i] = A[i] + B[i] 17.8 23.3 23.6
X[i] = A[i] + k 16 16.1 19.9
X[i] = ADDF16 (A[i] ,B[i]) 21.6 26.9 27.6
X[i] = ADDF16 (A[i] ,k) 20.3 20.1 23.9
X[i] = A[i] * B[i] 31 35.1 35.7
X[i] = A[i] * k 27.2 28.1 31.9
X[i] = MULF16 (A[i] ,B[i]) 24.4 27.1 27.7
X[i] = MULF16 (A[i] ,k) 18.2 20.1 23.9
X[i] = ADDF32 (A[i] ,B[i]) 31.5 27.8 32.5
X[i] = MULF32 (A[i] B[i]) 30.3 26.6 31.4

4.2. Deriche benchmarks

The Deriche benchmarks include the horizontal-vertical
version of the Deriche filter and the Deriche gradient.
They both use two arrays, which mean that the result array
is different from the original one. The execution times for
the filter are presented in Table 7 for the filter and in Table

8 for the gradient. For the filter, the F16 version is more
than 2 times faster than the integer one: it comes from the
SIMD instructions, a slightly faster multiplication while
the addition is slightly slower and a better cache behavior.
The int. version has more cache conflicts (When N=258,
CPP = 102). For the gradient, the speed-up is limited to
1.3 for large enough images as SIMD advantage is
counterbalanced by a lot of data manipulation and the only
arithmetic operation is addition/subtraction which is
slower with F16 than with integer operations.

Both for Deriche filter and gradient, the float version is
slower than the integer version. First, the cache behavior is
worse as the float arrays are four times greater than the
byte arrays. Then, the F32 multiplication and addition
instructions are scalar and respectively use 3 and 4 cycles.
For the other benchmarks, we will not give the F32 results
as they cannot compete with the F16 versions when the
F16 accuracy and dynamical range are sufficient.

Table 7: Deriche filter execution time (CPP) on an
NxN image according to N

N 32 64 128 256

F16 35.6 38.5 38.1 38.0

INT. 89 117 120 122

Speed-up 2.4 3 3.1 3.2

F32 105.9 105.3 105 NA

Table 8: Deriche gradient execution time (CPP)

N 32 64 128 256

F16 22.6 25.9 26.8 27.3

INT. 20.8 35 35.4 35.7

Speed-up 0.9 1.3 1.3 1.3

F32 70.5 72.4 73.4 NA

4.3 Achard and Harris benchmarks

Tables 10 and 11 give the results for Achard and Harris
algorithms. As the algorithms have a significant common
part, the results are close and significant of algorithms
including a lot of low-level image processing. In both
cases, the speed-up is greater than 1.5.
4.4 Optical flow benchmark

The optical flow benchmark, which corresponds to the
original algorithm[14], includes a lot of computation. The
speed-up is greater than 1.6. Table 11 also shows one
advantage of F16 format. The amount of memory that is
needed for intermediate is reduced. The 256x256 image
can be computed with F16 and the Cyclone board while
external memory is insufficient for integer format.

 6

4.5 JPEG DCT
Table 12 gives the execution times of the “int.” version

implemented in JPEG 6-a. F16 version is similar to the
“float” version implemented in JPEG 6-a, except that any
float data has been replaced by F16 data. As there is no
simple SIMD version of this FP code, we used scalar F16
operators by casting all the 32-bit results to 16-bit values.
Even without using the SIMD feature, we have a 1.28
speed-up because the supplementary computations that are
needed to control the data range in the integer version are
not needed in the FP versions.

Table 9: Achard execution time (CPP)

N 32 64 128 256

F16 171 217 235 245

INT. 293 349 360 366

Speed-up 1.71 1.60 1.53 1.49

Table 10: Harris execution time (CPP)

N 32 64 128 256

F16 166 212 230 240

INT. 293 348 359 365

Speed-up 1.76 1.64 1.56 1.52

Table 11: Optical flow (CPP) on an NxN image

N 32 64 128 256

F16 137 183 198 207

INT. 293 312 323 NA

Short 318 339 350 356

Speed-up 2.13 1.70 1.63 NA

Table 12: JPEG DCT execution times (CPP)

Version INT. F16 Speed-up

CPP 59 46 1.28

7. Concluding remarks

Customizing 16-bit floating point SIMD instructions for

the NIOS II processor leads to a significant speed-up for
the image and media processing benchmarks for which the
accuracy and data range of this format is sufficient. While
the SIMD approach doubles the number of operations per
iteration, the speed-up generally ranges from 1.5 to more
than 2. Data manipulations that are needed for SIMD
operations reduce the speed-up but the cache behavior is
generally improved as the size of the arrays for the
intermediate computations are divided by 2. F16

computations are generally simpler than the corresponding
integer ones, as optimized integer code adds specific
computations to extend the limited dynamic range of 32-
bit integers. This is why the scalar F16 version of JPEG
FDCT is faster than the integer version, even when it
cannot benefit from the SIMD gain.

The overhead for the SIMD F16 operators remains
limited and looks totally compatible with the hardware
capabilities of to-day FPGA devices.

8. References
[1] OpenEXP, http://www.openexr.org/details.html

[2] NVIDIA, Cg User’s manual,
http://developer.nvidia.com/view.asp?IO=cg_toolkit

[3] L. Lacassagne and D. Etiemble, “16-bit floating point
operations for low-end and high-end embedded processors”, in
Digests of ODES-3, March 2005, San Jose.. Available at
http://www.ece.vill.edu/~deepu/odes/odes-3_digest.pdf

[4] L. Lacassagne, D. Etiemble, S.A. Ould Kablia, “16-bit
floating point instructions for embedded multimedia
applications”, in Proc. CAMP’05, July 2005, Palermo

[5] F. Fang, Tsuhan Chen, Rob A. Rutenbar, “Lightweight
Floating-Point Arithmetic: Case Study of Inverse Discrete Cosine
Transform” in EURASIP Journal on Signal Processing, Special
Issue on Applied Implementation of DSP and Communication
Systems

[6] J.A. Fisher, “Customized Instruction-Sets For Embedded
Processors”, in Proc. 36th Design Automation Conference, New
Orleans, June 1999.

[7] N. Clark, J. Blome, M. Chu, S. Mahke, S. Biles and K.
Flautner, “An Architecture Framework for Transparent
Instruction Set Customization in Embedded Processors”, in Proc.
ISCA, Madison, June 2005.

[8] C. Lee, M. Potkonjak, W.H. Mongione-Smith, “Mediabench :
A Tool for Evaluating and Synthesizing Multimedia and
Communication Systems”, Proceeding Micro-30 conference,
Research Triangle Park, NC, December 1995.

[9] Benchmark code : http://www.lri.fr/~de/F16/code-NIOS

[10] Altera: www.altera.com

[11] P. Belanovic and M. Leeser, “A library of Parameterized
Floating Point Modules and Their Use” in Field Programming
Logic and Applications, FPL02, Montpellier, LNCS Vol.
2438/2002.

[12] J. Detrey and F. De Dinechin, “A VHDL Library of
Parametrisable Floating Point and LSN Operators for FPGA”,
http//www.ens-lyon.fr/~jdetrey/FPLibrary

[13] Altera, “NIOS Custom Instructions, Tutorial”, June 2002,
http://www.altera.com/literature/tt/tt_nios_ci.pdf

[14] B. Horn and B. Schunck, “Determining optical flow”,
Artificial Intelligence, 17:185--203, 1981.

