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Abstract—This article presents and compares optimized im-
plementations of two optical flow algorithms on several target
boards comprising multi-core SIMD processors and GPUs. The
two algorithms are Horn-Schunck (HS) and TV-L1, and have
been chosen because they are both well-known, and because
of their different computational complexity and accuracy. For
both algorithms, we have made parallel optimized SIMD imple-
mentations, while HS has also been implemented on GPUs. For
each algorithm, the comparison between the different versions
and target boards is carried out in a two-dimensional fashion:
in terms of computing speed – in order to achieve real-time
computation – and in terms of energy consumption since we
target embedded systems. The results show that for HS, the GPUs
are the most efficient in both dimensions, able to process in real-
time performances (25 frames per second) up to 8Mpix images
for 0.35J per image, against 1.8Mpix images for 0.24J per image
on CPU. The results also highlight the impact of optimizations
on TV-L1: far slower than HS without optimization, it can
almost match its performance after optimization on CPU, and can
achieve real-time performances with 0.25J for 1.4Mpix images.
We hope these results will help developers design optical flow
embedded systems.

I. INTRODUCTION

Embedded systems must satisfy the antagonist constraints
of real-time processing and power consumption, especially for
computer vision. Optical flow is a family of algorithms which
are used to estimate the apparent velocity of every point in
a pair of images. These algorithms are used in a wide range
of applications, from movement compensation on cameras to
autonomous vehicles.

To estimate optical flow in real time is a challenging task
for embedded systems since it requires a lot of computa-
tional effort, while the power consumption must remain low.
Therefore, the processor used must optimize the performance
per Watt ratio, and this ratio is known to be better for
small cores [1]. We believe that specific architectures like
SIMD cores and GPU are suitable candidates for achieving
the requested computation time while meeting the power
constraints. This work considers several such architectures to
perform movement detection and evaluate if they would fit the
defined constraints.

This article aims to study and compare various implemen-
tations of two optical flow algorithms from a speed vs. energy
consumption perspective, and highlights the impact of algo-
rithmic and architectural optimizations for SIMD processors
and GPUs.

Section II introduces the optical flow algorithms evaluated;
section III presents all the optimizations implemented and
algorithms variants; section IV presents the measurement
protocol along with the target boards; section V presents and
analyses the results obtained; and finally section VI concludes.

II. OPTICAL FLOW ITERATIVE ALGORITHMS

More than a hundred optical flow algorithms exist, and vary
according to their computational speed, quality of detection,
and management of complex situations such as occlusions.
An extensive qualitative analysis [2] of existing algorithms
is available on the Middlebury’s website [3], which also
provides links to some of the codes. CMLA’s IPol website [4]
also provides various codes of recent algorithms. Optimized
implementations of optical flow algorithms were the subject of
numerous works on FPGA [5], [6], [7], [8] and on GPU [9],
[10], [11], [12], but few on CPU [11], [13]. It should also be
noted that optical flow estimations based on machine learning
are gaining in popularity in the scientific community [14], [15].

This article focuses on two algorithms: the Horn-Schunck
(HS) algorithm [16] and the TV-L1 algorithm [17]. While HS
is not the most accurate, this well known algorithm has the
advantage of simplicity. Its computation method is suitable
for CPU and GPU implementations, and thus it can serve
as a reference for more advanced algorithms which share its
structure. Besides, the Horn-Schunck algorithm is used by the
authors in a processing chain targeting the detection of meteors
in real time from a nano-satellite [18]. TV-L1, which more
computationally intensive, is studied because it can handle
more complex situations such as night vision denoising.

The Horn-Schunck algorithm works as follows: it starts by
computing the space-time derivatives (Ix, Iy It) of the pair
of input images, then iteratively computes an average over
a local neighborhood (eq.1), along with the update in every
point of the velocity vector field (u, v) (eq. 3). The term α2

is a convergence parameter.
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TV-L1, which is well described in [17] and [4], relies on
the total variation method using the L1 norm for the regular-
ization terms (TV-L1). It allows to have better estimation of
discontinuities in the flow and the method is also more robust
to the noise. This makes it particularly suitable for applications
such as video denoising where the optical flow method needs
to be robust to noise [19] and where a lot of occlusions can
occur. TV-L1 estimation has however a greater computational
demand compared to HS, as it uses different intermediate
vector fields v = (v1, v2) and P = (P1x, P1y, P2x, P2y) to
compute the final field u = (u1, u2). Therefore, there are 3
major steps to compute one iteration of TV-L1:

vk+1 = uk + TH(uk, u0) (3)

uk+1 = vk+1 − θdiv(P) (4)

Pk+1 =
Pk + τ/θ∇(vk+1 + θdiv(Pk))

1 + τ/θ
∣∣∇(vk+1 + θdiv(Pk))

∣∣ (5)

Where TH(u) is a conditional thresholding function. τ and
θ are respectively the time step and tightness regularization
terms.

Based on these equations, we can describe the algorithm
with 3 major operators, each operator having a specific con-
sumer/producer behavior, as presented in Figure 1.

U2 :

U1 : : V1

: V2

V
Others :

V1 :

V2 : U1

: U2

U
P1 :

P2 :

: P11

: P22

: P12

: P21
P

U1 :

U2 :

Fig. 1. Consumer/Producer representation of the main operators involved in
TV-L1 optical flow estimation.

Using this representation highlights the difficulty to merge
those operators since the computation of ui,j needs top and
left points from P and the computation of P needs bottom and
right points from u. This is due to the computation of divP
and ∇u. These considerations are important to understand the
pipeline optimization presented in section III.

In order to simplify the performance analysis, the mono-
resolution version of both algorithms are evaluated. Indeed,
It gives good estimations in terms of computation time and
power consumption as the hierarchical version empirically
proves to be slightly less than twice slower. Besides, this
allows to decouple the analysis from other concerns and
choices, such as the interpolation method (bi-linear or bi-
cubic), the number of scales, or the scaling method (Burt
filter, Gaussian filter or a simple binomial filter). For the same
reason, no warp [4] is considered for both algorithms. Large
displacements require a multi-resolution version.

The qualitative aspects of these algorithms will not be
studied in this article, as it puts the focus on the speed vs.
power consumption trade-off for a real time detection with
limited power. However, these algorithms have been chosen
and are relevant to evaluate because the HS algorithm provides
a reference baseline with good results for simple scenes, while

the TV-L1 algorithm is able to handle more complex scenes
with occlusions.

Lastly, a choice has to be made regarding the number of
iterations: we decided to consider eight iterations per pixel for
the HS algorithm, and three iterations for the TV-L1 algorithm,
noticing experimentally that the corresponding Mean Squared
Errors (MSE) were similar for these configurations. However,
the results for both algorithms cannot be directly compared as
their application domains are not identical.

III. SPEED AND POWER CONSUMPTION OPTIMISATIONS

Embedded system optimization for speed [20] and for power
consumption [21], [22], [23] can be achieved by minimizing
one of the two conditions under the hypothesis that the other
follows a hard constraint. The proposed approach consists here
in exploring the efficient frontier of the operating points in
the (speed, consumption) space for codes with different levels
of optimization, on different processors running for various
frequencies. The points of compromise thus found can be used
for example to define the maximum image size which can be
processed by a configuration, and to help fuel the debate on
power requirements.

The algorithmic transformations considered here for opti-
mization are the ones described in [24], especially operators
pipelining and operators fusion.

The HS and TV-L1 algorithms lend themselves well to this
type of transformations: it is possible to merge the computation
steps of the point-wise operators such as the V and U operators
in Figure 1 for TV-L1. In order to reduce the number of
memory accesses and to improve the arithmetic intensity, the
result of V is no more stored in an array but directly used to
compute the result of U . More importantly, the iterative part
allows to pipeline iterations so that the accesses to a same
memory cell are as close as possible in time. This way, data
are more likely still in cache when they are accessed. Doing
this requires to create intermediate arrays to store the results
for each iteration.
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Fig. 2. Processing order for pipelined TV-L1 for 3 iterations (X #Y represents
the data X at iteration Y ). Dashed steps represent the prologue.

Figure 2 describes the pipeline optimization for 3 iterations
of TV-L1 including a description of the prologue needed to
deal with the images edges.

By analyzing the data dependencies within this transforma-
tion, we can first realize that all intermediate arrays can have
modular memory allocation in order to reduce the number
of lines per array to the number of iterations. With few
adjustments of the prologue and the epilogue, we can even



merge all the buffers so that we only have one buffer per
vector field and the data modifications are made in-place.

These transformations maximize data persistence inside the
processors (in the cache for CPUs, in the shared memory for
GPUs) while minimizing transfers with the external memory.
Similar transformations can be applied on the HS algorithm.

IV. EXPERIMENTAL EVALUATION

The five target boards used for experiments are presented
in table I, three of which own a GPU. For each architecture,
different implementations have been studied. For the CPU
architectures, all the versions are multi-threaded with as many
threads as physical cores. The considered variants for HS
algorithm are: the base algorithm (base), two SIMD non-
pipelined versions with respectively one or two buffers (simd1
and simd2), and two pipelined SIMD versions with one or
two buffers (pipe 1 et pipe 2). For GPU architectures, two
versions are considered: the baseline version (base) and an op-
timized version (opt) comprising the following optimizations:
shared memory, grouping of U and V , operator merging and
iterations kept within block. Additionally, these two versions
are declined in two flavors: F32 et en F16. As for the TV-L1
algorithm, nine versions have been tested, but for the sake of
clarity we present here only four of them. The first one is the
standard version with scalar implementation (base), the second
one is its SIMD equivalent named simd, the last two ones are
respectively called pipe and pipe mono and both have SIMD,
fusion and pipeline optimizations described in section III, the
difference being that pipe mono also has merged buffers (i.e.
no intermediate buffer).

In order to perform simple and reproducible power mea-
surements, the electrical consumption of the entire embedded
system is measured. A board was developed to this effect
which is inserted between the power source and the target
board. Voltage, through a voltage divider, and current, through
a resistor in series and a voltage amplifier, are measured
by a micro-controller. The latter also reads the state of 4
GPIOs from the target board, in order to match measurement
points and events from the computation program. The micro-
controller sends 5000 samples per second to a PC host. The
power measurement board was also carefully calibrated.

In the case of GPUs, performances are evaluated for each
kernel [25] for blocks of 64 to 512 threads, using multiples
of 32 (the size of a warp [25]). The blocks are from 8 to 256
threads large and 1 to 32 threads high. The best block size is
then used within the comparisons.

TABLE I
TECHNICAL SPECIFICATIONS OF THE TARGET BOARDS.

Board Process CPU Fmax
(GHz) GPU Fmax

(MHz)
PCduino8 28 nm 8×A7 1.80 - -
RPi3 40 nm 4×A53 1.20 - -
TK1 28 nm 4×A15 2.32 192 C Kepler 852
TX1 20 nm 4×A57 1.73 256 C Maxwell 998
TX2 16 nm 4×A57 2.00 256 C Pascal 1300

We simultaneously measured performance and power con-
sumption for different frequencies and image sizes. The fre-

quencies are taken among the available frequencies on each
board. Whenever possible, the external memory frequency is
set to its maximum. The cooling system of each target board
is also set to the maximum and the energy savings processes
in the OS are deactivated. When the target board does not
contain an integrated cooling down system, we performed the
measures in an isothermal oven. We used all the ARM cores
on each board, but we deactivated the Denver 2 cores on the
Jetson TX2 board. The images used for the experiments are
square images, with a varying size from 64 and 1024 pixels
with a 8 pixel increment for the CPU versions; and with a
varying size from 208 to 2048 pixels with a 16 pixel increment
for the GPU versions. The size of 1008×1008, often used,
corresponds to the largest size which is not a cache line size
multiple and which is compatible with the GPU splitting.

In the case of GPUs, performances are evaluated for each
kernel [25] for blocks of 64 to 512 threads, using multiples
of 32 (the size of a warp [25]). The blocks are from 8 to 256
threads large and 1 to 32 threads high. The best block size is
then used within the comparisons.

V. RESULTS ANALYSIS

A. Operating points and efficient frontier

Figures 3 and 4 show the efficient frontiers of the operating
points in the (time per pixel, energy consumption per pixel)
space for each of the studied configurations. Figure 3 presents
the results for the HS algorithm on CPUs and GPUs, while
Figure 4 shows those for TV-L1 on CPUs.

The best configuration is obtained with the TX2 board for
both HS (for both the GPU and the CPU versions) and TV-
L1 algorithms. Figure 3 highlights the significant performance
improvements brought by the GPU versions, and the impact of
the presented optimizations: focusing on the TX2, compared
to the base CPU version, the optimizations roughly bring a
factor of 2.3 in speed, and the optimized GPU version (F32) a
factor 6 in speed and 9 in power consumption. We also note
that for each configuration, the efficient frontier is generally
small, showing that only a few of the possible frequencies are
interesting w.r.t. the optimization criteria – typically between
one and 3 points among 10 tested frequencies. This last aspect
is even more significant for TV-L1 as we can see on Figure 4
that the efficient frontier is often reduced to a single point
(usually the highest frequency). This figure also shows that the
regular implementation of TV-L1 is far less efficient than the
HS one. However, the optimizations made on TV-L1 bring a
better improvement with a speedup of ×4.5 and a consumption
drop of more than ×6. Still, even if the execution time of TV-
L1 tends to reach the one of HS for the best boards (TX2 and
TX1), its consumption remains significantly higher.

B. Impact of CPU optimizations

Figure 5(a and c) shows the impact of the considered CPU
optimizations on the processing speed for the Jetson TK1
board – its behavior is well representative of all the other tested
configurations on CPUs. By varying the image size, we can
observe a cache exit generally sooner for the non-optimized
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versions, particularly emphasized in the simd1 version of HS
(Figure 5(a)). Furthermore, among the best optimizations, the
impact of the cache exit remains less important than on the
other versions. As for example, on Figure 5(c), we can observe
than for the tvl1 simd version, the cache exit is penalized
by being 2.5 times slower than before when on the tvl1 pipe
version, the penalty is only of a factor 2, while starting from
a 2 times faster speed. We figured out that some optimizations
slightly increase the power consumption – like the use of the
SIMD units for HS – but Figure 5(b and d) shows that the
time saved for processing one image with these optimizations
still requires a lot less energy to process the same image.
Besides, the most efficient optimizations (pipe versions for
each algorithm) not only speed up the computation, but also

Fig. 5. Impact of the optimizations on CPU for both HS and TV-L1 on target
board TK1. CPP = Cycles Per Pixel, Size = side length of a square image.
Lower is better.
reduce the power consumption, even with SIMD use. This little
drop in power consumption could be explained by the fact that
the pipe versions reduce the number of memory accesses and
improve data persistence in cache, what saves both energy and
time.

C. Impact of GPU Optimizations

Figure 6 shows the evolution of the number of cycles per
pixel (CPP) and of energy as functions of frequency for the
TX1 target board, on baseline and optimized codes, both in F16

and F32. Figure 6(a) shows that in F32, the opt version is about
3 times faster than the base version. The F16 base version is
1.5 to 2 times faster than the F32 base version. The opt F16

version is faster than the F32 only on high frequencies as the
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memory is no more fast enough compared to the processor.
Because of the lack of ILP (Instruction Level Parallelism), F16

becomes interesting when the memory becomes a bottleneck.
This is the same phenomenon that can explain the raise of
CPP at high frequencies: the required bandwidth to maintain
the same speed reaches the maximum target board bandwidth;
the programs then becomes memory bound.

Figure 6(b) shows that the trend in power consumption is
the same as for the speed: the variation in power consumption
is negligible before the power consumption duration. On
figure 6(c), the idle power consumption is subtracted from the
total power consumption. We can notice that the frequencies
minimizing the power consumption correspond to the Compute
Bound – Memory Bound transition on which the CPP starts to
grow. However, it is better to go towards higher frequencies
if we consider the idle power consumption

D. Comparison of studied target boards and cores

Figure 7(a) shows that GPUs are faster than CPUs at a same
frequency, achieving a ×4 factor on the TX1 board at 1GHz:
the HS algorithm thus manages to take advantage of the greater
number of cores. The GPU remains even faster at 1GHz than
the CPU at 2GHz. The CPU of the TX1 exhibits a speedup
compared to the one of the TK1, but remains close. The
GPU from the TX1 improves significantly the performances
compared to the GPU from the TK1 (factor 2). Its maximum
frequency is also higher.

Figure 7(b) shows that the instantaneous power consump-
tion of the different CPUs varies almost linearly w.r.t. the
frequency, but with different slopes. The power consumption
of GPUs is higher than on CPUs at an identical frequency,
but GPUs can reach lower frequencies in order to reduce their
power consumption. We also measured the spent energy per
pixel for each board in order to make a fairer comparison
(figure 7(c)). This allows us to choose an optimal operating
frequency for each of the processor and to see that the
evaluated GPUs are energetically more effective than the CPU.

E. Comparison between Horn-Schunck and TV-L1

Figure 8 presents a comparison between the two algorithms
on a 1008×1008 image on the 3 targeted boards TK1, TX1 and
TX2 depending on the frequencies. The comparison is made
in terms of execution time (a), and energy consumption (b). It
is made for the best version for each algorithm: pipe1 for HS

and simd piep mono for TV-L1. Even if the optimized version
of TV-L1 takes advantage of a greater acceleration compared
to its scalar version, it is still 1.4 time slower than HS (a).
The power consumption of the two algorithms is quite the
same, however we can notice that TV-L1 power consumption
is always a little higher. This could be explained by the greater
number of memory buffers used by TV-L1 which leads to more
memory accesses.

F. Synthesis

The best configurations on CPU and GPU are obtained on
the TX2 target board. Table II sums up these configurations
and gives the largest image size possibly processed at 25 fps.

TABLE II
BEST CONFIGURATIONS OBTAINED, TO GET REAL-TIME AT 25 FPS.

Configuration E
(nJ/pix)

t
(ns/pix)

max size
(#pix)

HS TX2 GPU opt F16 energy min. 41 6.4 2501

HS TX2 GPU opt F16 time min. 43 5.0 2839

HS TX2 CPU opt energy min. 129 36 1059

HS TX2 CPU opt time min. 133 22 1355

TVL1 TX2 CPU opt global. 180 29 1174

VI. CONCLUSION

This article presents a comparison between different im-
plementations of two iterative optical flow algorithms: Horn-
Schunck and TV-L1. It demonstrates the superiority of GPUs
over CPUs both in terms of computational speed and energy
consumption for this kind of algorithm.

For HS, real-time at 25 f.p.s. is achieved for up to 8Mpix
frames for 0.35J per picture on GPU, against 1.8Mpix frames
for 0.24J per frame on CPU. The results also show that
the TV-L1 algorithm, which is far slower than HS without
optimization, can almost match the performance of HS after
optimization on CPU, and can achieve real-time performances
with 0.25J for a 1.4Mpix frame. These results can help an
application developer to choose his algorithm and size his
system. We also showed that even if HS remains faster than
TV-L1, the latter can benefit more of major optimizations,
what significantly reduces the differences between the two.

Future work will include the implementation of TV-L1 on
GPU in order to have a more exhaustive comparison, and
to evaluate the feasibility of implementing on CPU these
algorithms in 16-bit fixed point in order to double the SIMD



Fig. 7. Time per pixel (left), Power (middle) and Energy per pixel (right) as functions of Frequency on different target boards (optimized versions). The
legend of the middle figure, omitted by lack of space, is identical. Lower is better.

Fig. 8. Performances and consumption comparison between 8 optimized
iterations of HS and 3 optimized iterations of TV-L1. Lower is better.

parallelism. A fine image qualitative analysis depending on the
applications will also be made.
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