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Abstract 
 

Video surveillance aims at detecting unexpected 
individuals or objects intrusion. When no motion is 
observed, common motion detection systems induce 
huge power consumption, regardless of the scene 
activity. This paper presents algorithms for low power 
motion detection, and their possible implementation. 
The main interest is that they are able to adapt the 
sensor’s behavior according to the scene activity. 
Relevant motion information can be extracted from 
images with lowered spatial and temporal resolution, 
with specific algorithms. By reducing the amount of 
data to analyze and spatial and temporal redundancy, 
a drastic reduction of power consumption can be 
achieved.  
 

1. Introduction 
 

In a context of embedded video surveillance, with 
steady camera, power consumption reduction 
constitutes a key point. The tremendous amount of data 
processed independently of scene activity in common 
image sensors systems (i.e. image sensors associated to 
a DSP or FPGA), induce huge waste of power. Hence a 
promising approach consists in “waking up” the system 
when an event occurs in the scene. Detecting events is 
then equivalent to motion detection. 

For several years, many studies have focused on 
motion detection problem. Today’s submicron 
processes enable the pixel level implementation of 
some processing steps that used to be done by external 
circuits while keeping reasonable Fill Factor and pixel 
area. Many architectures for motion detection and 
tracking have been proposed. Here are a few examples 
of possible detection methods: 
• Optical flow measurement has been explored in [1] 

and [2]. In these approaches, spatial and temporal 
gradient are calculated to solve optical flow 

equation. Each pixel is so computed, increasing at 
the same time the amount of data for larger images. 

• Frame difference is made in [3]. Each pixel data is 
coded with mantissa and exponent, allowing wide 
dynamic range, and comparison between frames is 
done using exponent bits. Therefore, small 
amplitude motion is difficult to detect with this 
method. 
In the precedent cases, all pixels are used to perform 

computations. In order to reduce the amount of data to 
be processed, and so to lower power dissipation, 
multiresolution architectures have been developed 
leading to variable spatial acuity imaging, i.e. Region 
Of Interest (ROI).  
• In [4] and [5], authors present architectures able to 

perform multiresolution outside the pixel array, by 
sharing charges on banks of capacitors, but 
increasing die area. 

• In [6] and [7], architectures allowing charge binning 
between pixels inside the array are described, with 
additional transistors inside and between pixels. 

• Multiresolution is achieved by summing pixels 
currents in [9].  
In these approaches with Region Of Interest (ROI), 

[4] to [9], external chips are necessary to compute 
addresses of foveated area, increasing power 
consumption. 
• In [10], a computational circuit performs variable 

resolution by grouping pixels according to their 
brightness, using quadtree algorithm, but this 
method requires the whole pixel array to be read. 

• Image sub-sampling, in a context of embedded 
video surveillance, has been explored in [11]. An 
architecture allowing two operating modes has been 
developed. Without scene activity, sensor stays in 
low power mode, and checks the brightness of 1% 
of all the pixels. If the brightness significantly 
changes, the sensor switches to active mode and all 
pixels are read. However, this sub-sampling 



technique significantly reduces fill factor [8]. On the 
contrary, fill factor remains unchanged with 
macropixels. 
 
Our goal is to develop an imager featuring two 

operating modes, one being a power saving mode with 
low spatial and temporal resolution, able to wake up 
upon a scene event, and the other being normal or 
active mode, performing tracking on target. To face 
different situations found in video monitoring, an 
implementation on a programmable architecture has 
been chosen (flexible and adaptable architecture). 

This paper presents the studies performed 
concerning the wake up function, i.e. the transition 
from power saving to active mode. Figure 1 illustrates 
the two operating modes, with a scene with high 
resolution on moving cars and low resolution on static 
parts. 

Figure 1 – Two modes depending on scene activity 
with high resolution on moving targets and low-

resolution for fixed part of the scene 
 

Part 2 presents our power saving strategy, based on  
a spatial and temporal data amount reduction, and the 
considered low resolution configurations. In Part 3, we 
describe the associated motion detection algorithms 
that we found potentially interesting. We then (part 4) 
present the obtained simulation results to determine the 
best solution. Finally (part 5), we describe the selected 
implementation architecture and we estimate the power 
consumption of the selected algorithms. 
 
2. Power saving strategy 
 

Within video monitoring tasks, different power 
dissipation sources may be distinguished:  
• Image acquisition, image reading and A/D 

conversion induce a power dissipation that is 
proportional to the pixel rate.  

• Image processing:  its related power dissipation not 
only depends on pixel rate but also on the processed 
algorithm complexity.  

The relative impact of the precedent sources on the 
global power dissipation depends on the 
implementation architecture.  

The power dissipation lowering may thus be 
addressed at software and hardware level. For our left-
behind video monitoring system, the software-related 
dissipation saving is obtained by reducing the spatial 
and/or temporal pixel resolution in order to 
tremendously reduce the pixel rate in low power mode. 
The associated motion detection algorithm has to be 
selected so as to have a number of micro-instructions 
per pixel as low as possible and yet being efficient 
enough to detect the aimed events.  

Different ways of lowering the spatial resolution 
have been studied. They are either based on published 
works or new proposals. Figure 2 shows the considered 
configurations for a given image. The processed 
images are in each case split into a number of blocks 
corresponding to the desired low resolution. 4 different 
types of blocks have been considered:  
• Macropixels (Fig.2 a)): blocks containing the spatial 

average of their constituting pixels; 
• Decimated Macropixels (Fig.2 b)): a subset of 

macropixels are processed; 
• Uniform stripes (Fig.2 c)), containing the average of 

each column of pixels. 
• Decimated pixels (Fig.2 d)): blocks where only the 

central pixel is processed; 
 

 
Figure 2 – Original image and corresponding 

low-resolution images obtained with the different 
methods considered 

 
For all the considered configurations, except 

decimated pixels, all the pixels of a given active block 
remain active. A spatial average is performed for each 
block at no extra power consumption by connecting the 
pixel capacitors in parallel. Only the spatial average 
(one value per block) is then processed to perform 
motion detection. These three new configurations have 

a b 

c d 

Low spatial and temporal 
resolution 

High resolution on ROI 

Tracking 

Yes 

No 

Motion ? 

Programmable 
architecture 

Predefined 
detection mode 

Low Power 
Mode 

Active 
Mode 



thus a slightly higher power consumption than the 
decimated pixels solution, but with far better results in 
terms of efficiency, as will be seen in part 4. 

  
3. Studied Low Power motion detection 
algorithms  
 

We chose to focus on algorithms aiming at 
wakening Regions Of Interest (ROI) when movement is 
detected. They indeed allow limiting the power 
dissipation during the active mode and easing the 
operator work. 

The considered algorithms are based on Recursive 
Average (RA), presented in [12], with two modified 
versions with improved robustness (Sigma Delta and 
Recursive Average with estimator) at the cost of higher 
complexity and thus additional power dissipation. 

In order to estimate the associated power 
dissipation, each tested algorithm is described so that 
the number of necessary micro-instructions may be 
determined. The following notations have been used: 
the n index represents the frame number, the current 
gray level value for the considered block is named Sn 
and a motion estimator is computed and named �n. If 
this estimator becomes larger than a predefined 
threshold, which depends on the kind of event to be 
detected, the corresponding and some neighboring 
blocks are switched to high resolution (all their pixels 
are processed). 

 
• Recursive average (RA) 

The principle of recursive average is to estimate 
background (Mrecn (1)) for each data and to compare it 
to the current value. N is a fixed coefficient that is 
chosen with respect to the frame rate and typical target 
speed: 
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• Modified Sigma Delta (SG2) 

The Σ∆ algorithm allows estimating background 
with elementary increment and decrement. Two 
estimators, Msg and V, representing temporal activity 
and standard deviation of each data, are so generated: 

nnn SMsg −=∆ −1
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detection is not fixed here and depends on N. 

 
• Recursive average with estimator(RA+E) 

To improve robustness, we have developed this 
original algorithm based on Recursive Average 
combined with an estimator, like the one used in SG2 
algorithm, which induces more stability with respect to 
noise. The two combined estimators indeed allow pass 
band filtering instead of only low-pass filtering in the 
case of Recursive Average. 
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4. Results 
 

Simulations have been performed for the considered 
algorithms with each kind of proposed low-resolution 
configurations. For these simulations, a single image 
sequence, that is representative of the aimed 
applications, has been used. It takes place in an outdoor 
area where cars are riding a street behind barriers and 
inside a car park. A tree with rustling foliage is also 
present and has been included in false alarm parts of 
the scene. The original resolution of the sequence is 
480x640.  

 
Table 1 – Percentage of processed amount of 

data with respect to original sequence resolution 
for tested low resolutions methods 

 1x640 12x16 20x20 40x40 48x64 

Macropixels - 0.06% 0.13% 0.52% 1% 

Macropixels 
Decimation by 2 

- 0.03% 0.065% 0.26% 0.5% 

Columns 0.21% - - - - 

Pixel Decim. - 0.06% 0.13% 0.52% 1% 

 
Several levels of low resolution have been tested, as 

shown on Table 1, which indicates, for each 
configuration, the percent of data amount processed 
with respect to the original sequence. Since, for a given 
algorithm, the power consumption is directly linked to 
the amount of data processed, this gives a good idea of 
how much power will be saved with each considered 
configuration.  

 
For example, in the case of 12x16 low-resolution 

obtained using macropixels decimation by 2, (12x16)/2 



data are processed, which represents 0.03% of data 
with respect to full resolution. A data amount reduction 
of 99.97% is so achieved.  A comparable power 
reduction can be expected 

The impact of low resolution on efficiency is less 
straightforward since spatial filtering is performed by 
the resolution lowering. The best compromise between 
power saving and efficiency depends on the considered 
algorithm. 

 
In order to have a better efficiency in motion 

detection, a ring of fixed size around the processed 
block has been defined. If a block becomes active, all 
the blocks encompassed by the ring also switch to 
active mode. Two ring sizes have been tested: 3x3 and 
5x5 blocks. In the case of stripes configurations, a band 
of adjacent stripes has been used instead. 

During the simulation, each time a block is 
activated, the corresponding information is stored in a 
vector. At the end of the simulation, this vector is 
compared to a reference structure indicating where and 
when motion should be detected. The number of false 
alarms (blocks which crossed threshold in areas where 
there is no motion) and of not detected events (blocks 
which should have crossed threshold in areas where 
there is motion) can thus be counted. The algorithm 
latency can also be determined in this manner. 

The efficiency of the different tested configurations 
can then be estimated by subtracting the number of 
false alarms to the number of rightly activated blocks. 
A result of 100% corresponds to the detection of all the 
desired movements in the sequence and no false alarm. 
For these evaluations, frame rate was 20fps. 

A comparison of the obtained results has confirmed 
that, depending on the considered algorithm, the 
chosen low resolution configuration has not always the 
same impact on the efficiency. The best results 
obtained for the different algorithms are shown in 
Table 2, which clearly stresses the efficiency of RA+E 
algorithm with Macropixels configuration. For the 
Recursive Average algorithm (RA), the results obtained 
with the decimated pixels and the macropixels 
configurations have been added in order to show the 
improvement brought by the proposed low resolution 
configurations.  

 
 
 
 
 
 
 

Table 2 – Results of best algorithms with best 
configurations (M : Macropixels, DM : Decimated 

Macropixels, D: Decimated Pixels) 
 3x3 Ring 

Algorithm 12x16 20x20 40x40 48x64 Mean value 

RA (DM) 95.76 85.38 87.20 76.60 86.2 

RA (M) 88.07 80.70 81.98 74.68 81.4 

SG2 (M) 88.10 81.46 78.95 71.06 79.9 

RA+E (M) 85.53 81.72 82.04 77.58 81.7 

RA (D) 29.62 31.13 47.78 45.53 38.6 

 
With a ring of 3x3 blocks, RA+E globally produced 

the best results with an average evaluation of 86.2%. 
The best mark obtained by this algorithm is with a 
12x16 resolution and Macropixels configuration. In 
this case, 100% of events are detected with only 4.2% 
of false alarms. 

Increasing rings sizes has globally brought worse 
results since larger areas are then switched to high 
resolution. As a consequence, the number of false 
alarms increases.  

The Decimated Macropixels configuration is more 
efficient with the RA algorithm. The choice of the 
mesh size is however very important: it must be smaller 
than the to-be detected objects, in order to have enough 
reference points on the targets, but it must also be 
larger than the sources of noise (e.g.: the leaves in the 
trees for our sequence) in order to reduce the number 
of false alarms.  

Since more stability is achieved with our new RA+E 
algorithm, the Macropixels configuration is preferable 
in this case in order to maximize the number of 
reference points to switch in high resolution on targets. 
Detection is here excellent with few false alarms since 
noisy parts (foliage) are efficiently filtered.  

Concerning the modified SG2 algorithm, 
Macropixels configuration is also required but results 
are less satisfactory because of a less efficient 
detection.  

Using larger resolutions lowers the efficiency of the 
spatial filtering performed de facto by the low 
resolution configurations. The macropixels are 
composed of fewer pixels and the corresponding 
reference points are less stable. Most of the time, using 
larger resolutions thus gives bad results, with an 
increased number of false alarms. The trend is the 
opposite in the case of decimated pixels. 

With the Uniform Stripes configuration associated 
to the RA algorithm for example, few false alarms are 
generated (9.41%) and detection is quite performing 
(89.45%). The main drawback of this configuration is 
that, when switching to high resolution, a large part of 



the image becomes unnecessarily active, thus inducing 
unnecessary power dissipation. Furthermore, motion 
detection is only efficient with targets moving 
perpendicularly to the columns. The Uniform Stripes 
configuration is also much harder to handle in terms of 
threshold determination since a given column covers a 
large part of the image and may contain static parts and 
noisy parts (foliage in our case). In this case, the 
corresponding threshold has to be higher to get a 
reasonable number of false alarms, which reduces the 
sensitivity for the static parts covered by the given 
stripes. 

Since power dissipation is an important issue for our 
architecture, these evaluations must be balanced by the  
power consumption associated to each algorithm. If the 
best results in terms of efficiency have been obtained 
with the RA+E algorithm and a 12x16 resolution, the 
corresponding power consumption is not the lowest of 
our tested configurations. Even if a 99.94% data 
amount reduction has been achieved, this algorithm 
remains more computationally expensive than the RA 
algorithm that requires fewer instructions. Since the 
latter gets very good results for the same resolution and 
the decimated macropixels configuration, it might thus 
be an interesting choice for our waking-up algorithm in 
terms of power consumption/efficiency compromise. 
The final choice depends on the hardware 
implementation and the application constraints. 

Tests were performed to determined the response 
time, with 20x20 macropixels resolution. The average 
time between the arising of targets enter in the 
macropixels and the switching to high resolution, was 
respectively of 0.41s for the RA and 0.63s for the 
RA+E algorithms. As stated earlier, the RA+E 
algorithm indeed requires more computational steps. 
However, the larger macropixels sizes, the slower 
macropixels variations because of the fewer moving 
pixels contributions in blocks spatial averages. As a 
consequence, increasing macropixels size implies to 
lower the temporal resolution in order to get higher 
macropixels variations between each frame. 

 
 
5. Chosen implementation 
 

In order to perform both motion detection in power 
saving mode and tracking in active mode, an analogue 
programmable computational unit is considered. 
Analogue based computational system offer high 
compactness and low power consumption. 

The considered computational unit is based on [13]. 
The SIMD machine presented (Figure 3) includes an 
NxM photosensors array to which an array of Nx(kM) 

memory points is associated, where k is the number of 
memory elements per pixel. The so-formed matrix is 
bordered on one side by a vector of N processors. A 
column of multiplexers selects the column of pixels or 
memories to be used by the processor. A sequencer, 
implemented for example by a digital IP CPU, delivers 
the successive processors’ instructions. 

 

 
Figure 3 – Sensor architecture 

 
The processor is a switched capacitor analogue 

computing unit shown on Figure 4. For each processor 
instruction, the switches configurations for the OTA 
and for the associated analogue registers are fixed. The 
multiplication (MAC) of an analogue value only 
requires 4 clock cycles with the following sequence of 
operations: writing on the left-most capacitor, clearing 
the other (weighted) capacitors and setting them into 
the feedback loop of the OTA, accordingly to the 
coefficient of the MAC. 

The various operations required by the considered 
algorithms can be performed with this parallel 
architecture. Low-level real-time image processing for 
tracking in active mode is also possible. In addition, 
these processors can be set in idle mode when they are 
not being used.  

 

 
Figure 4 – Processing unit 

 
The computational cost of the presented algorithms 

in power saving mode is proportional to the amount of 
data. This power saving must be balanced by the fact 
that performing a local spatial average has a cost in 
terms of power dissipation (charges and discharges of 
pixels capacitance), but which is quite negligible 
compared to power saving induced by the reduction of 



data to compute (charges and discharges of bus 
capacitance and OTA).  

For the Recursive Average algorithm, our 
architecture, working at 40MHz, requires 10 micro-
instructions per pixel. Hence a computation time of 
250ns per pixel. For the sequence used in our 
simulations, the mean power dissipation per micro-
instruction is 14nW for a frame rate of 40fps. 

With a 99.94% (12x16) data reduction from the 
analyzed full resolution scene (480x640), the total 
power dissipation would thus be of 27µW 
(192x140nW) for Recursive Average algorithm, as 
long as the system stays in power saving mode. For 
Recursive Average with Estimator algorithm, our 
architecture requires 20 micro-instructions per pixel. 
The corresponding power dissipation would thus be of 
54µW.  
 

6. Conclusion 
 

Specific algorithms, which aimed at detecting 
motion with low spatial and temporal resolution, have 
been studied on a given video sequence. Original low 
resolution configurations like Decimated Macropixels 
or Uniform Stripes have been explored and a new 
algorithm giving excellent results has been presented. 
The considered image sensor will allow drastic power 
consumption reduction in the absence of motion, with a 
more than 99% reduction of the amount of processed 
data compared to full resolution images. A very 
interesting hardware implementation has also been 
proposed with very low power consumptions for the 
power saving mode 

The proposed low resolution techniques should also 
be explored for image compression in order to remove 
spatial and temporal redundancy on static part of 
images. 

 
Future works will incorporate tracking in high-

resolution mode with actualization of ROI on targets 
(tracking) and switching from high resolution to low-
resolution mode. For example, in order to reduce the 
processing unit load, local processing allowing inter-
pixels cooperation for ROI actualization and in-pixel 
calculation of recursive average will be explored. 
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