

Abstract— Domain specific system synthesis methodologies can
lead to better performance and more efficient solutions to system
modeling and synthesis. While generalized system synthesis
approaches are not optimal in terms of design productivity,
domain specific approaches provide a balance between generality
and optimality. In this paper, we propose a framework that
facilitates system synthesis for applications from image
processing domain. We advocate high level simulation
techniques, a semi-automated domain specific framework and
component based image processing software design to increase
the design productivity while keeping the framework general
enough to be utilizable for a range of image processing
applications. We show the effectiveness of our approach by
synthesizing a couple of image processing chains using our
approach.

Index Terms—System Level Synthesis, Domain specific
application synthesis, Image processing systems, HW/SW
Partitioning, Transaction Level modeling

I. INTRODUCTION
With the evolution of new computation intensive

applications, need to have methodologies to optimally use the
available computational resources is becoming more and more
important. Among the new generations of applications, real
time image and video processing applications are the most
computation intensive applications. There are a wide variety
of image processing applications. Roughly, we can divide
these applications in three sub-domains according to the size
of images being processed. Image processing of small sized
images (roughly 256x256 pixels) is normally used in
biomedical applications like artificial retina and military
applications like UAVs and guided missiles etc. Medium sized
images (640x480 to 1920x1080 pixels) are used in traditional
VGA, NTSC, PAL and more recently HDTV standards while
satellite imagery requires large sized images typically of the
size of (6000x6000) pixels or so. With this vast range of
image processing applications available, there is a need to
have the methodologies that dedicated to the design of
embedded real time systems involving modern image
processing techniques. These methodologies should allow us
meet the real time performance constraints while offering
shorter time to develop and market, lesser area requirements
and lesser energy consumption for the designed System on
Chip (SoC).

There are different factors that prolong the system design
and synthesis time and hence result in increase of the time to
market for a product. Firstly, traditional design methodologies
[] often start the system design from the scratch. System is
implemented in a higher abstraction level such as algorithmic

or heterogeneous models of computation. Then a series of
refinement stages is applied to the system and after each
refinement stage, system is described completely in more
detailed manner than its higher abstraction layer. Starting the
system synthesis from scratch and step by step refinement
prolongs the system synthesis process adding significant
amount in time to market for the product. Secondly, there is a
trend of more increase in software complexity than the
increase in hardware complexity in modern embedded
systems. Embedded software take a significant time in project
life cycle because of another fact that SW development starts
after HW models of the system are available. Thirdly,
simulation at lower abstraction layers is very slow and hence
design space exploration becomes impossible for realistic
applications with reasonable sizes of datasets. In this paper,
we propose a system synthesis methodology that deals with
above three problems. As a solution to the issue of generalized
design ands synthesis methodologies, we propose the
approach of domain specific system design methodology. We
have built a framework for fast synthesis of image processing
applications and we conclude that image processing
applications often have very similar properties and it becomes
easier to propose a design flow that is suitable to image
processing applications in general and significantly reduces
the system synthesis time. Problem of software synthesis is
resolved by supporting an approach of components based
software designs i.e. image processing chains development.
Lastly, simulation times are reduced by modeling and
simulating the system at higher layers of abstraction. We use
transaction level modeling and it has been shown that TLM
accelerates the simulation while maintaining a high degree of
accuracy. We have applied our approach on many applications
and our results show the robustness of our approach.

 Rest of the paper is organized as follows: Section II
presents related work. Section III explains our System design
methodology. Section IV and V describe the experiment
environment and results. Section VI presents conclusions and
future work.

II. RELATED WORK
There is a little work done over domain specific system

synthesis. Most of the existing design and synthesis
methodologies are targeted for general system synthesis
approach. These methodologies differ from each other
primarily based on the nature of target applications and their
performance requirements and choice of models of
computations. Vulcan [5][6], for example, uses HardwareC to
model hardware and C to model software and tries to reduce

A Methodology for Fast System Level Synthesis of Image Processing Chains

Muhammad Omer Cheema */**, Omar Hammami *, Lionel Lacassagne **, Alain Merigot **
* ENSTA, 32 Boulevard Victor, 75739 Paris, France. {cheema,hammami}@ensta.fr

** IEF, University of Paris Sud, 91405 Orsay, France. {lionel.lacassagne,alain.merigot}@ief.u-psud.fr

hardware costs by moving functions from hardware to
software as long as the performance constraints can be
satisfied. Finally the resulting partition serves as input to high-
level synthesis and software compilation tools. COSYMA
(CO-SYnthesis for eMbedded Architectures) [7] was
developed about the same time as Vulcan. In contrast to
Vulcan, co-synthesis starts from a configuration, where all
functions are implemented in software. The advantage with
this approach is that the system may include functions that
cannot be implemented in hardware, such as dynamic data
structures. The POLIS [8] system is designed for control-
dominated systems, where the target architecture consists of a
micro-controller and ASICs. The SpecC system-level design
methodology [9] [10] follows a top-down approach and starts
with the development of a specification model expressed in the
language SpecC. The MESCAL project [11] was recently
formulated in order to “develop the methodologies, tools, and
appropriate algorithms to support the efficient development of
fully programmable, platform-based designs for specific
application domains” [12]. A goal is to develop a platform that
can be used efficiently for various applications inside the same
application domain. PeaCE is a hardware/software co-design
methodology that uses Ptolemy as its underlying synthesis
system and has been found quite useful for DSP based
application. However, these generalized system design
methodologies are not optimal especially in terms of design
productivity.

On the other hand, domain specific languages (DSLs) are
considered to be an alternative to sub-optimal design
languages supported by generalized system design
methodologies. A domain specific language (DSL) is a
programming language tailored for a particular application
domain. An effective DSL enables development of a complete
program or design for a domain quickly and effectively. A
fundamental requirement for an effective DSL is capturing
precisely the semantics of the application domain. Common
examples of DSLs include Matlab for signal processing,
HTML for document markup, Click [] for Networking
application and OpenGL for 3D graphics. Potentially, there
are many advantages to using DSLs, the most fundamental
being that programs are generally easier to write, reason about
and modify compared to using general purpose languages
(such as Verilog and C). Typically, DSLs will be at a higher
abstraction level than general-purpose languages and used by
domain experts. However, the single most inhibiting factor
against using DSLs is the significant initial cost related to the
infrastructure required to support a DSL. For example,
transforming programs in DSLs such as Matlab onto a
hardware description language such as Verilog, VHDL or
system description languages such as SpecC and SystemC
requires significant effort and tool support. To deal this
problem, in this paper, we propose a methodology that uses
languages used by generalized system design approaches to
avoid the manual transformation process from Domain
specific languages to System Design Languages. On the other
hand, our proposed framework based on Platform based
design [] approach makes it possible to avoid the drawback of
sub-optimality of generalized system design flows.

Transaction level modeling based on System level design
languages has proven to be a fast and efficient way of system

design []. It has been shown that simulation at this level is
much faster [| than Register transfer level and makes it
possible for us to explore the system design space for HW/SW
partitioning and parameterization. Lastly, component based
software design [][][] is a fast way to model image processing
application. Image processing chains modeling has been
classically used for fast software design and synthesis of
image processing applications. In this paper, we propose the
use of component based software development and transaction
level modeling to further accelerate the process of system
synthesis and hence improving the design productivity
resulting in shorter time to markets.

III. SYSTEM SYNTHESIS METHODOLOGY
Our proposed system synthesis methodology consists of

following subtasks:
a) Image Processing Chain (IPC) development
b) Hardware Resource/Performance Estimation
c) Automatic HW/SW Partitioning
d) Parameterization

a. IPC development
Our image processing system synthesis starts from

application description in the form of an image processing
chain. A sample chain is shown in Fig [] describing a Harris
corner detectors normally used for point of interest
detection in real time systems just after data capture. Each
node in the chain represents some image processing
operator which is implemented using library function
according to the recommended coding style as used by
numerical recipes []. Starting the system synthesis this way
assures rapid development of the initial software. Keeping
in mind that software development takes a significant time
in current system design approaches; our approach saves a
lot of time by avoiding software development starting from
scratch.

Fig: Harris Corner Detector Chain

b. Hardware Resource/Performance Estimation
In the next step of our system design approach, Area and

Energy estimates are obtained for the operators
implemented in the image processing chain. At SystemC
behavioral level, the tools for estimating area and energy
consumption have recently been showing their progress in
the EDA industry [][][]. We use Celoxica’s agility compiler
for Area estimation in our case but our approach is valid for
any behavioral level synthesis tool in the market. At this
point, one might argue that translating C code to systemC
code for viewing synthesis results might be time consuming
and cumbersome. This is important to mention here that
restricting ourselves to image processing domain makes the
module description of various operators very similar and
hence manually transforming the C code to systemC code is
not that time consuming. Secondly, as we advocate the fast
chain development through libraries containing image
processing operators, similar libraries can also be developed
for equivalent systemC image processing operators which
will be reusable over a range of projects hence considerably
shortening the Hardware (HW) development times as well.
At the end of this step, we have speed, area and energy
consumption estimates for all the components of the image
processing chain to be synthesized. This information is
stored in a database and is used during HW/SW partitioning
done in the next step.

Another important thing to be noted is that HW synthesis
is also a multi-objective optimization problem. Previously,
[][] have worked over efficient HW synthesis from systemC
and shown that for a given SystemC description, various
HW configurations can be generated varying in area, energy
and clock speeds. Then the most suitable configuration out
of the set of pareto optimal configurations can be used in
the rest of the synthesis methodology. Right now, we don’t
consider this HW design space exploration for optimal
area/energy ands speed constraints but in our future work,
we plan to introduce this multi-objective optimization
problem in our synthesis flow as well.

Fig. System Design Flow

c. Automatic HW/SW Partitioning
During the third phase, automatic partitioning of image

processing application is done. An image processing chain
consisting of n nodes has n² possibilities for system’s
partitioning into Hardware and Software. Our tool based on
this framework proposes a methodology to automatically
check these n² possibilities and give us the performance
results for each of the configuration.

For automatic generation of a specific configuration,
our tool inspects the functionality to be sent to hardware,
and based on the information converts a SW computation
function to a data transferring function between general
purpose processor and hardware accelerator. This is done
simply by reading the function definition and inspecting the
input, output image parameters along with their heights and
widths. After reading the parameters, body of the software
function is removed and replaced with data transfer
operations to send and receive images to hardware module.
(See Fig []). This way, we make sure that software for a
specific configuration is updated with minimum possible
changes and there remains no need to debug and verify its
functionality because of cleanliness and simplicity of our
approach.

On the other hand, hardware accelerator is embedded
into a generic module that communicates with the software
running over the general purpose processor (GPP) to
receive/send images from processor to the hardware
accelerator. On the hardware side, as mentioned above, the
communication interface (HW/SW interface) receives the
data along with the information about number of images,
their height and widths and the information about output
images. The C code of the operator being implemented in
HW is copied from SW to a function inside the HW
accelerator module and estimated computation times

calculated in step 2 where an operator was actually
synthesized in behavioral systemC are passed as
approximates delays in the top level module combining all
the components in the system. Lastly, scheduling of various
operators in the chain is done to make sure that data
communication overhead is reduced to achieve maximum
speedup for a configuration. Hence, using our approach we
can automatically shift an operator implemented in software
to a hardware giving us realistic performance estimates
without a need to change the HW/SW interface for each
configuration.

Fig: Transforming SW Computation into Communication
Interface

There are generally two cases of system speedup by
introduction of hardware accelerators. In first case,
parallelism inherent in the system is exploited by
transferring parallel operators on other execution elements
in the system. This way, we can execute all possible
parallel operators in the system in parallel by adding
additional Hardware accelerator for each parallel operation.
Second case of system speedup comes from sequential
execution. Hardware implementation of a sequential
operation makes the system run faster because of
availability of dedicated hardware. As a rule of thumb, in
both the cases, computation time on the hardware and
communication time taken by data transfers should be lesser
the computation time on the software side to achieve any
speedup and to justify the use of dedicated hardware
accelerators consuming more design effort and area and
energy costs, the sum of computation and communication
time should be significantly larger than pure software
computation. That means that best candidates for hardware
implementation are those functions which are very
computation intensive and don’t require too much
communication between software and hardware parts. Not
to mention at this point that operations exploiting
parallelism are often more suitable than the operations
which are implemented in HW for sequential speedup.

d. Parameterization
In the last step of image processing chain synthesis flow, we

perform the parameterization of the system. At this stage, our
problem becomes equivalent to (Application Specific Standard
Products) ASSP parameterization. In ASSP, hardware

component of the system is fixed; hence only tuning of some
soft parameters is performed for these platforms to improve
the application performance and resource usage. Examples of
such soft parameters include interrupt and arbitration
priorities. Further parameters associated with more detailed
aspects of the behavior of individual system IPs may also be
available. Although, a lot of work has been done on automatic
parameterization of the system [][]. Some researchers use
genetic algorithms to deal with the problem of
parameterization. For the time being, we deal with the
problem manually instead of relying on a design space
exploration algorithm and our approach is to start tuning the
system with the maximum resources available and keep on
cutting down the resource availability until the system
performance remains well within the limits and bringing down
the value of a parameter doesn’t dramatically effect system
performance. However, in future we plan to tackle this
parameterization problem using automatic multi-objective
optimization techniques as mentioned above.

IV. EXPERIMENTAL SETUP
We have tested over approach using IBM’s PowerPC 405

Evaluation Kit (PEK) [] that allows designers to evaluate,
build, and verify SoC designs using Transaction level
modeling. General architecture of our target system is shown
in Fig [2]. Our target is to synthesize a system based on a
general purpose processor (in our case, IBM PowerPC 405)
and extended with the help of suitable hardware accelerators
to improve the system performance significantly. A gcc based
cross compiler for PowerPC405 was used to compile the
software while systemC compiler was used to compiler
hardware modules. We used Agility compiler v 1.1 [] to
synthesize behavioral description of the HW modules to get
area estimations.

Fig. Diagram for System Built using IBM TLM

V. EVALUATION RESULTS
We tested our methodology over two sets of applications:

A Chain of filters and an application for point of interest
detection normally used in drones, automatic robots and
guided missiles for image processing after data capture.

For the first application, we had three components in our
chain: median, conservative and average filters. We have
implemented these filters in hardware and synthesized them to
get the results of their speed and area requirements for Virtex
4 FPGA []. The synthesis results are shown in Table 1. It is
important to mention here that there is a large design space for
hardware synthesis as well depending on the way modules are
written in SystemC and depending on the optimizations
applied for synthesis results. Optimizing the hardware
implementation for area results in larger critical path and more
number of cycles required to process an image and vice verse.
The values given in the table only present one instance from
that large design space. It is understandable that exploration of
hardware design space might result in more optimized system.

For our simulation, our general purpose processor
(PowerPC 405) was running at 333 MHz and we can see that
the frequencies (1/critical path) obtained of synthesized
hardware accelerators are quite low. To make the results
comparable, we convert all the times in terms of number of
cycles elapsed at PowePC 405 during the execution of an
operation at hardware side and the last column represents the
value which is obtained by the formula:

PowerPC cycles elapsed during computation on hardware

accelerator = Number of HW accelerator cycles required for
function execution*PowerPC Frequency/ HW accelerator
frequency

Table 1: Synthesis Results for Filters
Area Modul

e
Name

LUT FF Oth
er

Critic
al
Path
(ns)

Synthes
is Freq.
(MHz)

Avg.
Cycl

es
Take

n

PPC
Cycle

s
Elapse

d
Avera
ge

2266
9

414
4

665 65.05 15.37 8196 17757
1

Media
n

2617
2

490
4

882 74.24 13.47 1639
0

40518
7

Conse
r.

5892
4

418
8

296 66.06 15.14 8006 17608
9

Table 2: Various configurations and Speed ups for Filters
Config.

No.
HW Parts Time

(cycle)

Area
Increase

Speedup
Over

Software
Version

1 Median 3897000

2 Average 7202000
3 Conservative 6630000
4 Median + Average 3493000
5 Median+Conservative 2921000

6 Average+
Conservative

6028000

7 Software Version 7248000 0 0
.

Table 3 Synthesis Results for PoI Operators
Area Module

Name LUT FF Oth
er

Critic
al

Path
(ns)

Synthe
sis
Freq.
(MHz)

CPU
Cycl

es
Take

n
Matrix_mul 2895

3
1647
1

806 51.35
ns

Sobel 5527
0

1237
5

466 53.28
ns

Gaussian 4036
7

8247 334 59.84

Recombinat
ion

Table 4 Various configurations and Speed ups for Point of

Interest Detection
Config.

No.
HW Parts Time

(cycle)

Area
Increase

Speedup
Over

Software
Version

1
2
3
4
5
6
7
8
9
10
11
12

.

Fig: Area Vs Speedup

VI. CONCLUSIONS
In this paper, we have proposed a methodology to

synthesize an image processing chain within very short times.
This methodology emphasizes on components based software
design and high level (TLM) modeling and simulation. Our
proposed framework/toolset automates the process of system

design by offering generic HW/SW interfaces and a
methodology to automatically shift SW functionality into
hardware hence automatically generating a desired
configuration. This enables us to automatically explorate the
HW/SW codesign space. With the help of two image
processing chains, we have shown the effectiveness of our
system level synthesis approach.

Future Work Here…

REFERENCES

[1] http://www-128.ibm.com/developerworks/power/library/pa-pek/
[2] R. K. Gupta. Co-Synthesis of Hardware and Software for Digital

Embedded Systems. Kluwer Academic Publishers, 1995.
[3] R. K. Gupta and G. D. Micheli. Hardware-software co synthesis for

digital systems. IEEE Design & Test of Computers, 10(3):29–41,
September 1993.

[4] R. Ernst, J. Henkel, and T. Brenner. Hardware-software co synthesis
from microcontrollers. IEEE Design & Test of Computers, 10(4):64–75,
December 1993.

[5] F. Balarin, M. Chiodo, P. Giusti, H. Hsieh, A. Jurescka, L. Lavagno, C.
Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B.
Tabbara. Hardware-Software Co-Design of Embedded Systems: The
Polis Approach. Kluwer Academic Publishers, 1997.

[6] D. D. Gajski, J. Zhu, R. D¨omer, A. Gerstlauer, and S. Zhao. Spec C:
Specification Language and Methodology. Kluwer Academic
Publishers, 2000.

[7] R. D¨omer, D. Gajski, and A. Gerstlauer. SpecC methodology for high-
level modeling. In 9th IEEE/DATC Electronic Design Processes
Workshop, Monterey, California, April 2002.

[8] A. Mihal, C. Kulkarni, M. Moskewicz, M. tsai, N. Shah, S. Weber, Y.
Jin, K. Keutzer, C. Sauer, K. Vissers, and S. Malik. Developing
architectural platforms: A disciplined approach. IEEE Design & Test of
Computers, 19(6):6–16, November-December 2002.

[9]

1. M L Vallejo, J C Lopez, "On <he hardware-software panitioning
prohlcm:
System Modeling and pmitioning lechniques", ACM TODAES. V-
8.2003

K Ben Chehida. M Auguin, "HWISW partitioning approach for rcconfigurvhle
System design", CASES 2002

A Kdavade. E Lee. "A global cnticalityLoca1 Phase Dnven rlgonthm for the
Constrained HardwardSoftwvre panilioning problem". CODES 1994

K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A.
Sangiovanni-Vincentelli, “System Level Design: Orthogonalization
of Concerns and Platform-Based Design”, In IEEE trans on
Computer-Aided Design, Vol. 19, No. 12, December 2000.

C. Kulkarni, G. Brebner, G. Schelle: Mapping a Domain
Specific Language to a Platform FPGA, DAC, 2004

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The Click modular router,” ACM Transactions
on Computer Systems, 18(3):{263-297}, Aug 2000.

