
Customizing CPU instructions for embedded vision systems

Stéphane Piskorski
LRI

Université Paris Sud
stephane.piskorski@lri.fr

Lionel Lacassagne
IEF

Université Paris Sud
lacas@ief.u-psud.fr

Samir Bouaziz
IEF

Université Paris Sud
samir.bouaziz@ief.u-psud.fr

Daniel Etiemble
LRI

Université Paris Sud
de@lri.fr

Abstract—This paper presents the customization of two pro-
cessors: the Altera NIOS2 and the Tensilica Xtensa, for funda-
mental algorithms in embedded vision systems: the salient point
extraction and the optical flow computation. Both can be used
for image stabilization, for drones and autonomous robots. Using
16-bit floating-point instructions, the architecture optimization is
done in terms of accuracy, speed and power consumption. A
comparison with a PowerPC Altivec is also done.

I. INTRODUCTION
Embedded vision systems and SoCs are great scientific

challenges. Designers have to integrate more and more CPU
power to run still hungrier algorithms while limiting power
consumption. Adding SIMD instructions within a processor is
a good way to tackle the problem of power consumption.
For vision and media processing, the debate between integer

and FP computing is still open. On one hand, people argue
about using fixed-point computation instead of FP computation
[7]. Techniques for automatic FP to fixed-point conversions for
DSP code generations have been presented [11]. On the other
hand, people propose lightweight FP arithmetic to enable FP
signal processing in low-power mobile applications [4].
This paper follows previous ones dealing with optimized

16-bit SIMD floating-point FP instructions and presents a
consistent Algorithm-Architecture Adequation where both ar-
chitectures and algorithms are customized to provide high
performance embedded systems. Our presentation uses two
examples: the Harris’ Points of Interest (PoI) and the Horn
and Shunk’s optical flow computation.
The specificity of these algorithms is that computations

cannot be done with only 8-bit integers as they lack the needed
accuracy and dynamic range. A fine study of variable width
FP format - 16-bit floats and smaller ones - and their impact
on algorithm accuracy is done. As optical flow is an iterative
algorithm, mastering the error accumulation and propagation,
from one iteration to the next one, is very important.
We then present benchmark results for the PowerPC using

Altivec, NIOS2 and Xtensa processors, which provide accurate
information on the implementation of embedded systems. We
finally focus on the power consumption and processor area
issues.

II. F16 FLOATING-POINT FORMATS
Some years ago, a 16-bit FP format called “half” has

been introduced in the OpenEXR format [13] and in the Cg
language [10] defined by NVIDIA. It is currently being used in
some NVIDIA GPUs. It is justified by ILM, which developed

s exponent fractionF16

F32

5 10

s exponent fraction

8 23

1

1

F32 s exponent fraction

8 231

s exponent fractionF13

5 71

"000"

Fig. 1. F32, F16 and F13 floating-point numbers

the OpenEXR graphics format, as a response to the demand
for higher color fidelity in the visual effect industry.
In the remaining part of this paper, this 16-bit FP format will

be called “half” or F16, the IEEE-754 32-bit single-precision
FP format will be called F32, and the 8-bit, 16-bit and 32-bit
integers will be called I8, I16 and I32 formats. The format is
presented in figure 1. A number is interpreted exactly as in
the other IEEE FP formats. The range of the format extends
from 6 × 10−5 to 216 − 25 = 65504.
To balance the embedded hardware and the algorithms

accuracy, we also had a look at an even lighter FP coding:
F13. It has a 5-bit exponent and a 7-bit mantissa (figure 1).
It is stored into 16-bit word but is called F13 because, the 3
msb of the exponent are useless (as we know the computation
dynamic range for these algorithms. F13 could be interpreted
as the two “Most Significant Bytes” of F32.

III. SUMMARY OF PREVIOUS RESULTS

In [3][8], we have considered the speedup between versions
using SIMD 16-bit FP instructions (called F16) and versions
using 32-bit FP instructions (called F32). Speedups have been
measured on general purpose processors: Pentium 4 and Pow-
erPC G4. The following benchmarks have been used: Deriche
filters), spline zoom [15], JPEG [9] and wavelet transform
[14].
For all benchmarks, SIMD F16 provides at least a speedup

of 2 compared to SIMD F32. Speedup can even reach ×4
because of the smaller F16 cache footprints: when F16 data
fit in the cache, but not F32 ones. From a qualitative point of
view, F16 versions of the algorithms are quite as good as F32

and better than the usual I32 version. For example JPEG F16

results in a 5 dB higher PSNR than I32, and matches the F32

PSNR.
For all benchmarks, we also tested several rounding modes:

truncation or standard rounding mode, with or without denor-
mals. Analysis shows that truncating without denormals is very

close to rounding , with or without denormals. This is actually
the ideal situation for embedded hardware. In the article, we
only consider F16 with truncation and without denormals.

IV. ALGORITHMS PRESENTATION

A. Point of Interest

I

Grad X

Grad Y

Ix

Iy

x

Ixx=Ix*Ix

Ixy=Ix*Iy

Iyy=Iy*Iyx

x Gauss

Gauss

Gauss

Sxx

Sxy

Syy

coarsity
Sxx*Syy-Sxy² K

first loops nest second loops nest

Fig. 2. Harris PoI algorithm

We used the Harris’ corner edge detector (figure 2): K =
Sxx × Syy − Sxy × Sxy, where Sxx, Sxy and Syy are the
smoothed squared first derivatives of the image I .

B. Optical Flow

I0,I1

Grad X

Grad Y

Ix

Iy

Grad T It

u,vaverage

iterative loop

speed
update

Fig. 3. Horn & Shunk algorithm

The Horn and Shunk optical flow computation is based on
an iterative framework (fig 3), whose steps are: spatio-temporal
first derivatives Ix, Iy and It average speed (ū, v̄), and speed
update (u, v).
Here, the main problem is the accuracy through all compu-

tations and especially during the division in the speed update
stage. Because this division is different in every point, it cannot
be easily tabulated and put into a LUT.

u = ū − Ix × Ix × ū + Iy × v̄ + It

α2 + I2
x + I2

y
(1)

v = v̄ − Iy × Ix × ū + Iy × v̄ + It

α2 + I2
x + I2

y
(2)

V. ARCHITECTURES PRESENTATION

A. PowerPC G4 Altivec

To allow a fair comparison between the two hardware
targets, we also implemented algorithms on a PowerPC G4,
to get a reference in terms of speed and power consumption.
The PowerPC G4 was the first processor to implement the
128-bit SIMD multimedia extension called Altivec [2] . It is a
competitive RISC processor: at 1 GHz, the PowerPC release
7457 has a power consumption of about 10 watts.

B. Nios II
The algorithms have been implemented into an Altera

Stratix 2 FPGA running at 150 MHz (when configured with
a stand-alone NIOS 2 processor), with 60000 cells.
With NIOS II processors, the customized instructions can be

implemented as combinational (1-cycle) or multicycle instruc-
tions. Multicycle operations are not pipelined, which means
that the pipeline is stalled until the end of the operation when
the done signal becomes active. Finding the optimal trade-
off between the operation latency (number of cycles) and the
maximal CPU clock frequency is thus important. This is why
we have tested 1-cycle and 2-cycle versions of the 16-bit FP
arithmetic instructions.

C. Xtensa
Some benchmarks were tested using an Xtensa LX cus-

tomizable processor from Tensilica. to compare F16 and F32.
The Xtensa LX core is a 32-bit RISC processor, targeting
SoC designs, with a configurable instruction set. A propri-
etary Verilog-like language called TIE can be used to add
custom instructions, register files or I/O ports. FP instructions
with custom formats could thus be easily implemented and
compared with each other. They were also compared to the
native Xtensa LX FPU (manipulating data refered to as floats
hereafter), which provides IEEE compliant FP computation
instructions with a 4-cycle latency.
The Xtensa processor simulated was configured to use a

128 bit-wide memory interface, a 32-KB 4-way associative
cache memory, a 5-stage pipeline. A FPU was incorporated,
which makes use of a 16-entry register file. All speed and
area estimates assume an ASIC implementation with a 90nm
technology. A hardware loop counter is also provided, which
avoids branch mispredictions since the image size is known at
compile time in our algorithms.
Custom FP instructions were implemented using TIE, with

mantissa and exponent widths as parameters: a F16 version
and a F32, both without subnormals and with truncated cal-
culations. Table V-C lists the main arithmetic functions that
were implemented along with their estimated area (given by
Xtensa development tools). Instructions decoding, load/store
instructions and other miscellaneous logic require about 25%
additional area. The custom FP instructions use dedicated
custom register files, also implemented by using the TIE
language.

Block F16 F32 F16 SIMD
Add 1384 2666 11470
Mul 1695 4430 13480
∗2n 158 275 1197
/2n 124 221 931
Byte->Fxx 273 493 1885
Fxx->Byte 1469 2068 11476
Reg. file 5306 9481 34716
Total 10409 19634 75155

TABLE I
MAIN TIE LOGIC BLOCKS AND ESTIMATED SIZES (GATES)

VI. QUALITATIVE APPROACH
For the optical flow computation we have tested the follow-

ing configurations:
• F64: the reference schema that can be seen as the high precision
Matlab computation,

• F32: the usual FP implementation,
• F16: our proposition,
• F13: our highly embedded proposition,
• I16: the integer competitor of F16,
• I32: the integer competitor of F32.

The optical flow algorithm uses division operators (first deriva-
tive and speed average). The I16 implementation keeps them
in place but the I32 implementation postpones them at the final
step, which requires more bits to hold the temporary results.
The I16 and I32 versions use radix-8 fixed-point computations,
to provide an 8-bit fractional part and an 8-bit integer part,
for the 16-bit version. The speed update equation remains
unchanged in I16 but is modified for I32 version as follows:

u =
1
12

»
ū − Ix × Ixū + Iyv̄ + 12 × 28 × It

16α2 + I2
x + I2

y

–
(3)

. To optimize speed on PowerPC, F32 are used for accurate
computations, but 16-bit storage is performed to reduce cache
footprints. Conversions or truncations occur after computa-
tions:

• F32→I16: F32 computations are stored into I16,
• F32→F16: F32 computations are stored into F16,
• F32→F13: F32 computations are stored into F13.

For I16 storage, a radix 8 is used. For F16 storage, both
mantissa and exponent are truncated (while the bias changes
from −127 to −15). F13 storage simply requires the mantissa
truncation. To estimate the impact of number coding, two

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

Optical Flow Absolute convergence

Iterations

M
ea

n
Sq

ua
re

 E
rro

r

F64
F32
F32F16
F16
F32F13
I32
F32I16
I16

I16

F32-I16

I32

F32-F13 F64 & F32 & F16

Fig. 4. absolute convergence of optical flow versions

images were created, the second one with an offset of (3, 1)
pixel. The images were then downscaled by a factor 4, leading
to an apparent motion of (3/4, 1/4) pixel. Figure 4 represents
the mean square error between the estimated flow and the real
flow.
We can see that (legend indicates curves in reverse order)

I16 and I32 converge to a bigger error than F16. We can notice
there is no difference between F32 and F64, and that F16 is
very close to F32. This is an evidence of F16 interest in image
processing algorithms.

We can also notice that, obviously, F32→F16 are better than
F16, since computations are done with a greater accuracy.
But what is also very important is that, first, F32→I16 is
close to I32 with a twice smaller memory footprint, but leads
to a bigger error than F32→F13 which is between F16 and
I32. That enforces the use of F13, for both PowerPC and the
hardware implementation. Now focusing on the ten to thirty

5 10 15 20 25 30
0.3

0.35

0.4

0.45

0.5

0.55

Optical Flow Absolute convergence zoom

Iterations

M
ea

n
Sq

ua
re

 E
rro

r

F64
F32
F32F16
F16
F32F13
I32
F32I16
I16

I16

F32-I16

I32

F16, F32 & F64 versions

Fig. 5. first iterations of optical flow convergences

first iterations of the algorithm (5) instead of hundreds of
iterations which is a bit irrelevant for real-time execution on
embedded systems, we can see figure 4, that all the FP versions
overlap: F16 and F13 versions are as accurate as F32 and F64

versions.
For PoI, the dynamic range is the main issue. Since the

input data is an 8-bit image, the output K could be as large as
32 bits. Since IEEE-754 F16 maximum value is approximately
216, there are two possibilities to fix the problem:

• by normalizing input interval to [0 : 1] with a division by 256
that could take place during the conversion from I8 to F16,

• by replacing -15 bias by 0 or by a positive value.
Since computations are performed with truncation we have
tested two configurations: division by 16 and by 256. Results
are very close. The accuracy was estimated through the
extraction of PoI on the whole Movi house sequence [12].
We provide for variable width mantissa, ranging from 4 bits
to 10 bits, the minimum, the average and the maximum PSNR
between custom F16 and F32 over the 120 images of the
sequence.

float mantissa size min avg max
F16 10 78.9 82.0 85.5
F15 9 72.8 76.0 79.9
F14 8 66.0 68.8 72.2
F13 7 58.9 61.8 64.6
F12 6 52.3 55.4 58.3
F11 5 46.9 50.0 53.0
F10 4 42.3 44.5 45.4

TABLE II
PSNR BETWEEN VARIABLE WIDTH F16 AND F32 FOR POI

Again, F16 are very close to F32, and the F13 version with
a 7-bit mantissa performs well. We can also note that, because

of the nature of the algorithm - “multiplication of horizontal
gradient by the vertical gradient” - the algorithm is very robust
to a short number coding.

VII. QUANTITATIVE APPROACH
In this section, we provide the execution time results for the

three architectures. The metric used is cpp (cpp = t×Freq
n2),

which is the number of clock cycles per pixel. We believe that
cpp is more useful than cpi to compare different architectures,
since it can also help to compare the complexity-per-point
of different algorithms. Moreover cpp is also useful to detect
cache misses from one size of image to another.

A. Quantitative approach with PowerPC
For the PowerPC implementation, we started from a full F32

version where the image is coded with F32 pixel instead of
I8: such a version provides a rough idea of performance and
is also easy to develop. Then we switched to I8: the internal
loop had to be unrolled four times, since in I8 vector pixels
are packed by 16 and in F32 vector, pixels are packed by 4.
Such a scheme provides additional ways to optimize the code:

• software pipelining: to reduce the data dependency stress within
a loop iteration (for PoI, it prevents from storing first derivatives
into memory) and to reduce the total number of cache accesses,

• data interlacing: to reduce the number of active references in
the cache,

• data packing: F32 points are stored into F13 to divide by 2 the
cache footprint.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60
G4!OpticalFlow!I8!F32!SIMD

image size

cp
p

I8!F32
I8!F32+Inter
I8!F32!F16
I8!F32!F16+Inter

0 200 400 600 800 1000 1200
0

50

100

150
G4!PoI!I8!F32!SIMD

image size

cp
p

I8!F32 Planar
I8!F32+Pipeline
I8!F32+Pipeline+Inter
I8!F32!F13+Pipeline+Inter

Fig. 6. Optical flow & PoI on powerPC Altivec

We provide 4 versions: I8→F32 and I8→F32 → F13, with
and without data interlacing. For F13, we get a very dense
code where data interlacing has a small impact, compared to
I8→F32 version. At the end, we achieve a ×2 speedup from
the basic SIMD version.

B. Quantitative approach with Xtensa
For the Xtensa LX implementation, the image processing

benchmarks (PoI and Optical Flow) were written in C. A
first version used integer values (referred to as int hereafter).
A second one used native floats; data had the C language
float type, and calculations were made using the Xtensa LX’s
FPU and the associated 16-entry-wide register file. Two other
versions, using F16 and F32 were written with C intrinsics to
call our custom FP instructions. Since the number of cycles
needed to perform computations using our custom instructions
depends on the desired operating frequency, simulations were

made with several assumptions: an ideal 1 or 2-cycle latency
case and a worst case with custom instructions having the
same 4-cycle latencies as the native ones.
The results also depend on the latency of the memory

connected to the system. Simulations were first run with
the hypothesis of a latency-free memory, which is totally
unrealistic but shows the speedup directly brought by the
faster-computed instructions. They were then run with memory
accesses including the cache behaviour. Eventually, a 16-bit
SIMD version (8 points per data vector, because of the 128-
bit wide memory interface) was tested to get an idea of what
performance could be achieved when using F16 at their full
potential.
Figures 7 and 8 present the number of cycles needed to

compute each algorithm. Table VII-B shows the number of
cycles spent processing data cache misses. Finally table VII-
B shows number of cycles spent waiting because of data
dependencies between instructions in the pipeline.

Fig. 7. PoI’s cpp. - data cache and memory latencies simulated

Fig. 8. Optical Flow algorithm - data cache and memory latencies simulated

The simulations run with a zero latency memory shows that
F16 computation does not bring a significant speedup by itself,
compared to its 32-bit equivalent (results are even contrary
to what expected when compared to native floats since the
compiler is able to optimize them in a better way).

image size 64 128 256
Optical Flow
int,floats,F32 0.62 0.63 0.63
F16,F16SIMD 0.38 0.38 0.38
PoI
int,floats 0.81 0.81 0.81
F32 0.82 0.82 0.82
F16 0.44 0.44 0.44
F16SIMD 0.45 0.45 0.44

TABLE III
XTENSA - DATA CACHE MISSES PER POINT

image size 64 128 256
PoI
floats 19.71 20.35 20.67
F32 14.17 14.58 14.79
int,F16,F16SIMD 1.00 1.00 1.00

TABLE IV
XTENSA - INSTRUCTION INTERLOCKS PER POINT

However, simulating the cache behaviour highlights the
benefit of F16: their twice smaller size leads to twice less cache
misses, which is a real advantage as the processor/memory
speed gap increases. Furthermore, this also doubles the number
of operations per instruction for constant SIMD vector size and
hardware cost, since HDL operators reduce in size in the same
proportions.
Besides table VII-B shows the reduction of the number of

pipeline stalls due to data dependencies. The reduced number
of cycles needed to compute F16 helps the compiler to reorder
the instructions for a better pipeline efficiency.

C. Quantitative approach with NIOS2

Two kinds of synthesis have been performed: structural
version (the architecture is only described with structural ele-
ments) and functional version (structural description but with
functional comparators). The implementation of F 13 instead of
F16 provides a higher clock rate with the same area (number
of cells) in the case of retiming for the structural version. The
speedup due to retiming for F16 and F13 is [×2.3 : ×2.8]while
the area increase is only [×1.5 : ×1.6]. Finally F13 combined
with retiming generates a overall speedup of ×3 with only
an area increase of ×1.5. For the NIOS2, 3 versions of the
operators were designed:

• F16-2: 2-cycle latency multiplication and addition.
• F16-1.5: a 1-cycle multiplication and a 2-cycle addition.
• F16-1: 1-cycle multiplication and addition.

For these three versions we provide the maximum frequency
and cpp and compare the SIMD2 F16 to scalar I32 version.
We can notice that the cpp are better for sizes which are

not powers of two (200 and 260). This comes from the NIOS2
direct-mapped data cache. A smart implementation should use
images with padding at the end of each line to get “unaligned”
starts of lines.

image size
design Freq 64 128 200 256 260
scalar 150 300.5 310.2 219.3 315.6 227.4
F16-2 130 211.3 229.7 204.0 239.4 208.0

F16-1.5 92 179.0 194.5 167.8 202.8 171.4
F16-1 80 136.5 148.2 120.0 154.6 123.0

TABLE V
cpp POI ON NIOS2

VIII. EMBEDDED APPROACH

To estimate the embedded capability of each architecture,
we compute the energy consumption which is based on a
rough estimation of the power consumption multiplied by the
execution time. We do not try to get accurate results but trends
to compare the three architectures.

image size 64 128 256 512
Optical Flow

cpp 7.5 11.6 19.6 28
t(ms) 0.03 0.19 1.24 7.34

energy (mJ) 0.30 1.9 12.8 73
PoI

cpp 22.6 29 40 53.2
t(ms) 0.09 0.48 2.66 13.9

energy (mJ) 0.92 4.75 26.6 139

TABLE VI
EMBEDDED PERFORMANCE OF POWERPC G4

A rough estimate of the Xtensa LX processor power con-
sumption was made by assuming it proportional to the chip
area computed by Xtensa tools, since our academic license
did not permit a better estimation. This leads to about 250mW
when adding scalar F16 instructions and 350mW when adding
SIMD F16 instructions, with the same basic assumptions (core,
caches, process geometry, etc.) at 500MHz. This gives an idea
of the reachable electric consumption as given in table VII,
where results are given for a realistic average case (10:5:5:5
memory latencies, 2-cycle F16 instructions) instead of the
worst case previously described in figures 7 and 8.
To estimate the power consumption of the three F16 ver-

sions, we used PowerPlay from Quartus, with the pessimistic
assumption of 25% of active signals at each cycle. We can see
that all F16 version have a smaller or equal consumption than
I32, with also a smaller frequency and a smaller cpp.
Due to small parallelism (2 operations per instruction), the

speedup of SIMD F16 compared to scalar I32 is small, but
more importantly, the 1-cycle F16 version frequency is half the
scalar version, making easier to interface the FPGA with the
memory. We can also notice that with such 1-cycle operators,
there is no more data dependencies in the code, decreasing
also the impact of the compiler quality.

IX. CONCLUDING REMARKS

We have continued the evaluation of 16-bit FP operators
and instructions. While previous results focused on the impact
of 16-bit SIMD on general purpose processors and automatic

image size 64 128 256 512
Optical Flow F16

cpp 157.8 160.0 162.1 n.a.
t(ms) 1.3 5.2 21.2 n.a.

energy (mJ) 0.3 1.3 5.3 n.a.
PoI F16

cpp 158.2 162.4 164.3 n.a.
t(ms) 1.3 5.3 21.5 n.a.

energy (mJ) 0.4 1.4 5.4 n.a.
Optical Flow F16 SIMD

cpp 26.6 26.8 27 n.a.
t(ms) 0.2 0.9 3.5 n.a.

energy (mJ) 0.1 0.3 1.2 n.a.
PoI F16 SIMD

cpp 30.3 30.2 30.1 n.a.
t(ms) 0.25 1.0 4.0 n.a.

energy (mJ) 0.1 0.4 1.4 n.a.

TABLE VII
ROUGH ESTIMATES OF XTENSA LX PERFORMANCES

design freq. (MHz) Power (mW)
scalar 150 1303
F16-2 130 1307

F16-1.5 92 1145
F16-1 80 1123

TABLE VIII
MAX FREQUENCY AND POWER CONSUMPTION OF NIOS2

code vectorization, we have extended the evaluation of short
and customizable FP formats to embedded vision systems
and SoCs, through the implementation of image stabilizing
algorithms where accuracy and dynamic range problems make
F16 assert themselves. We got promising results on each
customized architecture.
Xtensa achieves the same level of performance, but with

a ×10 smaller consumption than Altivec. NIOS 2 efficiency
is not as high as PowerPC or Xtensa: but this soft core
implementation of F16 can provide low-end embedded systems
with FP capabilities and flexibility. Its main advantage is to
cut development time compared to classical FPGA design, and
also to be ready to integrate into embedded vision systems. We
can also note that, once optimized, the widely spread PowerPC
G4 remains a good challenger for embedded applications.
We are currently developing an Altivec compatible ISA for

Xtensa, to accelerate the port of existing applications and to
facilitate comparisons between different architectures without
re-developing high level code and data transformations.

image size
design freq. 64 128 200 256 260
scalar 150 2.61 2.69 1.90 2.74 1.98
F16-2 130 2.12 2.31 2.05 2.41 2.09

F16-1.5 92 2.23 2.42 2.09 2.53 2.14
F16-1 80 1.93 2.08 1.68 2.17 1.73

TABLE IX
NIOS2 ENERGY CONSUMPTION FOR POI (µJ/pixel)

image size
archi. freq. 64 128 256
NIOS II 80 7.848 34.085 113.16

PowerPC G4 1000 0.920 4.750 26.60
Xtensa 500 0.087 0.346 1.38

TABLE X
POI ENERGY CONSUMPTION (MJ) ARCHITECTURE COMPARISON

Future works will consider more robust and sophisticated
embedded motion compensation algorithms and techniques for
the automatic exploration of configurations according to speed,
power consumption and hardware resources metrics.

REFERENCES
[1] R.P. Brent, H.T. Kung, “A Regular Layout for Parallel Adders”,

IEEE Transacton of computer, vol 31,3, pp 260-264, 1982.
[2] K. Diefendorff, P.K. Dubeyn R. Hochsprung, H. Scales, “Altivec

extension to PowerPC accelerates media processing”, IEEE
Micro, March-April 2000.

[3] D. Etiemble, L. Lacassagne, “16-bit FP sub-word parallelism
to facilitate compiler vectorization and improve performance
of image and media processing”, in Proceedings ICPP 2004,
Montreal, Canada.

[4] F. Fang, Tsuhan Chen, Rob A. Rutenbar, “Lightweight Floating-
Point Arithmetic: Case Study of Inverse Discrete Cosine Trans-
form” in EURASIP Journal on Signal Processing, Special Issue
on Applied Implementation of DSP and Communication Sys-
tems.

[5] J. Harris, M. Stephens, “A combined corner and edge detector”,
4th ALVEY Vision Conference, pages 147-151,1998.

[6] P. M. Kogge, H. Stone, “A Parallel Algorithm for the efficient
solution of a general class of recurrence equations”, IEEE
Transactions on computers, Vol 22, 8, pp786-793, 1973.

[7] G. Kolli, “Using Fixed-Point Instead of Floating-point
for Better 3D Performance”, Intel Optimizing Center,
http://www.devx.com /Intel/article/16478

[8] L. Lacassagne, D. Etiemble, “16-bit floating-point instructions
for embedded multimedia applications”, in IEEE CAMP 2005,
Palermo, Italy.

[9] C. Lee, M. Potkonjak, W.H. Mongione-Smith, “Mediabench: a
tool for evaluating and synthetising multimedia and commu-
nication systems”, Proceeding Micro-30 conference, Research
Triangle Park, NC, December 1995.

[10] W.R. Mark, R.S.Glanville, K. Akeley and M.J. Kilgard, “Cg: A
system for programming graphics hardware in a C-like language.

[11] D. Menard, D. Chillet, F. Charot and O. Sentieys, “Automatic
Floating-point to Fixed-point Conversion for DSP Code Gener-
ation”, in International Conference on Compilers, Architectures
and Synthesis for Embedded Systems (CASES 2002).

[12] IRISA Movi group: http://www.irisa.fr/
texmex/base images/index.html

[13] OpenEXR, http://www.openexr.org/details.html
[14] A. Said and W. A. Pearlman, “A New Fast and Efficient Image

Codec Based on Set Partitioning in Hierarchical Trees”, IEEE
Transactions on Circuits and Systems for Video Technology, vol.
6, pp. 243-250, June 1996.

[15] M. Unser, “Spline, A perfect fit for signal and image process-
ing”, in IEEE Signal Processing Magazine, November 99, pp
22-38.

[16] T.R. Haflhill, “Tensilica tackles bottleneck”, in Microprocessor
Report, May 31, 2004

