
SLA Guarantees for Cloud Services

Damián Serranoa, Sara Bouchenaka, Yousri Koukib, Frederico Alvares de
Oliveira Jr.b, Thomas Ledouxb, Jonathan Lejeunec, Julien Sopenac,

Luciana Arantesc, Pierre Sensc,∗

aUniversity of Grenoble, France. E-mail Firstname.Lastname@imag.fr
bEMN – INRIA – LINA, Nantes, France. E-mail: Firstname.Lastname@mines-nantes.fr

cSorbonne Universités, UPMC, CNRS, Inria, Paris, France. E-mail: Firstname.Lastname@lip6.fr

Abstract

Quality-of-service and SLA guarantees are among the major challenges of
cloud-based services. In this paper we first present a new cloud model called
SLAaaS – SLA aware Service. SLAaaS considers QoS levels and SLA as first
class citizens of cloud-based services. This model is orthogonal to other SaaS,
PaaS, and IaaS cloud models, and may apply to any of them. More specifically
we make three contributions: (i) we provide a novel domain specific language
that allows to describe QoS-oriented SLA associated with cloud services; (ii) we
present a general control-theoretic approach for managing cloud service SLA;
(iii) we apply the proposed language and control approach to guarantee SLA in
various case studies, ranging from cloud-based MapReduce service, to locking
service, and higher-level e-commerce service; these case studies successfully
illustrate SLA management with different QoS aspects of cloud services such
as performance, dependability, financial and energetic costs.

Keywords: SLA; QoS; Cloud Computing; Specific Language; Online Control

1. Introduction

Cloud Computing is nowadays a widely extended computation paradigm.
It enables remote and on demand access to configurable computing resources
providing hardware and software services in a way that it minimizes the human
efforts needed by customers as well as providers to configure, use and maintain
the services. A cloud service follows a pay-as-you-go approach, that means that
customers are charged only for the time they use the service. Regarding the
kind of services that are provided, a cloud may have the form of infrastructure
services (IaaS), platform services (PaaS) and software services (SaaS). However,
there is a lack of a solid foundation for quality of service in the clouds.

For instance, let consider Dropbox, a widely-used cloud storage service
where users can store files and get them from anywhere. In August 2012, users

∗Corresponding author

Preprint submitted to Elsevier May 14, 2015

have frequently experienced unavailability of files and long synchronization
delays between local files and data in some clouds. Such a bad performance
has strongly affected the service reputation. Another example is the Amazon
web service outage in April 2011 [40] which rendered inaccessible other services
built on top of it, such as reddit, HotSuite or FourSquare. This last example also
illustrates the strong relationship between the guaranties of the different layers
of a cloud architecture: a lack of services at the IaaS level induces violations of
the quality of service constraints at the SaaS level.

Formally, the definition of Quality of Service (QoS) is the ability of a service
to meet certain requirements for different aspects of the service like perfor-
mance, availability, reliability, or cost. In order to evaluate QoS in a qualitative
and quantitative way, several metrics are considered like rejection rate, mean
time between failures, response time, throughput, financial cost, or energy con-
sumption. Then, service providers and customers have to negotiate a Service
Level Agreement (SLA) that allows them to formally specify the QoS and agree
on the requirements.

Any SLA mainly describes two things: the different Service Level Objectives
(SLO) in terms of values for Quality of Service metrics and the penalties to be
applied if the objectives have not been accomplished.

Existing public clouds providers offer very few guarantees in terms of per-
formance and dependability [7]. This is the case of Amazon, Rackspace, or
Microsoft for instance. Usually, they only commit to guarantee availability un-
der the presence of hardware failures. For instance, we can get in Amazon’s site
the information that their service will be available 99.95% of time. However,
other aspects like service response time, service network bandwidth, or even
energy consumption are left to a best-effort’ policy.

Contributions. We argue that the quality of service offered by cloud service
providers and the respective SLA that they can commit are a differential key
element among them. However, such a commitment raises the following chal-
lenges: (i) How to consider SLA in a general way for different cloud environ-
ments? (ii) How to describe the SLA terms between a cloud provider and a
cloud customer, such as service levels objectives, or penalties in case of SLA
violations? (iii) How to provide guarantees on cloud Quality of Service to
produce better than best-effort behaviour for clouds ?

To address the above challenges, we propose a new method for provid-
ing SLA with quality of service in clouds. It is composed of the following
components:

• a novel cloud model, SLAaaS (SLA-aware Service) which enables systematic
and transparent integration of service levels and SLA into a cloud;

• a new language, called CSLA, to formally describe cloud-oriented Service
level agreements;

• the definition of utility functions merging different Service Level Objectives
(SLO);

• online controlling algorithms to monitor and ensure the SLOs.

2

In order to illustrate the soundness and advantages of the proposed method,
some SLA case studies (e.g. book store application, MapReduce service, locking
service) at PaaS or SaaS levels are presented in the paper. A preliminary version
of them can be found in [38]. Then, we propose in this paper a new scenario
for energy shortage composed of SLAs at multi-levels which combines SLAs at
both SaaS and IaaS layers.

The paper is organized as follows. Section 2 introduces some background
and our general methodology. CSLA language is described in Section 3. Sec-
tions 4 and 5 detail our case studies. Section 6 describes our multi-SLA scenario.
Section 7 reviews the related work, and Section 8 concludes the paper.

2. Design principles

A cloud provides a set of services where each of them exposes a functional
interface with possible operations to be called in the context of the cloud. For
instance, an IaaS cloud such as Amazon EC2 provides a functional interface that
allows users to acquire compute instances, to run software on these instances,
or to release instances while Amazon RDS PaaS cloud provides a relational
database service that makes it easy to set up, operate, and scale a relational
database. A third example is Google Apps SaaS cloud which provides a set of
services with functional interfaces, such as Google Drive, that allows users to
create, update, and share documents.

In addition to the above functional aspects of cloud services, there are
also non-functional aspects related to the Quality of Service (QoS), such as
performance, availability, reliability, cost, etc. For each QoS aspect, multiple QoS
metrics may be considered. Some examples of such metrics are:

• performance metrics: response time, which is the necessary time for a user
request to get served, or throughput that reflects cloud service scalability,
etc.

• availability metrics: abandon rate, which is the ratio of accepted service
requests to the total number of requests, or use rate which is the ratio of
time a cloud service is used to the total time.

• reliability metrics: mean time between failures which is the predicted elapsed
time between inherent failures of the service, or mean time to recover which
is is the average time that a service takes to recover from a failure.

• cost metrics are the energetic cost that reflects the energy footprint of a
service, or the financial cost of using a cloud service.

A QoS metric is, thus, a mean to quantify the service level with regard to a
QoS aspect since the customer may require a service level to get a given objec-
tive, i.e., the Service Level Objective (SLO). For instance, a SLO can define a QoS
metric with a value higher/lower than a given threshold, maximize/minimize
some QoS metrics, etc. Therefore, a Service Level Agreement (SLA) is a set of SLOs
that should be satisfied and negotiated between the cloud service provider and
the customer.

3

2.1. SLAaaS Model
In order to allow the definition of non-functional interfaces which expose

the SLA associated with cloud functional services, we have introduced a new
cloud model denoted SLA-aware-Service (SLAaaS). Figure 1 shows the SLAaaS
model at three cloud levels: an IaaS cloud, a PaaS cloud and an example of a
SaaS cloud that represents here a business intelligence system. We can observe
in the figure four levels: an end-user is a client of the SaaS cloud, which is itself
a client of the PaaS cloud, which is itself a client of the IaaS cloud.

Notice that the traditional functional interface of a cloud exposes operations
that allow a cloud customer to get new resources from the cloud, access/use
resources in the cloud or release resources that he/she does not use anymore
while SLAaaS allows the cloud to expose SLA non-functional interfaces. Fur-
thermore, SLAaaS aims to provide SLA-oriented cloud reconfiguration and
SLA governance. In this article, we focus on the former.

PaaS

SaaS
Business intelligence service

pricing cost …

Cloud functional interface

User

Functional service requests non-functional SLA operations

SLA non-functional interface

SLA reconfiguration / governance

Cloud functional interface SLA non-functional interface

get resource release resource SLA reconfiguration / governance

SLA non-functional interface

get resource release resource SLA reconfiguration / governance

IaaS
storage, computation, networking …

Cloud functional interface

web server, data management, locking services …

Figure 1: SLAaaS cloud model

By using SLAaaS, the user firstly selects the QoS aspects in which he/she
is interested (e.g. performance, cost), as well as the QoS metrics for these
aspects (e.g. service response time, financial cost). The user can then choose
the SLOs he/she wants to apply on the QoS metrics. For instance, the SLO
for the response time and for the financial cost may be defined in order to
respectively guarantee that the response time never exceeds a given threshold
and the cost is minimized. Then, the SLA is defined as the combination of
SLOs. Furthermore, the SLA between a cloud service and the customer may
include additional information, such as the agreed confidence level (e.g. SLOs
are guaranteed with a confidence of 95%), or the penalties applied in case of
SLA violation. Figure 2 presents three examples of SLAs that applied at three
different cloud levels: between the end-user and the SaaS, between the SaaS
and the PaaS, and between the PaaS and the IaaS.

4

SLA between the end-user and the SaaS cloud

SLOs For a maximum financial cost of US$ 0.10/request to the SaaS business intelligence
service, response time must be less than 1 minute

Confidence SLOs guaranteed on at least 95% of requests to the SaaS service

Penalty If more than 5% of requests to the SaaS service violate SLOs, a penalty of
US$ 0.20/violated request is applied

SLA between the SaaS and PaaS cloud

SLOs For a maximum financial cost of US$ 0.01/request to the PaaS data management
service, response time must be less than 1 second

Confidence SLOs guaranteed on at least 98% of requests to the PaaS service

Penalty If more than 2% of requests to the PaaS service violate SLOs, a penalty of
US$ 0.02/violated request is applied

SLA between the PaaS and IaaS cloud

SLOs For a maximum financial cost of US$ 0.12/resource.hour of the IaaS service, at least
7 GB of memory and at least 4 compute units must be available

Confidence SLOs guaranteed on at least 99% of the time the client uses the IaaS service

Penalty If during more than 1% of the time the IaaS service violates SLOs, a penalty of
US$ 0.24/violated resource.hour is applied

Figure 2: Examples of SLAs at different cloud levels

2.2. Methodology Overview
The SLAaaS model enriches the general paradigm of Cloud Computing, and

enables systematic and transparent integration of service levels and SLA into
the cloud. SLAaaS is orthogonal to IaaS, PaaS, and SaaS clouds and may apply
to any of them. Furthermore, a specific language is introduced to describe QoS-
oriented SLA associated with cloud services, the CSLA (Cloud Service Level
Agreement) language. CSLA is described in Section 3.

A control-theoretic approach is then described to provide performance,
dependability and cost guarantees for online cloud services, with time-varying
workloads. The online control of cloud services is based on a general feedback
control loop as described in Figure 3. To manage cloud SLA in a principled way,
we follow a control-theoretic approach to design fully autonomic SLA-oriented
cloud services. The general approach consists in three main steps.

Cloud SLA Controller

• Performance requirements

• Dependability requirements

• Energy requirements

• etc.

Cloud SLA Controller

• Performance requirements

• Dependability requirements

• Energy requirements

• etc.

CSLA descriptionCSLA description

• etc.• etc.

Elastic Cloud

• Service provisioning

• Service configuration

• Service reconfiguration

• etc.

Elastic Cloud

• Service provisioning

• Service configuration

• Service reconfiguration

• etc.

Cloud Monitoring

• Performance monitoring

• Dependability monitoring

• Energy consumption estimation

• etc.

Cloud Monitoring

• Performance monitoring

• Dependability monitoring

• Energy consumption estimation

• etc.

Figure 3: Cloud autonomic reconfiguration

First, an utility/objective function is defined to precisely describe the set of
SLOs as specified in the cloud SLA, the weights assigned to these SLOs if any,

5

and the possible trade-offs and priorities between the SLOs. The cloud service
configuration (i.e., how many resources, what is their combination) with the
highest utility is the best regarding SLA guarantees.

Then, control theory techniques are applied to model cloud service behavior,
and propose control laws and algorithms for fully autonomic SLA-oriented
cloud services. The challenges for modeling cloud services are to build accurate
models that are able to capture the non-linear behavior of cloud services, and
that are able to self-calibrate to render the variations of service workloads. The
challenges for controlling cloud services are to propose accurate and efficient
algorithms and control laws that calculate the best service configuration, and
rapidly react to changes in cloud service usage.

3. CSLA language

CSLA, the Cloud Service Level Agreement language, allows to define SLA
in any language for any cloud service (XaaS). CSLA addresses intrinsically the
dynamic nature of the Cloud (e.g. elasticity) and its cost model. A preliminary
version of CSLA has been introduced in our previous work [25]. This new
version is more stable, addresses more features and is based on the Open
Cloud Computing Interface (OCCI) [30] and the Cloud Computing Reference
Architecture of the National Institute of Standards and Technology (NIST) [14].

3.1. Motivation and Overview
Elasticity is the intrinsic element that differentiates Cloud computing from

traditional computing paradigms, since it allows service providers to rapidly
adjust resources to absorb the demand and hence guarantee a minimum level
of Quality of Service (QoS) that respects the Service Level Agreements (SLAs)
previously defined with their clients. However, due to technical and con-
ceptual limitations (e.g., non-negligible resource initiation time, unpredictable
workload), it becomes hard for service providers to guarantee QoS levels and
SLA violations may occur. A Cloud SLA has to be suitable for heterogeneous,
volatile resources in a highly unpredictable and dynamic environment. Exist-
ing SLA languages such as WSLA [28] and WS-Agreement [2] do not support
the dynamic nature of the Cloud.

We propose CSLA (Cloud Service Level Agreement), a SLA language to
finely express SLA contracts and to address SLA violations in the context of
Cloud services. Besides the standard formal definition of contracts - comprising
validity, parties, services definition and guarantees - CSLA is enriched with new
properties (QoS/functionality degradation and an advanced penalty model)
introducing a fine language support for Cloud elasticity management. Indeed,
CSLA allows the expression of sophisticated Service Level Objectives (SLOs)
with new features such as confidence and fuzziness to deal with QoS uncertainty:
(i) the fuzziness defines the acceptable margin degree around the threshold of an
expression; (ii) the confidence defines the percentage of compliance of clauses.
Besides, the functionality degradation allows Cloud services to operate in different
modes (e.g., 2D vs 3D display, a degree of security levels), each one consuming
more or less resources, consequently this property allows service providers

6

more flexibility to raise additional resources. Finally, an advanced penalty
model related to degradation is proposed. This model aligns penalties with
functionality/QoS degradation in order to provide a good trade-off between
price and quality which is both attractive for final clients and profitable for
Cloud service providers.

Our goal is to make contracts more flexible and consequently increase Cloud
services self-adaptation capability and elasticity possibilities. CSLA allows
service providers to maintain its consumers satisfaction while minimizing the
service costs due to resources fees.

3.2. How to evaluate Service Level Objectives (SLO) in CSLA?
A SLO is a predicate which has usually one of the following form: a QoS

metric (e.g., response time) with a value higher/lower than a given threshold
(e.g., 3 ms). In CSLA, we enrich the SLO definition with the fuzziness and the
confidence features (see 3.4 for examples). In order to evaluate an objective
(SLO), an initial evaluation enables to classify the predicate as ideal (i.e., thresh-
old is respected), degraded (i.e., threshold is respected using fuzziness margin)
or inadequate (i.e., threshold is not respected even with fuzziness margin) (cf.
Figure 4). We distinguish two types of evaluation: (i) per-interval evaluation,
in which the evaluation is performed at the end of each interval (e.g. time
window of 30 min); (ii) per-request evaluation, in which the objective is evalu-
ated for each request. At the end of the time window, a final evaluation allows
one to verify an objective (SLO) by applying the fuzziness and confidence per-
centages to the initial evaluation. Moreover, the final evaluation enables the
identification of non-accepted/accepted degradation and inadequate cases. In
other words, the final evaluation absorbs or notifies the violations.

Figure 4: SLO evaluation in CSLA

3.3. CSLA Meta-model
A SLA in the CSLA language contains three sections: a section describing the

validity, a section defining the parties involved and the section referencing the
template used to create the agreement (cf. Figure 5). The Validity defines how
long an agreement is valid. CSLA distinguishes two types of Parties: Signatory

7

parties, namely service provider and service customer, and Supporting parties
(e.g., trusted third party).

Figure 5: CSLA meta model

A CSLA Template is like a pattern for SLA. It contains five elements: cloud
services definition, Parameters, Guarantees, Billing and Terminations.

• A cloud service definition refers any XaaS service (SaaS, PaaS or IaaS).
We use OCCI standard for IaaS services definition.

• Parameters provide a way to define variables in the context of the agree-
ment which should be used in others sections. Variables refer to a distinct
element such as Metric, Monitoring and Schedule (see 3.4).

• Guarantees contain four elements: Scope, Requirements, Terms and Penal-
ties. The scope specifies which services in the agreement are covered
by the guarantee. The requirements define the specifications that must
be fulfilled for operating the scope services (e.g., Flash Player v10.1 or
above). The terms aggregate guarantees term with and or or operators.
A guarantee term contains one or more Objectives (SLO). Each objective
defines an expression that must be met according to a precondition. An
expression formulates a predicate. It is characterized by a Metric, a Com-
parator and a Threshold. We define a Priority for each objective to take
into account the customer QoS preferences. The metric is evaluated ac-
cording to predefined Monitoring in specific period (Schedule). Penalties
compensate the consumer for accepting QoS or functionality degradation
and tolerating the SLA violation. The compensation can be applied either
as a constant or variable rate (see 3.4).

8

• CSLA supports two types of billing: Pay as You Go (i.e., price per request
on the cloud service) and All-in package (i.e., fixed price per period).

• Finally, the agreement continues in force in accordance with the section
Validity or in accordance with the Terminations section which can describe
a specific cancellation clause.

3.4. CSLA example
The CSLA syntax is defined according to the grammar generated from the

CSLA meta-model. In this paper, we use XML as a representation format.
The following XML presents an example of a CSLA file describing the guar-
antee Terms and Penalties for SLA between a SaaS provider and its customer
concerning the service S1 (for more details see Section 6).

In this example, two SLOs are composed using the ”and” operator: a perfor-
mance SLO – contractualizing the QoS of the response time – and a mode SLO
– contractualizing the use of the functionality degradation. The performance
SLO (lines 6-11) specifies that for each interval of 3 minutes in window of 30
minutes (expressed in the variable Mon-1, not detailed here), the maximum
request response time (Rt) must be below 3 seconds if the data size is less than
1 TB. This objective should be achieved every day between 8 a.m. and 10 a.m.
(expressed in the variable Sch-Morning, not detailed here) during the validity
of the contract. It guarantees that, on at least 99% of requests for the service S1
(Confidence) among which 10% can be degraded (Fuzziness) i.e., a margin of 0.2
second is acceptable as a QoS degradation. Lines 12-14 specify the mode SLO.
The functionality degradation mode must be used in 10% of requests for the
service S1. It is noticeable that the functionality degradation is managed like
any other SLOs since it defines an objective of usage.

The second part presents the penalties (lines 16-31). They are applied in
case of SLA violations to compensate cloud service customers, i.e., penalties
reduce the service price. The reduction can be applied either as a constant or
variable rate. In the latter case, the request price is modeled as linear function
[22]. A violation of the mode SLO (lines 25-30) implies a penalty equal to 0.1
euro/request whereas the penalty of the performance SLO (lines 17-24) depends
on delay. In the request, price is modeled as: P = α − β · dt ; where α is the
price with no violations (α > 0), β is the penalty rate (β > 0) and dt is the
absolute difference between the actual value and the SLO threshold. For each
penalty, a procedure indicates the actor in charge of the violation notification
(e.g., provider), the notification method (e.g., email) and the notification period
(e.g., 7 days).
1 <csla:terms>
2 <csla:term id=”T1” operator=”and”>
3 <csla:item id=”responseTimeTerm”/>
4 <csla:item id=”modeTerm”/>
5 </csla:term>
6 <csla:objective id=”performanceSLO” priority=”1” actor=”provider”>
7 <csla:precondition policy=”Required”>
8 <csla:description>Data size less than 1 TB</csla:description>
9 </csla:precondition>
10 <csla:expression metric=”Rt” comparator=”lt” threshold=”3” unit=”second” monitoring=”Mon

−1” schedule=”Sch−Morning” Confidence=”99” fuzziness−value=”0.2” fuzziness−
percentage=”10”/>

9

11 </csla:objective>
12 <csla:objective id=”modeSLO” priority=”2” actor=”provider”>
13 <csla:expression metric=”Mu(S1−M2)” comparator=”lt” threshold=”10” unit=”\%” monitoring=

”Mon−1” Confidence=”99” fuzziness−value=”2” fuzziness−percentage=”5”/>
14 </csla:objective>
15 </csla:terms>
16 <csla:penalties>
17 <csla:Penalty id=”p−Rt” objective=”responseTimeTerm” condition=”violation” obligation=”provider”>
18 <csla:Function ratio=”0.5” variable=”delais” unit=”second”>
19 <csla:Description> ... </csla:Description>
20 </csla:Function>
21 <csla:Procedure actor=”provider” notificationMethod=”e−mail” notificationPeriod=”7 days”>
22 <csla:violationDescription/>
23 </csla:Procedure>
24 </csla:Penalty>
25 <csla:Penalty id=”p−Mu” objective=”modeTerm” condition=”violation” obligation=”provider”>
26 <csla:Constant value=”0.1” unit=”euro/request”/>
27 <csla:Procedure actor=”provider” notificationMethod=”e−mail” notificationPeriod=”7 days”>
28 <csla:violationDescription/>
29 </csla:Procedure>
30 </csla:Penalty>
31 </csla:penalties>

4. SLA for a SaaS Service: Bookstore application

To illustrate the design principles, we describe in the following how we ap-
plied the proposed SLAaaS model to the TPC-W [42] online bookstore Software-
as-a-Service.

4.1. SLA Actors
TPC-W [42] is a well-known benchmark that emulates a bookstore which can

be offered as SaaS. TPC-W is organized in two tiers, namely the front-end web
tier and the back-end database tier; each tier may have one or more servers.
Multi-tier architectures are intended to improve scalability, since the larger
the set of servers in each tier is, the better the performance and availability.
However, the number of servers involved in a cloud service determines its cost.
There is a trade-off between performance, availability and cost, which is not
straightforward to handle.

This kind of trade-offs can be easily controlled with a SLAaaS service. Table 1
presents an example of SLA for such a service. Here, the SLA is established
between the SaaS bookstore provider and any of its customers. The table
shows three SLOs: response time that should not exceed 500 ms with 150 ms
of fuzziness, availability with at least 95% of requests have to be successfully
processed, and cost, i.e., number of servers, that should be kepts at a minimum
given that performance and availability objectives are guaranteed.

4.2. Objective Function
The first step to build our SLA-aware service is to translate the desired SLA

into an objective function (recall section 2.2). To do that, we first draw a function
to capture that performance and availability objectives (PAO) are guaranteed
at a given time.

10

Service Metric Oper. Value (ms) Fuzz. (ms) Conf. (%) ($)
Multi-tier Response Time ≤ 500 150 100
Bookstore Availability ≥ 95 0 100

Cost (#nodes) min - - -

Table 1: SLA for multi-tier bookstore SaaS in CSLA language

PAO(t) = PO(t) · AO(t) (1)

PO(t) =

{
1 if `(t) ≤ `max + f ∆

per f
0 otherwise

(2)

AO(t) =

{
1 if α(t) ≥ αmin
0 otherwise (3)

where `(t) is the average response time at time t, `max is the maximum response
time defined in the SLA, f ∆

per f is the fuzziness value described in the SLA,α(t) the
availability (ratio of successfully processed requests) at time t, and αmin is the
minimum availability defined in the SLA. Thus, PAO(t) = 0 means objectives
are not met at time t, and PAO(t) = 1 when they are.

We have to relate now the third objective with the other two. The third
objective is to minimize the cost of the service, which, in a cloud context, is
directly related with the usage of the cloud infrastructure. For simplification
purposes, we consider only homogeneous nodes/virtual machines. Other cost
parameters like network usage or storage could be added similarly. We can,
thus, draw the following objective function:

θ(t) =
T · PAO(t)
ω(t)

(4)

where ω(t) gives us the number of nodes at time t hosting both tiers of the
SaaS, T being the number of tiers (T = 2 in this use case) which is used for
normalization purposes. Note that ∀t, θ(t) ∈ [0, 1], since ω(t) ≥ T, that is, we
consider a minimum of one node in each tier at any moment, and, as said,
PAO(t) ∈ {0, 1}.

Equation 4 constitutes the objective function that integrates the requirements
described in the SLA. This objective function will be maximized by the control
algorithm.

4.3. Control Algorithm
The environment where an SaaS is used is not static. Different amounts of

customers can access the service at different moments, competing for comput-
ing resources. Finding the configuration of the service that provides the highest

11

utility in a constantly changing cloud environment constitutes the main chal-
lenge when building an SLAaaS. That configuration is maintained and adapted
by the control algorithm.

To control our SaaS, first we need to model its behavior and then to find
the configuration of the service that uses the model to maximize the utility
function.

The considered SaaS service follows a multi-tier architecture. More specif-
ically, there is a queue of received requests waiting to be executed in the first
tier and the execution the requests in the first tier generates more requests that
are placed in a queue for the second tier. This execution behavior accommo-
dates to a queuing network approach where the execution queue of each tier is
model as a M/M/c/K queue [15, 20]. M/M/c/K means that request arrival time
is independent of other requests (first M), execution time is independent of
other requests (second M), c is the number of servers (called ω(t) in the utility
function), and K is the number of requests accepted for execution (MPL). Both c
and K correspond to the configuration of the service. Besides c and K, each tier
queue needs the average response time and the average arrival time to estimate
the execution time. The estimate for the availability is calculated as the ratio of
received requests in each tier and the MPL.

In the M/M/c/K model, the parameters c and K can be varied to find the
configuration that maximizes the utility function (Eq. 4). This is the task of the
capacity planning algorithm. For that, the capacity planning algorithm uses
the M/M/c/K network with the monitored values for average response time
and average arrival time and implements a dichotomic search on the other two
parameters (c and K). The search has maximum values fixed for each parameter.
Once the search finds the values of c and K with the highest utility, if they differ
from the current configuration, actuators are triggered to add or remove server
nodes and to modify the MPL.

We assume that between two consecutive executions of the capacity plan-
ning algorithm the service is able to stabilize, specially new resources are warm-
ing up. This assumption is suitable as the stabilization time is short compared
to the duration of the experiment, as will be shown in graphs in Figure 6.
[5] describes a model and capacity planning algorithm deeper in details for a
multi-tier service. The most interesting particularity is that the capacity plan-
ning algorithm is able to configure the service at once for a given SLA, without
the need to follow an step-by-step approach. More complex capacity plan-
ning algorithms could be implemented, for instance to cope with the added
resources while they are not yet stabilized. However, that is out of the scope of
the paper.

The suitability of a queuing system for online services has been already
studied in [5]. Finding other models for the same service dealing with other
situations is out of the scope of this paper. More enriched models could be
proposed instead of using queuing theory, they might take into account the
impact of VM migrations, for instance.

12

4.4. Experimental Results
We have implemented our control algorithm in an existent implementation

of the benchmark [42]. The results of our experiments can be found in Figure 6.
These experiments consider the SLA depicted in Table 1.

To emulate dynamicity in the usage of the cloud service, we have varied
the number of clients during the execution of the experiment, starting at 50,
then sharply increased until 500 and finally coming back to 50 again. Clients
submit read-only requests belonging to the browsing-mix, which is a workload
provided in the specification of TPC-W and integrated in the implementation
we used.

To cope with the execution of the capacity planning algorithm, the param-
eters needed by the model are monitored every 5 seconds. These parameters
include the request arrival rate and the average request response time. The
capacity planning algorithm is executed every minute and uses the history of
the monitor data collected in the 2 previous minutes.Maximum values for the
number of nodes and MPL are fixed to 25 and 900 respectively. Row G5K I
in Table 2 describes the hardware configuration. As initial configuration, each
tier is composed of only one server, plus one extra server that runs the capacity
planned separately.

Figures 6(a) and 6(b) show the values overtime for the performance and
availability objectives defined in the SLA, as well as the monitored number
of concurrent clients accessing the service. Below, Figures 6(c) and 6(d) show
the controlled configuration, the number of nodes and the maximum number
of requests executed concurrently (MPL), respectively. Results shown in the
graphs correspond to measurements after 15 minutes of warmup with 50 clients.

At the beginning, each tier is composed of only one server, offering satisfying
values for performance and availability regarding the considered SLA. Then,
our SLAaaS bookstore reacts adding 2 new servers to the database tier (Fig. 6(c))
and setting new values for the MPL (Fig. 6(d)) to cope with the sharp increment
on the number of concurrent clients at minute 12. That decision avoids the
violation of the response time SLO (Fig. 6(a)), which although we can see that
the response time is higher than the maximum value of the response time SLO,
that values fall into the acceptable margins due to the fuzziness property of
CSLA. Moreover, we can see that impact on availability is almost unnoticeable
(Fig. 6(b)).

5. SLA for PaaS services

As stated earlier in Section 2.1, our SLAaaS model can be applied to any
service in the three XaaS layers. We successfully applied it to an SaaS service
in the previous Section. We illustrate here how to use our proposed approach
to build SLAaaS services at the platform layer (PaaS).

The experiments presented in this section were conducted a private cloud,
Grid’5000 [33], and a public cloud, Amazon EC2. Table 2 shows the hardware
configurations.

13

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30
 0

 100

 200

 300

 400

 500

 600

 700

la
te

n
cy

 (
m

s)

#
cl

ie
n

ts

time (min)

latency
SLO (max. latency)
workload amount

(a) Service performance

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30
 0

 100

 200

 300

 400

 500

 600

 700

av
ai

la
b

il
it

y
 (

%
)

#
cl

ie
n
ts

time (min)

availability
SLO (min. availability)
workload amount

(b) Service availability

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30
 0

 100

 200

 300

 400

 500

 600

 700

#
n

o
d
e
s

#
c
li

e
n
ts

time (min)

front end
backend
workload amount

(c) Online control of cloud instances

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30
 0

 100

 200

 300

 400

 500

 600

 700

M
P

L

#
c
li

e
n
ts

time (min)

front end
backend
workload amount

(d) Online control of MPL

Figure 6: SLAaaS multi-tier bookstore service

14

Cluster CPU Memory Storage Network
Amazon
EC2

large instances, 4
EC2 Compute Units
in 2 virtual cores

7.5 GB 850 MB 10 Gbit Eth-
ernet

G5K I 4-core 2-CPU
2.5 GHz Intel Xeon
E5420 QC

8 GB 136 GB
SATA

1 Gbit Eth-
ernet

G5K II 4-core 1-CPU
2.53 GHz Intel
Xeon X3440

16 GB 278 GB
SATA II

Infiniband
20G

Table 2: Hardware configurations
Service Metric Oper. Value (s) Fuzz. (s) Conf. (%)
MapReduce Response Time ≤ 90 5 100

Cost min - - -

Table 3: SLA for MapReduce PaaS in CSLA language

5.1. Map-Reduce service
The first PaaS service built using our SLAaaS model is a Map-Reduce service.

Following directions in section 2.2 we describe how to build this service and we
validate it experimentally afterwards. Some previous works [13, 16] have taken
similar approaches, however, they do not provide a MapReduce framework
that guarantees a SLA regarding the intrinsic dynamicity of cloud services in
terms of variation in the workload amount.

5.1.1. SLA Actors
MapReduce [11] has become a widely extended programming model and

execution environment for Big Data processing (i.e., large amounts of unstruc-
tured data). It can be run on clusters of commodity computers attaining high
availability with an acceptable high performance. To that end, MapReduce
provides automatic mechanisms to parallelize execution and to partition and
replicate data across the cluster. Several cloud providers (for instance, Ama-
zon or Azure) offer MapReduce as Platform-as-a-Service through a functional
interface with operations to start/stop a MapReduce cluster or submit a job for
execution.

Following our SLAaaS model, a SLA could be established between a MapRe-
duce PaaS provider and its customers. We take in this section the SLA presented
in Table 3. In that SLA, response time should be below 90 seconds (performance
objective) with the minimum cost in terms of the size of the MapReduce cluster
(cost objective).

5.1.2. Objective Function
To apply SLAaaS to a MapReduce service, first an utility function drawn

ad hoc from the SLA is defined. Similarly to the SaaS case, we combine an
expression for performance objective with another integrating the cost. Eq. 5
tests if the service guarantees the performance SLO at time t:

15

PO(t) =

{
1 if `(t) ≤ `max + f ∆

per f
0 otherwise

(5)

where `(t) is the average response time at time t, and `max is the threshold in
the performance SLO and f ∆

per f its fuzziness. Thus, ∀t,PO(t) ∈ {0, 1} whether
performance objective is guaranteed or not. Then, we combine PO(t) with cost:

θ(t) =
PO(t)
ω(t)

(6)

whereω(t) is the size of the MapReduce cluster at time t in terms of the number
of servers.

Eq. 6 is the utility function that we need to maximize in this case. Obviously,
the minimum number of servers that guarantees response time provides the
highest utility. Note that, ∀t, θ(t) ∈ [0, 1].

5.1.3. Control Algorithm
The control of the considered MapReduce service takes place into two steps.

First, a model for the service is defined to estimate `(t), the average response
time at a given moment. Then, a capacity planning algorithm to find the
configuration of the service that guarantees the SLA is provided. That algorithm
uses the model to maximize the previously defined utility function (θ(t)).

MapReduce divides each job into smaller work units called tasks and place
those tasks into a queue to be executed by any of the server nodes. Similarly to
the SLA-aware SaaS service presented in Section 4, the queue can be model as a
M/M/c queue [15, 20]. That is, where the arrival of jobs is independent of other
jobs (first M), the execution time of jobs is independent of other jobs (second M)
and c is the number of server nodes (calledω(t) in the utility function). Although
there are two different types of tasks, we use only one queue assuming there
will be always enough tasks to feed the server nodes. Finding a finer grain
model could be possible but we consider it to be out of the scope of the paper.

The model uses as inputs the average job arrival rate, the average job re-
sponse time and the current size of the MapReduce cluster, the model is able to
predict the average response time for future jobs given a different configuration
(i.e., changing the number of nodes).

The capacity planning algorithm uses the previous defined model to search
for the minimum cluster size that maximizes the utility function maximize
θ(t). For that it uses monitored values for the average job arrival rate and the
average job response time and implements a binary search on the parameter c.
If the result varies from the current configuration, the number of server nodes
is adjusted triggering actuators to add/remove servers. As for the SaaS control
algorithm, here again the number of servers guaranteeing the SLA is calculated
at once without the need of following a step-by-step approach. Again, we
assume that the system stabilizes between two consecutive executions of the
capacity planning algorithm as the time to stabilize is short compared to the
experiment duration (see Figure 7).

Our M/M/c queue is suitable since MapReduce is proposed as an online
service where users submit requests concurrently [5]. Like the SLA-aware SaaS,

16

Figure 7: Self-elastic MapReduce service

building more complex capacity planning algorithms, for instance being able to
cope with resources that are not yet warmed up, or models that can predict VM
migrations are out of the scope of this paper. Note that, we have considered
only homogeneous servers in our use case. The SLA-aware MapReduce service
could be built taking into consideration different node types. For that, we need
to change the model and the utility function. Instead of a M/M/c queue model,
we need to build the queuing system with a different service time distribution
associated to each node. On the other hand, the utility function should combine
the cost of the different nodes instead of only counting them. The controller
could be enriched with heuristics to deal with nodes that are not working
properly. The controller could blacklist and report those nodes or replace those
nodes by “fresh” instances in a virtualized scenario.

5.1.4. Experimental Results
We have implemented our control algorithm in Hadoop [45], a very popular

implementation of MapReduce and we set up a MapReduce PaaS service in a
cluster of Amazon EC2 instances (see Table 2).

We have generated an dynamic workload to test the SLAaaS MapReduce
using MRBS [37] emulating MapReduce clients in another instance. One ad-
ditional instance is used to host the SLA controller. Among the five different
benchmarks provided, we used Recommendation System which is proposed to
evaluate online services that use MapReduce. Recommendation Systems emu-
lates an online movie recommendation site with real data from MovieLens [31]
(the experiments uses the dataset consisting of 1700 movies, 1000 users, and
100,000 ratings given by users for movies indicating how much users like or
dislike them). As other recommendation sites, the request that can be executed
are requesting the top ten recommendations for a user, listing all the ratings for
a specific movie, list all the ratings given by a certain user or to propose how

17

much a user would like or dislike a certain movie, among others. Clients take
a random request and submit the jobs for execution to the SLAaaS MapReduce
clustering a closed loop.

Figure 7 shows the results of our experiment. The graph depicts the mea-
surements after warming-up the service with 5 clients during 10 minutes and
the number of concurrent clients (workload amount) changes over time from
5 to 10 and back to 5. The initial size of MapReduce cluster is set to 4 servers,
plus 1 node that runs MRBS, plus 1 node that runs the SLA controller. We
have added also monitoring for the parameters need by model: job arrival rate
and average response time, monitored with a 1-minute time window. In this
experiment, the capacity planning algorithm is executed every 3 minutes and
uses the data collected in the previous 5 minutes.

Interestingly, we observe that the capacity planning algorithm reacts when
the workload amount increases until 10. At that moment we can see that client
request response time also increases above the SLO for response time at time
13 minutes. Nevertheless, this behavior does not impose any penalty. The
response time is kept under acceptable margins as indicated by the fuzziness
property in the SLA (see Table 3). Nevertheless, the capacity planning algorithm
detects that this configuration for MapReduce would lead to violations of the
SLA. That is why the number of servers is increased. When the number of clients
goes back to 5 again, the capacity planning algorithm releases the servers that
are no more needed to guarantee the performance SLO. This decision is taken
to keep the service cost at a minimum.

Through this use case, we have successfully applied our proposed SLAaaS
model to a MapReduce PaaS service enabling it to accomplish a SLA established
between provider and its clients which also involves performance and cost
objectives.

5.2. Locking Service
Locking services ensure exclusive access to shared resources by concurrent

processes, and is usually provided as a Platform-as-a-Service in a cloud. For
instance, Google provides the Chubby distributed locking mechanism that is
used by other cloud services such as Google File System service and BigTable
data storage service [8]. Basically, such a mechanism provides a functional
interface with operations to acquire or release locks. However, locking proce-
dures remain costly. According to [4], locking is considered as an important
and poorly resolved problem in cloud. Its protocols have to be scalable and
take into account QoS objectives.

5.2.1. SLA Actors
The SLAaaS model can be applied to a locking service at PaaS level. In

this case, the SLA is engaged between the locking service and the respective
customers. Table 4 gives an example of SLA that combines performance and
availability objectives. The SLA specifies that the response time of a request to
the lock service should not exceed 400 ms.

18

Service Metric Unit Oper. Value Fuzz.
Locking Response Time ms ≤ 400 0

Ressource Usage % of time max - -

Table 4: SLA for locking PaaS

5.2.2. Objective Function
In order to minimize the response time of a lock service, the use rate of the

locked shared resource should be held as high as possible. This is expressed ad
hoc into a utility function:

θ(t) =
PO(t)
ρ(t)

(7)

where PO(t) is given in Eq. (5), and ρ(t) is the use rate of the locked resource.
Intuitively, the locking service with the highest utility value is the one that
guarantees the SLO (if possible) with a high resource use rate, and therefore,
the SLA is guaranteed.

5.2.3. Control algorithm
For providing the above SLA guarantees, we propose a locking service that

combines admission control techniques with a distributed locking algorithm
[27]. Thus, before accepting a request, the locking service controller first verifies
that, taking into account the current system state, the performance SLO can be
satisfied. If it is the case, the request for lock acquisition is accepted and will
be satisfied; otherwise, the request is rejected. The complete algorithm can be
found in [27].

5.2.4. Experimental results
We conducted experiments with the proposed SLAaaS-oriented locking ser-

vice approach, on top of a 40 node cluster in the G5K II infrastructure (see Ta-
ble 2). To emulate long distance, we injected network latency between nodes.
Each node runs a process that may request the locking service related to a
shared resource. The load of requests of the system varies over the time. It is
characterized by the ratio of processes requesting lock acquisition to the total
number of processes, as shown in Figure 8.

Figure 8(a) shows the mean response time of lock requests (latency) over
the execution of the experiment when the load varies. When the load is low,
the response time remains low compared to the SLO. When the load increases,
there is more contention on the shared resource, with an increase of lock request
latency. However, the locking service automatically adapts itself in order to
keep request latency below the threshold, as specified by the SLA. Such an
adaptation is possible thanks to the admission control.

Figure 8(b) shows the use rate of the shared resource, i.e., how often the
resource is actually locked and used by one of the processes. It is expressed by
the ratio of time during which the resource is used by processes to the total time.
In the network configuration testbed, such a ratio cannot exceed 50% since half

19

 0

 50

 100

 150

 200

 250

 300

 350

 400

 70
 140

 210
 280

 350
 420

 0

 20

 40

 60

 80

 100

la
te

nc
y

(m
s)

lo
ad

 (
%

 r
eq

ue
st

in
g

si
te

)

time (seconds)

latency
load

SLO (max. latency)

(a) Service performance

 0

 20

 40

 60

 80

 100

 70
 140

 210
 280

 350
 420

 0

 20

 40

 60

 80

 100

us
e

ra
te

 (
%

)

lo
ad

 (
%

 r
eq

ue
st

in
g

si
te

)
time (seconds)

rate of use load

(b) Service availability

Figure 8: Self-adaptive locking service

of the total time is spent in message transmission. Interestingly, when the load
increases the locking service adapts to the load, with an increasing use rate
until a maximum value, which corresponds to the availability objective of the
underlying SLA. In summary, SLAaaS successfully applies to associate SLA
with a locking service at PaaS level.

We have evaluated the impact of our admission control mechanism and the
results are summarized in Figure 9. To this end, we considered two versions of
our algorithm, named Without control and With control, which respectively
disables and enables the control mechanism. Contrarily to the experiment of
Figure 8, each point of the figures corresponds to an experiment computed
with a static given load. Figure 9(a) shows the number of violated requests, i.e.,
the number of requests which have been satisfied after their required deadline
while Figure 9(b) shows the use rate of the shared resource.

On the one hand, we note that, in terms of use rate, both versions have the
same behavior: in low load, the resource is slightly less available in the version
with the control mechanism, whereas they behave more or less the same way
with medium and high load. On the other hand, Figure 9(a) shows that there is

20

 0

 10

 20

 30

 40

 50

 60

highmediumlow

Pe
rc

en
ta

ge
 o

f
vi

ol
at

io
ns

load

Without control
With control

(a) Service performance

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

highmediumlow

us
e

ra
te

 (
%

)

load

Without control
With control

(b) Service availability

Figure 9: Impact of control admission in locking service

no violation with the control mechanism whatever the load. Consequently, we
can deduce that the admission control mechanism avoids violation of requests
without degrading service availability.

6. Cross-layer SLAs: Energy Shortage Scenario

Energy consumption of datacenters has been seen as a big issue [24]. The
way energy management is performed at the IaaS level may drastically im-
pact the other services that depends on it. For instance, IaaS may be lead to
shutdown part of its physical infrastructure in order to cope with periods of
energy shortage. As a result, the SLAs established with IaaS consumers (e.g.
PaaS/SaaS providers) hosted on it may no longer be guaranteed. That has a
domino effect since it may also impact the upper levels SLAs established be-
tween the PaaS/SaaS provider and the its consumer and hence force them to
seamlessly adapt itself to avoid violations. The objective of this section is to
show how SLAaaS can be employed to establish SLAs at different levels and
how those multi-level SLAs can guide autonomous behaviours in several layers
of the cloud stack.

6.1. SLA Actors
Figure 10 illustrates the architecture of this case study. We consider a two-

level cloud system, in which, at the lower level an IaaS provides physical
infrastructure as a service by means of virtual machines, whereas at the upper
level, a SaaS provides an advertisement software as a service. So, the SaaS
provider is a IaaS client and companies willing to deploy advertising campaigns
are the clients of the SaaS provider. Finally, end-users are regular website
visitors who implicitly requests advertisements through a web browser.

Like other commercial cloud infrastructure providers (e.g. Amazon EC2 or
Microsoft Azure), IaaS consumers are given two service options with respect
to the amount of compute virtual resources (CPU and RAM), namely large and
small. A SLA is established between the IaaS provider and its client (in this
case the SaaS provider) stating that the provider must guarantee at least 98%,
as it is shown in Table 5.

21

Small Large

S2

Ad-ImageAd-Video

S1

Ad-Video

O
bj

ec
tiv

e:

m
in

im
ize

 e
ne

rg
y

co
st

 a
nd

m

ax
im

ize
 a

va
ila

bi
lity

Advertising
Client 1

Advertising
Client 2

Sa
aS

Pr

ov
id

er
Ia

aS

Pr
ov

id
er

O
bj

ec
tiv

e:

m
in

im
ize

 fi
na

nc
ia

l c
os

t a
nd

m

in
im

ize
 re

sp
on

se
 ti

m
e

SLA
Availability

SLA
Latency

SLA
Latency

Users

requests

Figure 10: Actors of the multi-SLA scenario

Se
rv

ic
e

M
et

ri
c

O
pe

r.

V
al

ue
(%

)

Pr
ic

e
($

)

Fu
zz

.(
%

)

%
of

Fu
zz

.

C
on

f.
(%

)

Pe
na

lt
y

($
)

Small/Large Availability ≥ 98% 0.06/0.12 18 10 100 0.05/CPU core

Table 5: SLA between the IaaS and SaaS providers

The availability can be defined as the proportion of service uptime, that is,
the measure of likelihood to successfully access resources. It is calculated by
the proportion of time the allocated resources (VMs) can be accessed within an
observation period.

According to the SLA there is also a fuzziness of 18% and fuzziness percent-
age of 10%, which means that the availability may be between 98% and 80% in
10% of the observation periods. In case of violation, a financial compensation
of 0.05$ per CPU core allocated should be given to the client.

The SaaS provides only one service (advertisement), which may operate in
two modes: normal (video) and degraded (static image). Clients are charged
in a cost-per-mille (CPM) manner, that is, according to the number of times per
thousand (mille) each advertisement is viewed. As shown in Table 6, a SLA is
established between the SaaS provider and each one of its clients (companies
interested in internet advertisement). More precisely, for Ad Client 1, only
video views is accepted, whereas for Ad Client 2, up to 20% of image views
may be accepted. Beyond that threshold, a functional degradation penalty
of 0.05$ per exceeded percentage point must be payed back to the client as

22

Se
rv

ic
e

Pr
ic

e
($

-C
PM

)

U
sa

ge
M

od
e

Fu
nc

t.
D

eg
.P

en
al

ty
($

)

M
et

ri
c

O
pe

r.

V
al

ue
(m

s)

Fu
zz

.(
m

s)

%
of

Fu
zz

.

C
on

f.
(%

)

Pe
na

lt
y

($
)

ad 1
0.30

Video - Resp.
≤ 500 300 20 90 0.10ad 2 Video (80%) 0.05 per

Image (20%) exceeding % Time

Table 6: SLAs between the SaaS provider and Ad Clients 1 and 2

compensation.
For both SLAs, the SaaS provider should guarantee an average response

time less than or equal to 500ms, with confidence, fuzziness and percentage
fuzziness of 90%, 300ms and 20%, respectively. It means that the average
response time measured within an observation period may exceed 500ms in
at most 10% of the observation periods within a predefined time window and
may be between 500 and 800ms in at most 18% (90% of 20%) of the measured
values within a predefined time window.

6.2. Objective Functions
Based on the SLA, we define a utility function (cf. Equation 8) that takes

into account the number of physical nodes and the availability.

(IaaS) AO(t) =

1 if α(t) ≥ αmin
fav if (αmin − f ∆

av) ≤ α(t) < αmin
0 otherwise

(8)

where α(t) is the service availability, αmin is the minimum service availability
to be guaranteed and f ∆

av is the fuzziness. fav ∈ {0, 1} is the fuzziness function,
which takes into consideration the percentage of fuzziness and the confidence
to return either 0, if the IaaS violates the SLA, or 1 otherwise.

The boolean expression in Equation 9 states that the current energy con-
sumption should not exceed a given threshold due to energy shortage reasons.

(IaaS) EO(t) = (ε(t) ≤ εmax) (9)

where ε(t) corresponds to the power consumption at time t, and εmax to
the maximum power consumption the data center must have due to energy
shortage reasons.

The decision module of the IaaS is modeled with Constraint Programming
(CP), in which the problem is state by means of decision variables, variable
domains and constraints on these variables. Given a energy threshold to used to
cope with the energy shortage and the shortage duration, the model determines
which nodes should be shutdown so that the SLA violations are minimized,
that is, the solution with highest utility (cf. Equation 10). In other words it tries

23

to choose the set of nodes in way the impact on the already allocated resources
(to the SaaS) is minimized.

(IaaS) θ(t) = (AO(t) · EO(t)) (10)

In order to avoid SLA violation, the objective of SaaS provider is to have the
minimum amount of resources necessary to maintain the response time.

As formalized in Equation 12 the SaaS utility function takes into considera-
tion the expression associated to the response time (cf. Equation 11), the service
usage mode (e.g. image or video advertisement) and the number of instances
allocated to the service.

(SaaS) PO(t) =

1 if `(t) ≤ `max
fper f if `max < `(t) ≤ (`max + f ∆

per f)
0 otherwise

(11)

where `(l) corresponds to the average latency, `max to the maximum latency
the SaaS provider has to guarantee and f ∆

per f to the fuzziness interval. fper f

corresponds to the fuzziness function and takes into account the percentage
of fuzziness and the confidence to return 0, if the SaaS violates the SLA, or 1
otherwise.

(SaaS) θ(t) =
PO(t) · µ(t)

ω(t)
(12)

where ω(t) corresponds to the number of instances allocated to the service
at time t and µ(t) ∈ {0, 1} to the utility function associated to the service mode
(video/image) at time t. More precisely, it takes into consideration the percent-
age of service mode and return 0, if the SaaS violates the SLA, or 1 otherwise.

Similar to the IaaS decision module, the SaaS decision module is also mod-
eled in CP. Its objective is to find a minimum resource allocation that keeps the
latency lower then `max, or in the last case lower than `max + f ∆

per f for a given
workload (number of client requests).

6.3. Control Algorithm
IaaS. First, we define the decision variable zi, whose domain D(zi) ∈ {0, 1}.∀i ∈

[1, p]. This variable indicates whether or not a node pmi ∈ P should be shut-
down. The second part consists of a set of constraints over the decision variables
zi.

Equation 13 states that the total power consumption of nodes should not
exceed εmax.

p∑
i=1

zi ∗ pwi ≤ εmax (13)

where pwi corresponds to the power consumption of a node pmi.

24

Finally, Equation 14 corresponds to the objective function that tries to max-
imize the sum of all availabilities.

maximize(
v∑

i=1

αi) (14)

where v corresponds to the number of virtual machines and αi, the service
availability.

SaaS. The first part of the CP model is a set of decision variables: x, whose
domain D(x) ∈ [1,m], is a variable indicating the usage mode configuration;
yi j, where D(yi j) ∈ [1,N].∀i ∈ [1,n],∀ j ∈ [1, q], is a variable indicating the
number of virtual machines of class m j allocated to component ci; ui, where
D(ui) ∈ {0, 1}.∀i ∈ [1,n], is a variable indicating whether the component is
used by the mode x. Equation 15 is the objective function that maximizes the
performance (for a given usage mode x and allocation matrix y) and minimizes
the total number of virtual machines allocated.

maximize(
(`obj(x, y) + µx)∑n

i=1
∑q

j=1 yi j
) (15)

6.4. Experimental Results
Setup. For this use case, we relied on a sub-set of 13 nodes from Grid’5000 [33],

a French grid for experimental testbed. Two nodes were used to host the con-
trollers, i.e., one per service instance (two for the SaaS provider and one for
the IaaS provider); one node was used to host load injectors (one for each Ad
Client); and ten nodes were used to host the VMs containing the SaaS services
themselves. The duration of the experiments was fixed at one hour, during
which the workload of both SaaS instances increases from 0 to 140 request per
second. It means that both instances requires the same amount of resources
until reaching the peak load.

An Energy Shortage is scheduled to be triggered at 45 minutes of execution.
The objective is to observe how IaaS and SaaS providers face with this situation
while taking into consideration the SLAs defined in the previous section. For
the IaaS provider, the observation interval was fixed in six minutes, whereas for
the SaaS provider it was fixed in one minute. It means that the availability of
the IaaS at a given observation interval is calculated by the percentage of time
the resources are accessible within the six minutes of the concerned interval.
Regarding the SaaS, the response time is calculated by the average of all the
requests within one minute interval. These intervals are inspired by real world
cloud providers such as Amazon EC2 and Microsoft Azure.

Results. Figure 11 shows the total power consumption of the infrastructure,
before and after the Energy Shortage event. This event contains the number of
nodes that should be shutdown in order to maintain a certain level of power
consumption (εmax). The interval between the event detection (vertical line) and

25

εmax

 800
 1000

 1400
 1600
 1800
 2000
 2200
 2400

Shortage

 0 10
 20

 30
 40

 50
 60

P
ow

er
 C

on
su

m
pt

io
n

(W
at

ts
)

Time (minutes)

Figure 11: Power consumption before and after an Energy Shortage

the decrease in the power consumption is due to the timeout between the Scale
Down notification (from the IaaS provider to the SaaS provider) and the actual
shutdown of nodes. In this scenario, we specified an εmax of 2400W before and
1200W after the shortage event. Based on the total power consumption of each
node, it is possible to have the number of nodes needed to be shutdown in
order to keep the power consumption under the specified εmax. In that case,
1200W corresponds to five nodes, i.e., 50% of the total infrastructure.

It is straightforward that level of shortage may lead to an impact on the
service availability. Figure 12 depicts the IaaS availability all through the ex-
periment. We have established the observation interval every 6 minutes so that
we could have 10 intervals within one hour. As it can be seen, until the short-
age event, all the intervals have 100% of availability and thus respect the SLA
established in Table 5. After the shortage event, the availability decreases to
80% for the first observation interval and to 78% for the last one. This decrease
is explained by the VMs made unavailable due to the shortage.

According to the SLA expressed in Table 5, in each observation interval the
availability must not be lower than 98%, with confidence 100%. Since there is a
fuzziness of 18% for 10% of the 10 intervals, the first interval after the shortage
will not be considered as a violation. The last interval, instead, violates the
specified SLA, because it exceeds the 98% of availability and does not meet the
fuzziness conditions.

The Energy Shortage at the IaaS layer forces SaaS providers to Scale Down, that
is, to work with less resources than allocated to them. As a consequence, the
downscaling may also impact on the SaaS QoS and thus lead to SLA violations.
Figure 13 shows the QoS in terms of Average Response Time of the SaaS for
Ad Clients 1 and 2 according to a workload variation. According to the SLA
expressed in Table 6, the average response time must not exceed 500ms. Hence,
there is no penalty before the downscaling, since none of the observation intervals
has an average response time greater than 500ms.

It should be reminded that the SLA specifies a confidence of 90%, and fuzzi-
ness of 300ms for 20% of requests. Even though, after the downscaling, the SaaS
instance for the Ad Client 1 gets penalties for each observation intervals ex-
ceeding 500ms of average response time beyond the 10% of intervals accepted

26

 0

 20

 40

 60

 80

 100

 0 6 12 18 24 30 36 42 48 54 60

Fuz
z.

Av.

A
va

ila
bi

lit
y

(%
)

Time (minutes)

Figure 12: IaaS availability

thanks to the confidence margin. Contrary to the Ad Client 1, the SLA estab-
lished with Ad Client 2 accepts a functional degradation for 20% of requests
within a time window. That way, the SaaS instance for Ad Client 2 is turned
into a functional degraded mode (image) so as to absorb the same workload
while avoiding SLA violations related the QoS. It should be noticed that those
violations are avoided thanks to the fuzziness. Indeed, with the functional
degradation the SaaS provider manages to keep the average response time be-
tween 500 and 800ms. However, a few violations are not avoided at the end of
the time window, because both the fuzziness and usage mode works only for
20% of requests.

RT

Fuzz.

 1000

 1600

ScaleDown

 0 5 10
 15

 20
 25

 30
 35

 40
 50

 55
 60

 0

 50

 100

 150

R
es

po
ns

e
T

im
e

(m
s)

W
or

kl
oa

d
(r

eq
ue

st
s/

s)

Time (minutes)

Ad Client 1
Ad Client 2
Workload

vid

img

 0 10 20 30 40 50 60

U
sa

ge
 M

od
e

Time (minutes)

Figure 13: The Average Response Time before and after the downscaling and the usage mode change

Finally, Figure 14 depicts the incomes, costs and penalties of both SaaS
instances as well as the IaaS. Not surprisingly, both instances have the same

27

cost since the same amount of resources is allocated to them. The SaaS instance
1 has a lower income with respect to instance 2, since it is able to process
less requests within the same amount of time (lower throughput). It is also
important to observe that the penalties are higher for the instance 1 then for
instance 2. This is because of the numerous SLA violations after the forced
downscaling, which occurs at the end of the experiments for requests that
do not meet neither the fuzziness nor the functional degradation conditions.
With respect to the IaaS, the income corresponds to the costs of instance 1
and 2 together. For simplicity reasons, the IaaS costs are due to the energy
consumption, that is, the amount of energy multiplied by the current energy
fees. Finally, the IaaS penalties are payed by the IaaS to the SaaS provider due
to violations in the availability caused by the energy shortage.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

SaaS Instance 1 SaaS Instance 2 IaaS

P
ro

fit
 (

$)

Income
Cost
Penalties

Figure 14: The incomes, cost and penalties for SaaS and IaaS providers

To sum up, this use case is important to show how the SLA can be used to
guide decisions in several layers of the cloud stack. Moreover, it shows how new
properties of CSLA (QoS/functionality degradation, advanced penalty model)
introduce a fine language support for Cloud elasticity management. Indeed,
interesting features such as the usage mode, fuzziness and confidence can be
used so as to turn SaaS and IaaS providers more flexible and able to seamlessly
cope with extreme situations such as the energy shortage.

7. Related work

7.1. SLA Specification
Historically, SLA has been used since the 1980s in a variety of areas such as

Networking and Web Services. The Web services community has performed
significant level of research in SLAs languages. Several languages, such as
SLAng [26], WSLA [28] and WS- Agreement [2], have been proposed for SLA
specification using a XML-based language. All these works have contributed
significantly to the standardization of SLA. However, none meets the needs
for cloud computing environment and particularly the elasticity concept. In
Cloud computing, a SLA has to be suitable for multiple layers (XaaS) with

28

heterogeneous and volatile resources in a highly dynamic environment. More-
over, performance of cloud services may fluctuate due to the dynamic Internet
environment, which makes the QoS inherently uncertain.

More recently, initiatives such as SLA@SOI [39] or Optimis [48] have ad-
dressed SLA specification for Clouds. The SLA@SOI language (SLA*) is based
on the WS-Agreement while the Optimis language (WSAG4J) is a full Java-
based implementation of WS-Agreement and WS-Agreement Negotiation. Their
solutions covers SLA lifecycle. However, the violations management does not
reflect cloud characteristics. In addition, in SLA*, the description of SLA is just
limited to guarantee terms while external file (e.g., OVF) is needed to describe
IaaS services. The CSLA language shares motivations with the SLA@SOI project
and goes further by taking into account the cross-layer nature of Cloud and QoS
instability: CSLA allows defining SLA in any language for any cloud service
(XaaS) in the same file and allow services providers to address violations. Fi-
nally, CSLA supports open standards to address the need for interoperability
in the field of cloud computing (OCCI [30],NIST [14]).

7.2. SLA Control
Existing public clouds provide very few guarantees in terms of performance

and dependability [6]. Amazon EC2 compute service offers a service availability
of at least 99.95% [1], and Amazon S3 storage service guarantees a service
reliability of 99.9% [1]. However, in case of an outage, Amazon requires the
customer to send them a claim within thirty business days for Amazon EC2 and
ten days for Amazon S3. Amazon cloud services do not provide performance
guarantees or other QoS guarantees. Rackspace and Azure cloud services
provide similar behaviors [34, 46].

Several recent research works consider SLA in cloud environments [10, 29,
18, 47]. Chhetri et al. propose the automation of SLA establishment based
on a classification of cloud resources in different categories with different costs,
e.g. on-demand instances, reserved instances and spot instances in Amazon EC2
cloud [10]. However, this approach does not provide guarantees in terms of per-
formance, nor dependability. Macias and Guitart follow a similar approach for
SLA enforcement, based on classes of clients with different priorities, e.g. Gold,
Silver, and Bronze clients [29]. Here again, a relative best-effort behavior is
provided for clients with different priorities, but neither performance nor de-
pendability SLOs are guaranteed. Other works consider to better tune MapRe-
duce systems for performance improvement [21, 43], target other specific en-
vironments such SaaS [47], or propose heuristics for SLA management [18].
However, these works provide best-effort behavior without strict guarantees
on SLA, and do not tackle the many types of clouds.

Recent works have also addressed SLA guaranties for cloud services. [32]
defines an architecture focused on detecting anomalies rather than modelling
the cloud behaviour, as it is done in this paper. [41] proposes an SLA-aware
PaaS MapReduce, however, its solution reacts at scheduling time without cap-
turing cloud dynamicity during the execution of jobs. Our work proposes the
CSLA language and an online control architecture to cope with cloud dynamic-
ity. [12] takes into account maximization of provider profit in addition to SLA

29

constraints. They model the PaaS as an optimization problem. [36] has devel-
oped an SLA-aware PaaS Database service defining SLOs on database specific
metrics like data freshness. They provision virtualized database replicas based
on a previous experimental characterization of the service instead of modeling
its behaviour.

Concerning locking control, in the majority of work found in the literature
that provide locking services with time constraints, accesses to the shared re-
source are usually ordered based on the priorities assigned to each request
rather than the deadline when the locking request should be satisfied. There-
fore, several priority-based algorithms have been proposed to cope with time
requirements [17][23] [9]. They usually exploit a token-based distributed al-
gorithm and a priority level, that dynamically changes, is associated to every
process’s locking request.

Few locking services explicitly address real-time constraints [19] [35] whose
algorithms directly take into account deadlines of requests and processes agree
on the same order of locking request satisfactions.

With respect to SLAs and energy management, [3] proposes an autonomic
framework that deals with several energy-related sub-problems (e. g. load
balancing, frequency scaling) across multiple layers of the IT infrastructure so
as to guarantee SLAs established between applications and end-users. [44]
proposes an approach for the coordination of multiple control loops in order
to manage power in infrastructures and performance SLAs of applications.
Although those work provide a nice contribution for cross-layered power man-
agement and SLA guarantees, they fall short to explore the variety of features
that can be formalized within SLAs (e. g. QoS degradation) such as in CSLA.
As a consequence, contracts are more constrained and services less adaptable
for certain circumstances.

8. Conclusion

We have presented in this paper a new method that combines Quality of
Service (QoS) with Service Level Agreement (SLA) in clouds aiming at facing
challenges such as better performance, dependability, or cost reduction of online
cloud services. To this end, we introduce the SLAaaS model which enables the
integration of service levels and SLA into clouds. We also propose the CSLA
language for finely expressing SLA definition and addressing SLA violations in
the context of Cloud services. Furthermore, objective functions can be defined
to ensure the best SLA guarantees since it allows the specification of the SLOs of
the SLA in question as well as the trade-off, priority, and weight among them.
Finally, the behavior of the cloud is characterized, and online control algorithms
are applied in order to achieve the SLOs, and, therefore, the respective SLA
guarantees.

Three use cases with evaluation performance results (one for SaaS layer
and two for PaaS layer) confirm the solidity and usefulness of the proposed
method. In the near future, we intend to extend them or propose new ones
applying other metrics, such as service throughput or energetic cost. We have
also presented a fourth use case concerning energy shortage that shows that

30

out method can be used for multi-layer SLAs, avoiding then, SLA violation
domino effect.

Although in this paper we have considered only the number of instance as
a metric for cost in the SLA, as a perspective for this work, we will take into
consideration a cloud billing model for cost which relates resource cost and the
time units (e.g. hours) resources are used.

This work opens also interesting perspectives in terms of SLA governance.
We plan to allow cloud customers to be part of the loop and to be automatically
notified about the state of the cloud, such as SLA violation and cloud energy
consumption. A second future work could involve other QoS aspects of cloud
services such as privacy and security guarantees.

Acknowledgment

This work was supported by the ANR agency, under the MyCloud project
(ANR-10-SEGI-0009, http://mycloud.inrialpes.fr/). Part of the experiments were
conducted on the Grid’5000 experimental testbed (http://www.grid5000.fr/).

9. References

[1] Amazon Web Services, 2012. http://aws.amazon.com/.
[2] Andrieux, A., al., 2007. Web services agreement specification (ws-agreement). OGF.
[3] Ardagna, D., Panicucci, B., Trubian, M., Zhang, L., 2012. Energy-aware autonomic

resource allocation in multitier virtualized environments. IEEE Transactions on
Services Computing 5 (1), 2–19.

[4] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee,
G., Patterson, D. A., Rabkin, A., Stoica, I., Zaharia, M., 2009. Above the Clouds: A
Berkeley View of Cloud Computing. Tech. rep., University of California, Berkeley.

[5] Arnaud, J., Bouchenak, S., 2011. Performance and Dependability in Service Com-
puting. IGI Global.

[6] Baset, S. A., Jul. 2012. Cloud SLAs: Present and Future. ACM SIGOPS Operating
Systems Review 46 (2).

[7] Bouchenak, S., Chockler, G., Chockler, H., Gheorghe, G., Santos, N., Shraer, A.,
2013. Verifying Cloud Services: Present and Future. Operating Systems Review
47 (2).

[8] Burrows, M., 2006. The Chubby Lock Service for Loosely-Coupled Distributed
Systems. In: 7th USENIX Symp. on Operating Systems Design and Implementation
(OSDI).

[9] Chang, Y.-I., 1994. Design of mutual exclusion algorithms for real-time distributed
systems. J. Inf. Sci. Eng. 11 (4), 527–548.

[10] Chhetri, M. B., Vo, Q. B., Kowalczyk, R., 2012. Policy-Based Automation of SLA
Establishment for Cloud Computing Services. In: 12th IEEE/ACM Int. Symp. on
Cluster, Cloud and Grid Computing (CCGrid).

[11] Dean, J., Ghemawat, S., 2004. MapReduce: Simplified Data Processing on Large
Clusters. In: 6th USENIX Symp. on Operating Systems Design and Implementation
(OSDI).

31

[12] Dib, D., Parlavantzas, N., Morin, C., May 2014. SLA-based Profit Optimization in
Cloud Bursting PaaS. In: 14th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid
Computing (CCGrid). Chicago, United States.

[13] Fadika, Z., Govindaraju, M., 2011. DELMA: Dynamically ELastic MapReduce
Framework for CPU-Intensive Applications. In: 11th IEEE/ACM Int. Symp. on
Cluster, Cloud and Grid Computing (CCGrid).

[14] Fang, L., Jin, T., Jian, M., Robert, B., John Messina, L. B., Leaf, D., 2011. NIST Cloud
Computing Reference Architecture.

[15] Gautam, N., 2012. Analysis of Queues: Methods and Applications. CRC Press.
[16] Gordon, A. W., Lu, P., 2011. Elastic Phoenix: Malleable MapReduce for Shared-

Memory Systems. In: 8th IFIP Int. Conf. on Network and Parallel Computing
(NPC).

[17] Goscinski, A. M., 1990. Two algorithms for mutual exclusion in real-time distributed
computer systems. J. Parallel Distrib. Comput. 9 (1), 77–82.

[18] Goudarzi, H., Ghasemazar, M., Pedram, M., 2012. SLA-based Optimization of
Power and Migration Cost in Cloud Computing. In: 12th IEEE/ACM Int. Symp. on
Cluster, Cloud and Grid Computing (CCGrid).

[19] Han, K., 2010. Scheduling distributed real-time tasks in unreliable and untrustwor-
thy systems. Ph.D. thesis, Faculty of the Virginia Polytechnic Institute and State
University - USA.

[20] Harrison, P., Patel, N. M., 1992. Performance Modelling of Communication Net-
works and Computer Architectures. AddisonWesley.

[21] Herodotou, H., Babu, S., 2011. Profiling, what-if analysis, and cost-based opti-
mization of mapreduce programs. 37th International Conference on Very Large
DataBases (VLDB).

[22] Irwin, D., Grit, L., Chase, J., 2004. Balancing Risk and Reward in a Market-based
Task Service. In: 13th IEEE Int. Symp. on High Performance Distributed Computing
(HPDC).

[23] Kanrar, S., Chaki, N., 2010. FAPP: A new fairness algorithm for priority process
mutual exclusion in distributed systems. Journal of Networks 5 (1), 11–18.

[24] Koomey, J. G., 2011. Growth in data center electricity use 2005 to 2010. Tech. rep.,
Analytics Press.

[25] Kouki, Y., Ledoux, T., 2012. CSLA: a Language for Improving Cloud SLA Manage-
ment. In: 2nd Int. Conf. on Cloud Computing and Services Science (CLOSER).

[26] Lamanna, D., Skene, J., Emmerich, W., 2003. SLAng: A language for defining
service level agreements. In: 9th IEEE International Workshop on Future Trends of
Distributed Computing Systems (FTDCS) Rico, Proceedings. p. 100.

[27] Lejeune, J., Arantes, L., Sopena, J., Sens, P., 2012. Service Level Agreement for
Distributed Mutual Exclusion in Cloud Computing. In: 12th IEEE/ACM Int. Symp.
on Cluster, Cloud and Grid Computing (CCGrid).

[28] Ludwig, H., Keller, A., Dan, A., King, R. P., Franck, R., 2003. Web Service Level
Agreement (WSLA) Language Specification. Tech. rep., IBM.

[29] Macias, M., Guitart, J., 2012. Client Classification Policies for SLA Enforcement in
Shared Cloud Datacenters. In: 12th IEEE/ACM Int. Symp. on Cluster, Cloud and
Grid Computing (CCGrid).

[30] Metsch, T., Edmonds, A., 2011. Open Cloud Computing Interface - Infrastructure.
Open Grid Forum.

[31] MovieLens web site, 2014. http://movielens.umn.edu/.

32

[32] Oliveira, A. C., Chagas, H., Spohn, M., Gomes, R., Duarte, B. J., 2014. Efficient
network service level agreement monitoring for cloud computing systems. In:
Computers and Communication (ISCC), 2014 IEEE Symposium on. IEEE, pp. 1–6.

[33] R. Bolze et al., Nov. 2006. Grid’5000: A Large Scale and Highly Reconfigurable Ex-
perimental Grid Testbed. Int. J. High Performance Computing Applications (IJH-
PCA) 20 (4).

[34] Rackspace SLA, 2012. http://www.rackspace.com/cloud/legal/sla/.
[35] Rajkuman, R., 1991. Synchronization in Real-time Systems; a priority inheritance

approach. Kluwer Academic Publishers, Boston.
[36] Sakr, S., Zhao, L., Liu, A., 2014. Clouddb autoadmin: A consumer-centric frame-

work for SLA management of virtualized database servers. In: Large Scale and Big
Data - Processing and Management. pp. 357–388.

[37] Sangroya, A., Serrano, D., Bouchenak, S., 2012. Benchmarking Dependability of
MapReduce Systems. In: 31st IEEE Int. Symp. on Reliable Distributed Systems
(SRDS).

[38] Serrano, D., Bouchenak, S., Kouki, Y., Ledoux, T., Lejeune, J., Sopena, J., Arantes,
L., Sens, P., 2013. Towards qos-oriented sla guarantees for online cloud services. In:
13th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing (CCGrid).

[39] SLASOI project, 2012. http://sla-at-soi.eu/.
[40] Summary of the Amazon EC2 and Amazon RDS Service Disruption in the US East

Region, 2011. http://aws.amazon.com/fr/message/65648/.
[41] Teng, F., Magoulès, F., Yu, L., Li, T., 2014. A novel real-time scheduling algorithm

and performance analysis of a mapreduce-based cloud. The Journal of Supercom-
puting, 1–27.

[42] Transaction Processing Performance Council, 2014. TPC-W. www.tpc.org/tpcw.
[43] Verma, A., Cherkasova, L., Campbell, R. H., 2011. Aria: Automatic resource in-

ference and allocation for mapreduce environments. The 8th ACM International
Conference on Autonomic Computing (ICAC).

[44] Wang, X., Wang, Y., feb. 2011. Coordinating power control and performance man-
agement for virtualized server clusters. Parallel and Distributed Systems, IEEE
Transactions on 22 (2), 245 –259.

[45] White, T., 2009. Hadoop: The Definitive Guide, 1st Edition. O’Reilly Media, Inc.
[46] Windows Azure, 2012. http://www.microsoft.com/windowsazure.
[47] Wu, L., Garg, S. K., Buyya, R., 2011. SLA-Based Resource Allocation for Software as

a Service Provider (SaaS) in Cloud Computing Environments. In: 11th IEEE/ACM
Int. Symp. on Cluster, Cloud and Grid Computing (CCGrid).

[48] Ziegler, W., Jiang, M., 2011. OPTIMIS SLA Framework and Term Languages for
SLAs in Cloud Environment. Deliverable D2.2.2.1, OPTIMIS European project.

33

