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Abstract—In Cloud Computing, Service Level Agreement (SLA)
is a contract that defines a level and a type of QoS between a cloud
provider and a client. Since applications in a Cloud share resources,
we propose two tree-based distributed mutual exclusion algorithms
that support the SLA concept. The first one is a modified version
of the priority-based Kanrar-Chaki algorithm [1] while the second
one is a novel algorithm, based on Raymond algorithm [2], where
a deadline is associated with every request. In both cases, our aim
is to improve Critical Section execution rate and to reduce the
number of SLA violations, which, for the first algorithm represents
the number of priority inversions (i.e. a higher priority request is
satisfied after a lower one) and for the second one, the number of
requests whose deadline is not respected. Performance evaluation
results show that our solutions significantly reduce SLA violations
avoiding message overhead.

a) Keywords: Distributed mutual exclusion, SLA, priority-
based algorithm, EDF, Cloud.

I. INTRODUCTION

Cloud computing is a model aimed at providing ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources. Cloud services are accessible
over the Internet and hosted on a set of virtual machines
running over a grid of physical machines in a datacenter. Virtual
machines can be created, removed or migrated depending on
the workload and availability of physical machines (cloud
elasticity). In this context, Service Level Agreement (SLA) is
a contract that defines a level and a type of QoS between a
cloud provider (e.g., Amazon, Google) and a cloud client at
any cloud level (IaaS, PaaS and SaaS) [3]. According to [4],
cloud characteristics (elasticity and SLA) imply new obstacles
for computer science and modify classical hypotheses for dis-
tributed algorithmic.

Since applications in a cloud share resources, concurrent
accesses to them might be critical and should be controlled
in order to avoid inconsistencies. In other words, accesses to
such resources are considered critical sections and, therefore,
a mutual exclusion service for controlling their access must be
provided by the Cloud.

A mutual exclusion algorithm ensures that at most one pro-
cess can execute the critical section (CS) at any given time. They
can be divided into two families [5]: permission-based (e.g.
Lamport [6], Ricart-Agrawala [7], Maekawa [8]) and token-
based (Suzuki-Kazami [9], Raymond [2], Naimi-Trehel [10]).
The algorithms of the first family are based on the principle

that a node only enters a critical section after having received
permission from all the other nodes (or a majority of them [7]).
In the second group of algorithms, a system-wide unique token
is shared among all nodes, and its possession gives a node
the exclusive right to execute a critical section. Token-based
algorithms present different solutions for the transmission and
control of critical section requests of processes. Each solution
is usually expressed by a logical topology that defines the paths
followed by critical section request messages which might be
completely different from the physical network topology. With
regard to the number of nodes, token-based mutual exclusion
algorithms present an average message traffic which is lower
than that of permission-based ones. Thus, they are more suitable
for controlling concurrent accesses to shared resources in Clouds
whose number of nodes is often very large.

Nevertheless, current mutex algorithms are not suitable for
Cloud applications because they do not take into account cloud
characteristics such as SLA constraints. For instance, Google
Clouds uses an optimized version of the Chubby lock algorithm
[11] although it does not cope with the above mentioned
dynamics of SLA.

Thus we propose in this article two SLA-oriented mutex
algorithms to provide a mutex “service” for Clouds: (1) a
priority’s request-based algorithm and (2) a request response
time one. The first algorithm should be applied whenever QoS
requirements can be associated to priority, i.e., different SLA-
levels can be mapped to different priorities; in the second
algorithm, Qos requirements are expressed in terms of request
response time. Therefore, the goal for both algorithms is to min-
imize SLA violations. However, the meaning of “SLA violation”
depends on the algorithm: avoidance of priority inversion for
(1) and reduction of the number of requests which were not
satisfied before a given response time (deadline) for (2). The
two algorithms are based on the token-based approach since
the latter provides scalability. Algorithm (1) is an extension of
Kanrar-Chaki [1] algorithm (cf. Section II) while (2) is a novel
algorithm that we have conceived.

The rest of the paper is organized as follows. Section II
discusses some existing priority-based mutual exclusion dis-
tributed algorithms and gives a brief description of the Kanrar-
Chaki algorithm. Our priority request-SLA and request response
time-SLA distributed mutual exclusion solutions are presented
in section III. Performance evaluation results of both SLA-



based mutual exclusion approaches are presented in Section IV.
Finally, Section V concludes the paper.

II. RELATED WORK

In distributed systems with time constraints such as request
time deadline, critical section requests are usually ordered on
the basis of their priority rather than the time when a CS
request occurs. Several priority-based algorithms have been
proposed to cope with real-time requirements. In this section we
outline the main priority-based mutual exclusion algorithms and
mention some works which explicitly address the problem of
deadline constraints. Furthermore, as our SLA mutual exclusion
algorithms are based on the Kanrar-Chaki [1] algorithm, the
latter is described in more details.

Priority-based distributed mutex algorithms are usually an
extension of some non-prioritized algorithms.

The Goscinksi algorithm [12] is based on the non-structured
token-based Suzuki-Kasami algorithm and has a complexity of
O(N). Pending requests are stored in a global queue and are
piggybacked on token messages. Starvation is possible since
the algorithm can lose requests while the token is in transition
and thus is not held by any node.

The Mueller algorithm [13] is inspired to the Naimi-Trehel
token-passing algorithm which exploits a dynamic tree as a
logical structure for forwarding requests. Each node keeps a
local queue and records the time of requests locally. These
queues form a virtual global queue ordered by priority within
each priority level. Its implementation is quite complex and
the dynamic tree tends to become a queue because, unlike the
Naimi-Trehel algorithm, the root node is not the last requester
but the token holder. Therefore, in this case the algorithm
presents a message complexity of O(N2 ).

The Housni-Trehel algorithm [14] adopts a hierarchical ap-
proach where processes are grouped by priority. Each group is
represented by one router process. Within each group, processes
are organized in a static logical tree like Raymond’s algorithm
[2] and routers apply the Ricart-Agrawala algorithm [7]. Star-
vation is possible for lower priority processes if many higher
priority requests are pending. Moreover a process can only send
one request priority (that of his group).

Several algorithms propose to extend Raymond’s algorithm
in order to add a priority to requests.

Raymond’s algorithm [2] is a token-based mutex algorithm
where processes are organized in a static logical tree: only the
direction of links between two processes can change during the
algorithm’s execution. Nodes thus form a directed path tree to
the root. Excepting the root, every node has a father node. The
root process is the owner of the token and it is the unique
process which has the right to enter the critical section. When
a process needs the token, it sends a request message to its
father. This request will be forwarded till it reaches the root or
a node which also has a pending request. Every process saves
its own request and those received from its children in a local
FIFO queue. When the root node releases the token, it sends
the token message to the first process of its own local queue
and this node becomes its father. When a process receives the
token, it removes the first request from its local queue. If the

process’s own request is the first element of its local queue, it
executes the critical section; otherwise it forwards the token to
the first element of its local queue, and the latter becomes its
father. Moreover, if the local queue of the node is not empty, it
sends to its new father a request on behalf of the first request
of its queue.

The Kanrar-Chaki algorithm [1] is based on Raymond’s
algorithm. It introduces a priority level for every process’s token
request. The greater the level (an integer value), the higher the
priority of the request. Hence, pending requests of a process’s
local queue is ordered by decreasing priority levels. Similarly
to Raymond’s algorithm, a process that wishes the token sends
a request message to its father. However, upon reception, the
father process includes the request in its local queue according
to the request priority level and only forwards it if the request
priority level is greater than the one of the first element of the
processes’s local queue. If such is the case, such a strategy is
applied by all the nodes of the directed path till the root site. The
algorithm then behaves like Raymond’s, as described above. In
order to avoid starvation, the priority level of pending requests
of a process’s local queue can be increased: when the process
receives a request with priority p, every pending request of its
local queue whose priority level is smaller than p is increased
by 1.

Similarly to the Kanrar-Chaki algorithm, Chang has modified
Raymond’s algorithm in [15] aiming both at applying dynamic
priorities to requests and at reducing communication traffic. For
the priority, he added a mechanism denoted aging strategy: if
process p exits the CS or if it is a non requesting node that
holds the token and receives a request, p increases the priority
of every request in its local queue; furthermore, upon reception
of the token, which includes the number of CS executions, p
increases the priority of all its old requests (i.e., those requests
that were already pending when p releases the token for the last
time) by the number of CS that were executed since the last
time p had the token. On one hand, such a priority approach
reduces the gap in terms of average response-time between
priorities (contrarily to the Kanrar-Chaki algorithm). On the
other hand, it induces a greater number of priority inversions
(in our case, number of SLA violations) when compared to
the Kanrar-Chaki algorithm; performance evaluation discussion
of both algorithms is presented in section IV. Since a request
always follows the token from an intermediate node whose local
queue contains more than one element, Chang’s communication
traffic optimization consists in piggybacking, whenever possible,
a request on a token message

In [16], Johnson and Newman-Wolfe present three algorithms
for prioritized distributed locks. Two of the algorithms use a
path compression technique for fast access and low message
overhead. Their third algorithm extends Raymond’s algorithm.
Similarly to the Kanrar-Chaki algorithm, each node maintains a
local priority queue of requests that it has received. Only new
requests with a higher priority than the ones in the queue are
forwarded to the father.

Some algorithms explicitly address real-time constraints. In
[17], Han proposes a real-time fault-tolerant mutual exclusion



algorithm that takes into account deadlines of requests. It is a
permission based algorithm where a majority of nodes agree on
the same schedule of critical section accesses. A gossip protocol
is used to broadcast requests. Each node maintains a queue that
stores “feasible” requests ordered by their deadlines. In order to
avoid priority inversions in real-time systems, synchronization
algorithms use the Priority Ceiling Protocol (PCP), initially
conceived by Sha and Rajkumar [18]. PCP prevents deadlocks
and bounds blocking time. In [19] and [20], the authors propose
some extensions of PCP to distributed systems for multiproces-
sors and CORBA respectively.

III. SLA-BASED MUTUAL EXCLUSION

When the SLA is based on request priority, we define a SLA
violation as a priority inversion (i.e., a request that has been
satisfied after a lower priority request). When the SLA is based
on request response time, we define a SLA violation as a request
which has been satisfied after its required deadline.

Since we consider that there is one process per node (virtual
machine), the words node, process, and site are interchangeable.

A. Request Priority SLA-based mutex

Our solution is based on the Kanrar-Chaki algorithm because
it is scalable with regard to the number of messages (com-
plexity O(Log N)) and starvation does not exist thanks to the
mechanism of priority increment. Our proposal is therefore to
modify the Kanrar-Chaki algorithm to minimize the number
of SLA violations but without introducing much overhead nor
degrading the performance of the algorithm. In other words,
without increasing either the number of messages sent over the
network or the request response time.

To this end, we firstly applied Chang [15]’s message traffic
optimization (see section II) to the Kanrar-Chaki algorithm and
then two incremental heuristics: the “level” heuristic which
postpones the priority increment of pending requests and the
“level-distance” that uses in addition to “Level” heuristic the
number of intermediate nodes from the current token holder
to requesting nodes in order to decide which node will be the
next token holder. The traffic message optimization and the two
heuristics are described hereafter.

1) Communication traffic optimization: In the Kanrar-Chaki
algorithm, whenever a site whose local queue is not empty
grants the token to another process it also sends the latter a
request to signify that the token must be returned later on.
Hence, in order to lower communication traffic, this request
can be piggybacked in the token message.

2) “Level” Heuristic: We have observed in the Kanrar-Chaki
algorithm that requests, whose priority was originally low, were
satisfied quite fast since their priority reached the maximum
value due to the priority increment approach of the algorithm.
Such a behavior characterizes in fact an inversion of priorities.
Therefore, we have modified the algorithm in order to postpone
the priority increment: the priority value of a pending request
is not incremented at every insertion of a request with higher
priority but only after X request insertions with such a priority.
The X value depends on an exponential level, i.e., to upgrade
its priority to p, a request of priority p − 1 must wait 2p+c

insertions of requests with higher priority. The constant c has a
sufficiently high value so as to avoid that the original priority
p− 1 of a request becomes p before the original priority p of a
second request becomes p+ 1.

3) “Level-Distance” Heuristic: In the Kanrar-Chaki algo-
rithm, requests with the same priority are not ordered. We
introduce a new parameter, denoted request distance, to take
into account request locality when ordering such requests. The
request distance from site R to site S is the number of interme-
diate nodes between R and S that the token must travel. Hence,
if two pending requests have the same highest priority, the token
will be sent to the one with the smallest request distance with
respect to the current token holder. It is worth pointing out that
the tree topology has an impact in this heuristic. Since this
heuristic is orthogonal with the previous “Level” heuristic, we
have combined them in the ”Level-Distance” heuristic.

Figure 1 illustrates the impact of the two different heuristics
with respect to the original Kanrar-Chaki algorithm. We con-
sider a tree with 12 nodes. Pending requests, stored in local
queues Qi of each node, are sorted by decreasing order of
priority. Each of them is separated by a coma and noted x(y),
where x represents the requester and y the local priority of the
request. Node n1 is the root, i.e., it owns the token and is in
critical section. Nodes n2, n3, and n4 have requested the token.
Such an initial state is shown in Figure 1(a).

Let’s now consider that nodes n11, n10, n7, n8 and n9 issue
one request each with the following respective priorities:
(1) n11 sends a request with priority 3 denoted 11(3)
(2) n10 sends a request with priority 3 denoted 10(3)
(3) n7 sends a request with priority 3 denoted 7(3)
(4) n8 sends a request with priority 2 denoted 8(2)
(5) n9 sends a request with priority 3 denoted 9(3).

Figures 1(b), 1(c), and 1(d) show the state of the tree
after the five new requests have been taken into account by
the Kanrar-Chaki algorithm, “Level” heuristic, and “Level-
Distance” heuristic respectively. Notice that, in the three al-
gorithms, all fathers of the requesting nodes have added the re-
ceived requests in their respective local queues: n6 has included
11(3) in Q6, n12 has included 9(3) in Q12, n5 has included 10(3)
in Q5, and n3 has included 7(3) and 8(2) in Q3. Furthermore,
in the case of the “Level” and “Level-Distance” heuristics,
we consider that c = 2 which implies that 8 (respectively, 16
and 32) insertions of higher requests are required to a 0-level
(respectively, 1-level and 2-level) priority request to be upgraded
to level 1 (respectively, level 2 and 3).

Each one of the new requests has the following consequences
on the state of the pending requests and local queues of the
algorithms:

• original Kanrar-Chaki (Figure 1(b)):
(1) The priority of n3’s pending request in both Q3 and
Q1 as well as the priority of n2’s pending request in Q1

are increased. Request 6(3) is included in Q3;
(2) The value 2 is assigned to the priority of n2’s and n4’s
requests of Q2. Priority of n2’s request in Q1 becomes 3;
(3) Request of n3 in Q3 is increased to 2;
(4) No consequence over priorities.



(a) Initial state (b) End state with Classical Kanrar-
Chaki algorithm

(c) End state with "Level" heuristic (d) End state with "Level-Distance"
heuristic

Figure 1. Example of execution by heuristics

(5) Request of n8 in Q8 is increased to 3. The value 3 is
assigned to the priority of n8 and n3 in Q3

• “Level” heuristic (Figure 1(c)):
(1) The priority level of the n3’s pending request in Q1

becomes 3. Request 6(3) is included in Q3;
(2) The priority of n2’s request becomes 3;
(3), (4), and (5) No consequence over priorities.

• “Level-Distance” heuristic (Figure 1(d)):
(1) (respectively, (2) and (3)) The same consequences of
“Level” heuristic but requests in Q2 (respectively, Q1

and Q3) are rescheduled according to requester’s distance.
Request 6(3) is included in Q3;
(4) and (5) No consequence over priorities.

If we consider that no other request is issued until every pend-
ing request is satisfied, the order of node request satisfactions
are the following:

• Kanrar-Chaki algorithm: n11 - n7 - n9 - n8 - n3 -n10 - n4
- n2

• “Level” heuristic: n11 - n7 - n9 - n10 - n8 -n4 - n2 - n3
• “Level-Distance” heuristic: n7 - n11 - n9 - n10 - n8 -n2 -
n4 - n3

This execution example clearly shows that the different
heuristics change the order in which requests are satisfied,
particularly for node n3: its request is the fifth one to be satisfied
when the original algorithm is applied and the last one in the
case of the “Level” heuristic and “Level-Distance” heuristic.
We can also observe that both heuristics keep the original
priority order. Furthermore, there are two SLA violations (n8
and n3) in the Kanrar-Chaki algorithm but none when either of
the heuristics is applied.

B. Response time SLA-based mutex

We now consider that requests are satisfied according to the
response time deadline associated to each request and propose
a new algorithm. To this end, when a process issues a request,
it informs two values: the maximum delay for the response and
the duration of the critical section which it needs to execute.
However, similarly to Cloud services whose QoS is defined
by a SLA, before accepting the request, the mutual exclusion
“service” must ensure that, taking into account the system’s
state, the request constraints can be satisfied. In the case of
mutual exclusion, such constraints refer to the satisfaction of
the request before its deadline. Therefore, a request must be
submitted to an admission control before being accepted. If the

admission control considers that the acceptance is not possible,
the request is rejected and the process should issue, a less
restrictive new request for instance. Otherwise, the request
is accepted by the system and will be satisfied, with great
probability, before its deadline. If the deadline of an accepted
request is not respected (SLA violation), the request will fail
and, therefore, the process will not have the right to execute
the critical section. The aim of our proposed algorithm is
thus to minimize SLA violations, i.e., deadline violations, and
maximize critical section execution throughput.

Our algorithm is based on Raymond’s algorithm: nodes are
organized in a logical static tree whose links always form a
directed path to the root. Requests are sorted at a process’s local
queue by their response time deadline, similarly to the real-time
scheduling policy Earliest Deadline First (EDF). Notice that we
consider that all nodes clocks are synchronized. Therefore, the
deadline of the request in the head of the queue will be the first
to expire.

1) Admission control: The feasibility of a request satisfaction
should be checked before including the request in the system.
Based on the requests already presented in the process’s local
queue, the admission control should firstly verify if a process
request can be locally satisfied. If such is the case, a global
admission policy is performed.

Local validation decision policy: As previously explained,
requests of a process’s local queue Q are sorted by their
response time deadline. Upon reception of a new request R, the
process computes the potential position P of R in its queue.
It then evaluates if the satisfaction of R is feasible or not.
R is feasible if: (1) requests before P in Q will respect R’s
constraints after its insertion; (2) R will respect the constraints
of the next requests after position P in Q which have already
been validated by the site.

In order to respect these two conditions, it is necessary to
consider the scenario where all requests are satisfied at their
deadline. Therefore, in order to ensure (1), the deadline of the
request before P (denoted P−1) plus its CS execution duration
plus the latency to send the token from P −1’s requesting node
to R’s should not violate R’s deadline. Analogously, in order
to ensure (2), the deadline of R plus its CS execution duration
plus the latency to send the token between R’s requesting node
and P + 1’s (i.e. the requesting node just after P ) in Q should
not violate P + 1’s deadline.

Global validation decision policy: If a request is locally



satisfied according to the local decision policy then the process
sends a request message to its father (same principle as Ray-
mond’s algorithm) which includes the maximum deadline for the
response and the duration of the CS. Similarly, the father also
submits the request to the admission control. Such a mechanism
is recursively applied till the root node. Consequently, the root
node will be aware of all the pending requests in the system.

If the request is rejected by a node N (a node in the
path between the requesting node and the root, both of them
included), it sends a reject message to its child that belongs
to the path towards the requesting node. Such a message is
forwarded until the requesting process which will finally discard
it. On the other hand, in the case of a request acceptance, we
propose two approaches for notification:

• Acknowledgement approach: The requesting process
should wait for an acknowledgement message from its
father which then confirms that its request has been
accepted by the system. Hence, when the request is locally
accepted, it is not immediately included in the process’s
local queue but in a temporary one. A request is added to
the definitive local queue of the requesting node only after
the reception of an acknowledgement message from its
father. Since the root node knows all the requests in the
system, it is the only one that can initiate the shipment
of an acknowledgement message which is then forwarded
to the requesting process. An accepted request will be
removed from the process’s local queue after the execution
of the critical section or after a deadline violation detection.

• Token approach: In this case, the requesting processes
and intermediate nodes directly add the request in their
respective local queues. Consequently, they do not wait for
any acknowledgement message. The request is removed
from the process’s local queue after the critical section
execution, upon reception of a reject message, or a deadline
violation detection.

2) Token scheduling: Basically, our algorithm follows the
same principle of the Kanrar-Chaki algorithm for the token
scheduling: upon reception of the token, a node N has the
right to execute the critical section (CS) if its own request is in
the head of its local queue (sorted by response time deadline);
otherwise it sends the token to the node which corresponds to
the first element of the queue. Moreover, N piggybacks its local
queue in the token message to ensure that the new root node
is aware of all the pending requests. When the new root node
receives the token message, it merges the token’s queue with
its own local queue. However, in order to improve the critical
section throughput, we introduce a preemption mechanism that
takes into account requests’ locality. We denote NextHolder
the next node that should get the token, according to the EDF
policy. NextHolder can be preempted by another node p,
i.e., p executes a critical section before NextHolder, if the
duration of p’s critical section does not prevent the satisfaction
of NextHolder’s deadline. In other words, it is possible to grant
the token to other nodes if the duration of their critical section
plus token transmission delay do not exceed NextHolder’s

deadline. We denote such a condition preemption condition.
Therefore, node p, that receives the token and must forward

it to the first element of its queue, might enter the critical
section if the preemption condition is satisfied. Furthermore,
if such a local preemption is not possible, p might grant the
token to one of its 1-hop neighbors (not necessarily on the
directed path to NextHolder), provided that the latter also
ensures the preemption condition. If none of p’s neighbors can
satisfy the condition, p applies the same approach to its 2-hop
neighbors and so forth (preemption distance size) till a threshold
B, bounded by the diameter of the logical tree. If no preemption
is possible at all, the token is forwarded to the first element of
p’s queue.

Let NextHolder be the first requesting site of p’s local queue
Q and n a n-hop neighbor (1 ≤ n ≤ Neighborhood_size). Site
n can preempt NextHolder if the cost in time of the token’s
rerouting to n does not induce the violation of NextHolder’s
deadline.

IV. PERFORMANCE EVALUATION

A. Experimental testbed and configuration

The experiments were conducted on a 20-nodes cluster (one
process per node). Each node is equipped with two 2.8GHz
Xeon processors and 2GB of RAM, running Linux 2.6. Nodes
are linked by a 1 Gbit/s Ethernet switch. The algorithms were
implemented using C++ and OpenMPI.

The following metrics were considered in our experiments:
• Number of messages per request: This metric depends both

on the algorithm and the type of message. Priority-based
algorithm: for a given type of message, it is the quotient
between the total number of messages of this type and the
total number of messages. It is similarly defined for the
response time SLA-based algorithm, except for the token
message which is defined as the number of token messages
sent over the network divided by the number of accepted
requests by the admission control (i.e., rejected requests
are not considered for this type of message).

• Number of SLA violations: For the priority-based algorithm
it expresses the number of requests satisfied after requests
with lower priority; for the response time SLA-based
algorithm it denotes the number of requests whose response
time deadline was not respected.

• Response time: the time between the moment a node
requests the CS and the moment it gets it.

• CS execution rate: ratio of critical section duration over
token transmission time.

An application is characterized by:
• α: time to execute the critical section (CS).
• β: mean time interval between the release of the CS by a

node and its request by this same node.
• ρ: the ratio β/α, which expresses the frequency with which

the critical section is requested.
For all experiments, by calibrating ρ, the average number

of pending requests is around 50 %, i.e., in average 10 nodes
always wait for the token.
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Figure 2. Performances of priority-based algorithm

B. Request Prioirity SLA-based mutex

We considered a logical binary tree topology and 8 different
priority levels. Every process chooses a priority randomly and
issues as many requests as possible during the duration of the
experiment. Hence, we experience a stationary request rate: all
processes issue requests during the whole experiment.

In the figures, Our_solution corresponds to
the modified Kanrar-Chaki algorithm with the
piggybacking mechanism while Our_solution_Level and
Our_solution_LevelDistance correspond to this message
traffic optimized algorithm when the “Level”, and “Level-
Distance”’ heuristics are respectively applied to it. We have
also included Chang’s algorithm (see section II) in our
performance evaluation experiments.

The number of priority violations and number of messages per
request are shown in Figures 2(a) and 2(b) respectively. We can
observe that the original Kanrar-Chaki algorithm and Chang’s
algorithm generate a lot of priority violations (around 60 % and
around 75 % respectively). On the contrary, the “Level” heuristic
strongly reduces such a number (around 10 %) but, according to
Figure 2(b), at the expense of the number of messages which in-
creases when compared to the original Kanrar-Chaki algorithm
combined with the piggybacking mechanism. Consequently, the
“Level” heuristic is very effective in reducing the numbers of
violations but increases the number of messages. Notice that
such an increase is mostly due to request messages because
a site reaches the maximum priority more slowly and thus it
is likely to forward more requests to its father. On the other
hand, we observe in the same figures that Chang’s algorithm
reduces the number of messages in relation to the Kanrar-Chaki
algorithm thanks to the piggybacking mechanism. The inclusion

of the latter in the Kanrar-Chaki algorithm (Our_solution) does
not induce much more message traffic overhead when compared
to Chang’s algorithm. However, in terms of the number of
priority violations, its reduction is not very expressive, contrarily
to the “Level” heuristic whose number of priority violations is
much smaller than Chang’s. Therefore, applying request locality
to the “Level” heuristic, i.e., the “Level-Distance” heuristic,
seems to be a good tradeoff for these metrics: the two figures
confirm that the postponement of priority increment is essential
for respecting the priority order while request locality is useful
in reducing the number of messages generated by the algorithm.

Figure 2(c) shows the number of requests, grouped by prior-
ity, which have been violated by a lower priority request. The
“Level” heuristic and the “Level-Distance” heuristic consider-
ably reduce the number of violations of low and intermediate
priorities. Hence, respect for priorities is improved with the
“Level” heuristic.

Concerning request response time, we can observe in Figure
2(d) that in the original Kanrar-Chaki algorithm such a time
has a regular behavior (shape of stairs), i.e., when the priority
increases, response time decreases. However, postponement of
priority increment strongly degrades response time of the lowest
priority requests while the response time for higher priorities
request is reduced when compared to the original algorithm.
This happens because the former is in best-effort and thus rarely
satisfied. The same figure shows that request locality (“Level-
Distance” heuristic) has no impact on the response time.

As we can observe in Figure 2(e), the different heuristics
have no impact (around 90 %) over the CS execution rate. Con-
trarily to the Response time SLA-based mutex, every request is
accepted because there is no admission control.
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(c) Average number of messages per request classi-
fied by type with no preemption
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(f) Average number of messages per request classified
by type when preemption is bounded to 4

Figure 3. Performances of response time-based algorithm

C. Response time SLA-based mutex

For the experiments, we considered four different SLA levels.
Each level is related to a given response time. Before each
request, processes randomly choose a SLA level and a critical
section duration (within an interval of bounded values) and
issues as many as requests as possible during the duration of an
experiment (to obtain a stationary request rate along the same
principle as the previous benchmark).

We have defined the following parameters:
• T_min: the lowest response time corresponding to the

highest SLA level (600 milliseconds);
• diff_SLA: the difference in response time between two

SLA levels (300 milliseconds);
• min_CS: the smallest duration for a CS (25 milliseconds);
• max_CS: the highest duration for a CS (50 milliseconds);
• T_exp: duration of the experiment (60 seconds);
• lat_net: transmission delay of a message between two

neighbor nodes (30 milliseconds).

Since there is no distributed token-based mutual exclusion
algorithm in the literature that takes into account the concept
of SLA based on response time, we compared our two ap-
proaches of the algorithm (Acknowledgment and Token) to both
Raymond’s algorithm and our “Level-Distance” Kanrar-Chaki
algorithm presented in section III-A3. Furthermore, as Kanrar-
Chaki does not consider any time parameter when issuing a
request, we mapped priority levels to SLA levels: the higher
the time constraint, i.e. the smaller the maximum waiting
response delay parameter, the higher the priority. We added
a deadline missed detector for Raymond’s and the Kanrar-
Chaki algorithms. Hence, when a site detects that its request
has missed its deadline, it removes the request from its local
queue. This request is definitively lost. This site will issue a
new request. Upon reception of the latter, all sites that still keep
the old request will erase the latter replacing it by the new one
respecting the queue order.

Figures 3(a) and 3(b) show the violation and CS execution



rate respectively when no preemption takes place. In Figures
3(d) and 3(e) we can observe the impact of the neighborhood’s
bound preemption distance over SLA violation and CS exe-
cution rate respectively. Finally, Figure 3(c) and 3(f) show the
average number of messages per request grouped by type when,
respectively, there is no preemption and preemption is bounded
to 4-hop neighbors.

In terms of SLA violation, we observe in Figure 3(a) that the
direct mapping of priorities to time constraints is not a suitable
approach (around 65 % of requests miss their respective dead-
line). Contrarily, in the case of our token approach algorithm, all
requests have been satisfied before their deadline. Furthermore,
according to Figure 3(d) the size of neighborhood’s bound pre-
emption distance has no influence on the number of violations.
Figure 3(e) confirms that some preemptions took place and the
corresponding critical sections were executed.
In Figure 3(b), we observe that the CS execution rate for Ray-
mond’s algorithm is more effective when there is no preemption.
We can thus deduce that Raymond’s algorithm promotes request
locality when network latencies are non negligible. When the
token is preempted and the preemption distance size increases,
the CS execution rate of the two response time algorithm
approaches increases up to a value which is limited by the
neighborhood (equal to 1-hop). However beyond this value, the
CS execution rate decreases. Such a behavior can be explained:
when the preemption distance increases, the token is likely to
follow a longer deviation path of the tree. On the other hand,
when network latencies are high, a long deviation path may
be disadvantageous because it prevents the use of the token
by a greater number of processes on the directed path to the
NextHolder node.

In Figure 3(c), we can observe that the acknowledgement
approach generates much more messages than token approach
due to the ACK messages in response to the accepted requests.
Contrarily to the priority-based algorithm, Raymond’s algorithm
and “Level-Distance” present more token messages. Such a
difference can be explained since, in these algorithms, the
token is sent to the requesting node even if it has missed
its deadline which implies useless token transmissions and,
therefore, an increase in the average number of messages per
request. Figure 3(f) shows that preemption reduces the number
of token messages.

V. CONCLUSION

Our contribution is twofold: a heuristic-based version of the
Kanrar-Chaki algorithm aimed at Cloud environments, and a
novel algorithm that provides a mutual exclusion service which
imposes predefined request response times and is thus also
suitable for Clouds.

In the first algorithm, request priorities are dynamic in order
to avoid starvation and thus ensure that requests with the lowest
priorities are satisfied in a bounded time. However, dynamic
priorities induce priority inversion (in our case, SLA violation).
Therefore, it is necessary to find a tradeoff between starvation
and priority inversion.

The second algorithm is based on Raymond’s algorithm be-
cause it is scalable. Our approach is innovative and customized

for clouds since it provides both an admission request control
and a deadline-based request scheduling.

The evaluation results of section IV confirm that request
locality improves the performance of the two algorithms: it
reduces the number of messages sent in the network and in
case of response time SLA-based, it increases the CS execution
rate by diverting the token to the neighborhood of the token
holder. They also show that our heuristics and novel algorithm
reduce SLA violation.

As future work, we intend both to conduct our experiments in
a real cloud environment and to extend our response time SLA-
based algorithm to take into account node migration, which
requires dynamic reconfiguration of the tree topology as in the
Naimi-Trehel [10] algorithm.
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