
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

CDCLSym: Introducing
Effective Symmetry Breaking in SAT Solving?

Hakan Metin1, Souheib Baarir2,1,3,
Maximilien Colange3, and Fabrice Kordon1

1 Sorbonne Université, CNRS UMR 7606 LIP6,
F-75005 Paris, France

2 Université Paris Nanterre
3 LRDE, EPITA, Le Kremlin-Bicêtre, France

Abstract. SAT solvers are now widely used to solve a large variety of
problems, including formal verification of systems. SAT problems derived
from such applications often exhibit symmetry properties that could be
exploited to speed up their solving. Static symmetry breaking is so far
the most popular approach to take advantage of symmetries. It relies
on a symmetry preprocessor which augments the initial problem with
constraints that force the solver to consider only a few configurations
among the many symmetric ones.
This paper presents a new way to handle symmetries, that avoid the
main problem of the current static approaches: the prohibitive cost of
the preprocessing phase. Our proposal has been implemented in MiniSym.
Extensive experiments on the benchmarks of last six SAT competitions
show that our approach is competitive with the best state-of-the-art
static symmetry breaking solutions.

Keywords: Boolean satisfiability, static symmetry breaking, dynamic symme-
try breaking, symmetry based reduction.

1 Introduction

Nowadays, Boolean satisfiability (SAT) is an active research area finding its ap-
plications in many contexts such as planning decision [14], hardware and software
verification [3], cryptology [19], computational biology [17], etc. Hence, the de-
velopment of approaches that could treat increasingly challenging SAT problems
has become a focus.

State-of-the-art complete solvers of SAT problems are based on the well-
known Conflict Driven Clauses Learning (CDCL) algorithm [18], itself inspired
from the Davis–Putnam–Logemann–Loveland algorithm [6]. These are complete
backtracking based search algorithms that welcome any heuristic/optimisation
pruning of parts of the explored search tree. In this paper, we are interested in
exploiting the symmetry properties of SAT problems to perform such a pruning.

? THE DATASETS GENERATED DURING AND/OR ANALYSED DURING THE
CURRENT STUDY ARE AVAILABLE IN THE FIGSHARE REPOSITORY:
https://doi.org/10.6084/M9.FIGSHARE.5901025

Symmetries in SAT solving. SAT problems often exhibit symmetries4, and
not taking them into account forces solvers to needlessly explore isomorphic
parts of the search space.

For example, the “pigeonhole problem” (where n pigeons are put into n− 1
holes, with the constraint that each pigeon must be in a different hole) is a highly
symmetric problem. Indeed, all the pigeons (resp. holes) are swappable without
changing the initial problem. Trying to solve it with a standard SAT solver,
like MiniSAT [10], turns out to be very time consuming (and even impossible,
in reasonable time, for high values of n). Here, such a standard solver ignores
the symmetry property of the problem, and then potentially tries all variables
combinations ; this eventually leads to a combinatorial explosion.

Symmetries of a SAT problem are classically obtained through a reduction
to an equivalent graph automorphism problem. Technically, the SAT problem
is converted to a colored graph, then it is passed to a tool, like saucy3 [13] or
bliss [12], to compute its automorphism group.

A common approach to exploit such symmetries is to pre-compute and enrich
the original SAT problem with symmetry breaking predicates (sbp). These added
predicates will prevent the solver from visiting equivalent (isomorphic) parts that
eventually yield the same results [5,1]. This technique, called static symmetry
breaking, has been implemented first in the state-of-the-art tool SHATTER [2]
and then improved in BREAKID [8]. However, while giving excellent results on
numerous symmetric problems, these approaches still fail to solve some classes
of symmetric problems.

Another class of approaches exists, known as dynamic symmetry breaking
techniques. They intervene directly during the search exploration. It concerns, to
mention but a few, the injection of symmetric versions of learned clauses [7,21],
particular classes of symmetries [20], or speeding up the search by inferring
symmetric facts [9]. These approaches succeeded in treating particular and hand
crafted problems but, to the best of our knowledge, none of them is competitive
face to the static symmetry breaking methods.

Drawbacks of the static-based approaches. In the general case, the size of
the sbp can be exponential in the number of variables of the problem so that they
cannot be totally computed. Even in more favorable situations, the size of the
generated sbp is often too large to be effectively handled by a SAT solver [15].
On the other hand, if only a subset of the symmetries is considered then the
resulting search pruning will not be that interesting and its effectiveness depends
heavily on the heuristically chosen symmetries [4]. Besides, these approaches are
preprocessors, so their combination with other techniques, such as symmetry
propagation [9], can be very hard. Also, tuning their parameters during the
solving turns out to be very difficult. For all these reasons, some classes of SAT
problems cannot be solved yet despite exhibiting symmetries.

4 Roughly speaking, a SAT problem exhibits symmetries when it is possible to swap
some variables while keeping the original problem unchanged.

Proposed solution. To handle these issues, we propose a new approach that
reuses the principles of the static approaches, but operates dynamically: the
symmetries are broken during the search process without any pre-generation of
the sbp. To do so, we elaborate the notions of symmetry status tracking and
effective symmetric breaking predicates (esbp).

The approach is implemented using a couple of components: (1) a Con-
flict Driven Clauses Learning (CDCL) search engine; (2) a symmetry controller.
Roughly speaking, the first component performs the classical search activity on
the SAT problem, while the second observes the engine and maintains the status
of the symmetries. When the controller detects a situation where the engine is
starting to explore a redundant part5, it orders the engine to operate a back-
jump. The detection is performed thanks to symmetry status tracking and the
backjump order is given by a simple injection of an esbp computed on the fly.

The main advantage of such an approach is to cope with the heavy (and po-
tentially blocking) pre-generation phase of the static-based approaches, but also
offers opportunities to combine with other dynamic-based approaches, like the
symmetry propagation technique [9]. It also gives more flexibility for adjusting
some parameters on the fly. Moreover, the overhead for non symmetric formulas
is reduced to the computation time of the graph automorphism.

The extensive evaluation of our approach on the symmetric formulas of the
last six SAT contests shows that it outperforms the state-of-the-art techniques, in
particular on unsatisfiable instances, which are the hardest class of the problem.

Content of the paper. The remainder of the paper is organized as follows.
Section 2 is dedicated to preliminaries and definitions. Section 3 discusses the
details of our CDCLSym algorithm. Section 4 highlights our tooling support and
evaluations. Section 5 concludes this work and gives directions for future work.

2 Preliminaries and Definitions

This section introduces some definitions. First, we define the problem of Boolean
satisfiability. Then, we introduce the notions of ordering and monotonicity that
provide a lexicographical order to assignments. These are central concepts to the
definition of a representative assignment.

Finally, we introduce two core notions that are required to define our new
algorithm: (i) Reducer,inactive and active permutation, and (ii) the effective sym-
metry breaking predicates (esbp).

2.1 Basics on Boolean Satisfiability

A Boolean variable, or propositional variable, is a variable that has two possible
values : true or false (noted > or ⊥, respectively). A literal l is a propositional
variable or its negation. For a given variable x, the positive literal is represented

5 Isomorphic to a part that has been/will be explored.

by x and the negative one by ¬x. A clause ω is a finite disjunction of literals
represented equivalently by ω =

∨k
i=1 li or the set of its literals ω = {li}i∈J1,kK.

A clause with a single literal is called unit clause. A conjunctive normal form
(CNF) formula ϕ is a finite conjunction of clauses. A CNF can be either noted

ϕ =
∧k

i=1 ωi or ϕ = {ωi}i∈J1,kK. We denote Vϕ (Lϕ) the set of variables (literals)
used in ϕ (the index in Vϕ and Lϕ is usually omitted when clear from context).

For a given formula ϕ, an assignment of the variables of ϕ is a function
α : V 7→ {>,⊥}. As usual, α is total, or complete, when all elements of V have
an image by α, otherwise it is partial. By abuse of notation, an assignment is
often represented by the set of its true literals. The set of all (possibly partial)
assignments of V is noted Ass(V).

The assignment α satisfies the clause ω, denoted α |= ω, if α ∩ ω 6= ∅.
Similarly, the assignment α satisfies the propositional formula ϕ, denoted α |= ϕ,
if α satisfies all the clauses of ϕ. Note that a formula may be satisfied by a
partial assignment. A formula is said to be satisfiable (sat) if there is at least
one assignment that satisfies it; otherwise the formula is unsatisfiable (unsat).

Example. Let ϕ = {{x1, x2, x3}, {x1,¬x2}, {¬x1,¬x2}} be a formula. ϕ is sat-
isfied under the assignment α = {x1,¬x2} (meaning α(x1) = > and α(x2) = ⊥})
and is reported to be sat. Note that the assignment α, making ϕ sat, does not
need to be complete because x3 is a don’t care variable with respect to α.

2.2 Ordering and Monotonicity

In order to exploit the symmetry properties of a SAT problem, we need to
introduce an ordering relation between the assignments.

Definition 1 (Assignments ordering). We assume a total order, ≺, on V.
Given two assignments (α, β) ∈ Ass(V)2, we say that α is strictly smaller than
β, noted α < β, if there exists a variable v ∈ V such that:

– for all v′ ≺ v, either v′ ∈ α ∩ β or ¬v′ ∈ α ∩ β.
– ¬v ∈ α and v ∈ β.6

Note that < coincides with the lexicographical order on complete assign-
ments. Furthermore, the < relation is monotonic as expressed in the following
proposition.

Proposition 1 (Monotonicity of assignments ordering). Let (α, α′, β, β′) ∈
Ass(V)4 be four assignments.

If α ⊆ α′ and β ⊆ β′, then α < β =⇒ α′ < β′

Proof. The proposition follows on directly from Definition 1.

It is worth noting that this last proposition is the key property for the efficient
implementation of our algorithm.

6 We could have chosen as well v ∈ α and ¬v ∈ β without loss of generality.

2.3 Symmetry Group of a Formula

The group of permutations of V (i.e. bijections from V to V) is noted S(V). The
group S(V) naturally acts on the set of literals: for g ∈ S(V) and a literal ` ∈ L,
g.` = g(`) if ` is a positive literal, g.` = ¬g(¬`) if ` is a negative literal. The
group S(V) also acts on (partial) assignments of V as follows: for g ∈ S(V),
α ∈ Ass(V), g.α = {g.` | ` ∈ α}. Let ϕ be a formula, and g ∈ S(V). We say that
g ∈ S(V) is a symmetry of ϕ if for every complete assignment α, α |= ϕ if and
only if g.α |= ϕ. The set of symmetries of ϕ is noted S(ϕ) ⊆ S(V).

Let G be a subgroup of S(V). The orbit of α under G (or simply the orbit of
α when G is clear from the context) is the set [α]G = {g.α | g ∈ G}. The lexico-
graphic leader (lex-leader for short) of an orbit [α]G is defined by min<([α]G).
This lex-leader is unique because the lexicographic order is a total order.

The optimal approach to solve a symmetric SAT problem would be to explore
only one assignment per orbit (for instance each lex-leader). However, finding
the lex-leader of an orbit is computationally hard [16].

What we propose here is a best effort approach that tries to eliminate, dy-
namically, the non lex-leading assignments with a minimal computation effort.
To do so, we first introduce the notions of reducer, inactive and active permu-
tation with respect to an assignment α.

Definition 2 (Reducer, inactive and active permutation). A permutation
g is a reducer of an assignment α if g.α < α (hence α cannot be the lex-leader
of its orbit. g reduces it and all its extensions). g is inactive on α when α < g.α
(so, g cannot reduce α and all the extensions). A symmetry is said to be active
with respect to α when it is neither inactive nor a reducer of α.

Proposition 2 restates this definition in terms of variables and is the basis of
an efficient algorithm to keep track of the status of a permutation during the
solving. Let us, first, recall that the support, Vg, of a permutation g is the set
{v ∈ V | g(v) 6= v}.

Proposition 2. Let α ∈ Ass(V) be an assignment, g ∈ S(V) a permutation
and Vg ⊆ V the support of g. We say that g is:

1. a reducer of α if there exists a variable v ∈ Vg such that:

– ∀ v′ ∈ Vg, s. t. v′ ≺ v, either {v′, g−1(v′)} ⊆ α or {¬v′,¬g−1(v′)} ⊆ α,
– {v,¬g−1(v)} ⊆ α;

2. inactive on α if there exists a variable v ∈ Vg such that:

– ∀ v′ ∈ Vg, s. t. v′ ≺ v, either {v′, g−1(v′)} ⊆ α or {¬v′,¬g−1(v′)} ⊆ α,
– {¬v, g−1(v)} ⊆ α;

3. active on α, otherwise.

When g is a reducer of α we can define a predicate that contradicts α yet
preserves the satisfiability of the formula. Such a predicate will be used to discard
α, and all its extensions, from a further visit and hence pruning the search tree.

Definition 3 (Effective Symmetry Breaking Predicate). Let α ∈ Ass(V),
and g ∈ S(V). We say that the formula ψ is an effective symmetry breaking
predicate (esbp for short) for α under g if:

α 6|= ψ and for all β ∈ Ass(V), β 6|= ψ ⇒ g.β < β

The next definition gives a way to obtain such an effective symmetry-breaking
predicate from an assignment and a reducer.

Definition 4 (A construction of an esbp). Let ϕ be a formula. Let g be a
symmetry of ϕ that reduces an assignment α. Let v be the variable whose exis-
tence is given by item 1. in Proposition 2. Let U = {v′,¬v′ | v′ ∈ Vg and v′ � v}.
We define η(α, g) as (U ∪ g−1.U) \ α.

Example. Let us consider V = {x1, x2, x3, x4, x5}, g = (x1 x3)(x2 x4), and
a partial assignment α = {x1, x2, x3,¬x4}. Then, g.α = {x1,¬x2, x3, x4} and
v = x2. So, U = {x1,¬x1, x2,¬x2} and g−1.U = {x3,¬x3, x4,¬x4} and we can
deduce than η(α, g) = (U ∪ g−1.U) \ α = {¬x1,¬x2,¬x3, x4}.

Proposition 3. η(α, g) is an effective symmetry-breaking predicate.

Proof. It is immediate that α 6|= η(α, g).
Let β ∈ Ass(V) such that β ∧ η(α, g) is unsat. We denote a α′ and β′ as the

restrictions of α and β to the variables in {v′ ∈ Vg | v′ � v}. Since β ∧ η(α, g)
is unsat, α′ = β′. But g.α′ < α′, and g.β′ < β′. By monotonicity of <, we thus
also have g.β < β.

It is important to observe that the notion of ebsp is a refinement of the classical
concept of sbp defined in [2]. In particular, like sbp, esbp preserve satisfiability.

Theorem 1 (Satisfiability preservation). Let ϕ be a formula and ψ an ebsp
for some assignment α under g ∈ S(ϕ). Then,

ϕ and ϕ ∧ ψ are equi-satisfiable.

Proof. If ϕ ∧ ψ is SAT then ϕ is trivially SAT. If ϕ is SAT, then there is some
assignment β that satisfies ϕ. Without loss of generality, β can be chosen to be
the lex-leader of its orbit under S(ϕ). Thus, g does not reduce β, which implies
that β |= ψ.

3 CDCLSym Algorithm

This section describes how to augment the state-of-the-art CDCL algorithm
with the aforementionned concepts to develop an efficient symmetry-guided SAT
solving algorithm. We first recall how the CDCL algorithm works. We then
explain how to extend it with a symmetry controller component which guides
the behavior of CDCL algorithm depending on the status of symmetries.

3.1 Classical CDCL

A Conflict-Driven Clause Learning (CDCL) algorithm is depicted in Algorithm 1.
The parts in red (grey in B&W printings) should be ignored for the moment.

The algorithm walks a binary search tree. It first applies unit propagation to
the formula ϕ for the current assignment α (line 4). A conflict at level 0 indicates
that the formula is not satisfiable, and the algorithm reports it (lines 8 − 9). If
a conflict is detected, it is analyzed, which provides a conflict clause explaining
the reason for the conflict (line 11). This clause is learnt (line 14), as it does not
change the satisfiability of ϕ, and avoids encountering a conflict with the same
causes in the future. The analysis is completed by the computation of a backjump
point to which the algorithm backtracks (line 15). Finally, if no conflict appears,
the algorithm chooses a new decision literal (line 18 − 19).The above steps are
repeated until the satisfiability status of the formula is determined.

It is out of the scope of this paper to detail the existing variations for the
conflict analysis and for the decision heuristic.

1 function CDCLSym(ϕ: CNF formula, SymController: symmetry controller)
returns > if ϕ is sat and ⊥ otherwise

2 dl← 0 ; // Current decision level

3 while not all variables are assigned do
4 isConflict← unitPropagation();
5 SymController.updateAssign(currentAssignment());
6 isReduced← SymController.isNotLexLeader(currentAssignment());
7 if isConflict || isReduced then
8 if dl == 0 then
9 return ⊥; // ϕ is unsat

10 if isConflict then
11 ω ← analyzeConflict();

12 else
13 ω ← SymController.generateEsbp(currentAssignment());

14 addLearntClause(ω);
15 dl← backjumpAndRestartPolicies();
16 SymController.updateCancel(currentAssignment());

17 else
18 assignDecisionLiteral();
19 dl← dl + 1;

20 return >; // ϕ is sat

Algorithm 1: the CDCLSym SAT Solving Algorithm.

3.2 Symmetry-Guided Search

As explained earlier, the main problem of the static approaches is that they
generate many sbp that are not effective in the solving (size of the generated
formulas, overburden of the unit propagation procedure, etc.).

The idea we bring is to break symmetries on the fly : when the current partial
assignment can not be a prefix of a lex-leader (of an orbit), an esbp (see Defini-
tion 3) that prunes this forbidden assignment and all its extensions is generated.

We implement this approach using two components that communicate with
each other: the SAT-solving engine itself, and a symmetry controller. The sym-
metry controller is initially given a set of symmetries G7. It observes the be-
havior of the SAT engine and updates its internal data according to the current
assignment, to keep track of the status of the symmetries. This observation is
incremental : whenever a literal is assigned or cancelled, the symmetry controller
updates the status of all the symmetries. This corresponds to lines 5 and 16 of
Algorithm 1. When the controller detects that the current assignment can not
be a lex-leader (line 6), it generates the corresponding esbp (line 13).

In the remainder of this section, we detail the functions composing the symmetry
controller.

Symmetries Status Tracking. The updateAssign, updateCancel and isNot-

LexLeader functions (see Algorithm 2) track the status of symmetries based on
Proposition 2 ; there, resides the core of our algorithm.

All these functions rely on the pt structure: a map of variables indexed by
permutations. Initially, pt[g] = min(Vg) for all g ∈ G and all permutations are
marked active.

For each permutation, g, the symmetry controller keeps track of the smallest
variable pt[g] in the support of g such that pt[g] and g−1(pt[g]) do not have the
same value in the current assignment. If one of the two variables is not assigned,
they are considered not to have the same value.

When new literals are assigned, only active symmetries need to have their
pt[g] updated (line 2). This update is done thanks to a while loop (lines 4− 5).

When literals are cancelled, we need to update the status of symmetries for
which some variable v before pt[g], or g−1(v), becomes unassigned (lines 9−10).
Symmetries that were inactive may be reactivated (line 11).

The current assignment is not a lex-leader if some symmetry g is a reducer.
This is detected by comparing the value of pt[g] with the value of g−1(pt[g])
(line 16). The function isNotLexLeader also marks symmetries as inactive when
appropriate (lines 18− 19).

Generation of the esbp. When the current assignment cannot be a lex-
leader, some symmetry g is a reducer. The function generateEsbp computes the

7 The generators of the group of symmetries.

η(α, g) defined in Definition 4, which is an effective symmetry-breaking predi-
cate by Proposition 3. This will prevent the SAT engine to explore further the
current partial assignment.

3.3 Lex-leader forcing

Our algorithm prevents as much as possible the solver from visiting non lex-
leaders assignments. To do so, we propose an additional heuristic that delays
the visit of non lex-leaders partial assignments.

Let us consider a permutation g and an assignment α. Assume there exists a
variable v ∈ Vg, with, for all v′ ∈ Vg, such that v′ ≺ v, either {v′, g−1(v′)} ⊆ α
or {¬v′,¬g−1(v′)} ⊆ α and v ∈ α. Let α′ = α ∪ {¬g−1(v)}. Then g is a reducer
of α′, which would generate η(α′, g) (Proposition 2 and Definition 4).

A way to prevent α from becoming a non lex-leader is to force the literal
g−1(v) into α. This can be easily done by learning η(α′, g) when the current
assignment is α. The same reasoning holds when ¬g−1(v) ∈ α and v 6∈ α.

3.4 Illustrative example

Let us illustrate the previous concepts and algorithms on a simple example. Let
V = {v1 ≺ v2 ≺ v3 ≺ v4 ≺ v5 ≺ v6}, and a set of symmetries G = {g1 =
(v1v5v3)(v2v4), g2 = (v1v6)(v4v5)} (written in cycle notation). Their respective
supports are, Vg1 = {v1, v2, v3, v4, v5} and Vg2 = {v1, v4, v5, v6}.

On the assignment α = ∅, both permutations are active and pt[g1] = pt[g2] =
v1. When the solver updates the assignment to α = {v6}, both permutations
remain active and pt[g1] = pt[g2] = v1. On the assignment α = {v6, v1}, the
symmetry controller updates pt[g2] to v5, while pt[g1] remains unchanged. On
the assignment α = {v6, v1,¬v3}, g1.α = {v6, v5,¬v1}, which is smaller than
α (because v1 ∈ α and ¬v1 ∈ g.α): g1 is a reducer of α. The symmetry con-
troller then generates the corresponding esbp ω = {¬v1, v3}. Alternatively, when
lex-leader forcing is active, from the assignment α = {v6, v1}, the symmetry
controller could force the value of the variable v3, by learning the same esbp
ω = {¬v1, v3}.

4 Implementation and Evaluation

In this section, we first highlight some details on our implementation of the
symmetry controller. Then, we experimentally assess the performance of our
algorithm against three other state-of-the-art tools.

4.1 cosy: an efficient implementation of the symmetry controller

We have implemented our method in a C++ library called cosy (1630 LoC).
It implements a symmetry controller as described in the previous section, and
can be interfaced with virtually any CDCL SAT solver. cosy is released under
GPL v3 licence and is available at https://github.com/lip6/cosy.

1 function updateAssign(α: assignment)
2 foreach active g ∈ G do
3 v ← pt[g];
4 while {v, g−1(v)} ⊆ α or {¬v,¬g−1(v)} ⊆ α do
5 v ← next variable in Vg;

6 pt[g]← v

7 function updateCancel(α: assignment)
8 foreach g ∈ G do
9 u← min{v ∈ Vg | {v,¬v} ∩ α = ∅ or {g−1(v),¬g−1(v)} ∩ α = ∅};

10 if u � pt[g] then
11 mark g as active;
12 pt[g]← u;

13 function isNotLexLeader(α: assignment)
14 foreach active g ∈ G do
15 v ← pt[g];
16 if {v,¬g−1(v)} ⊆ α then
17 return >; // g is a reducer

18 if {¬v, g−1(v)} ⊆ α then
19 mark g as inactive ; // g can’t reduce α or its extentions

20 return ⊥
21 function generateEsbp(α: assignment) returns ω: generated esbp
22 ω ← {};
23 g ← the reducer of α detected in isNotLexLeader;
24 v ← min(Vg);
25 u← pt[g];
26 while u 6= v do
27 if v ∈ α then ω ← ω ∪ {¬v} else ω ← ω ∪ {v};
28 if g−1(v) ∈ α then ω ← ω ∪ {¬g−1(v)} else ω ← ω ∪ {g−1(v)};
29 v ← next variable in Vg
30 ω ← ω ∪ {¬v, g−1(v)};
31 return ω

Algorithm 2: the functions keeping track of the status of the symmetries
and generating the esbp.

Heuristics and Options. Let us recall that finding the optimal ordering of
variables (with respect to the exploitation of symmetries) is NP-hard [15], so the
choice for this ordering is heuristic. cosy offers several possibilities to define this
ordering:

– a naive ordering, where variables are ordered by the lexicographic order of
their names;

– an ordering based on occurrences, where variables are sorted according to
the number of times they occur in the input formula. The lexicographic order
of variables names is used for those having the same number of occurrences;

– an ordering based on symmetries, where variables belonging to the same
orbit (under the given set of symmetries) are grouped together. Orbit are
ordered by their numbers of occurrences.

The ordering of assignments we use in this paper orders negative literals
before positive ones (thus, {¬v} < {v}), but using the converse ordering does
not change the overall method. However, it can impact the performance of the
solver on some instances, so that it is an option of the library.

All the symmetries we used for the presentation of our approach are permu-
tations of variables. Our method straightforwardly extends to permutations of
literals, also known as value permutations [4]. Another option allows to activate
the lex-leader forcing described in Section 3.3.

Integration in MiniSAT. We show how to integrate cosy to an existing solver,
through example of MiniSAT [10].

First, we need an adapter that allows the communication between the solver
and cosy (30 LoC). Then, we adapt Algorithm 1 to the different methods and
functions of MiniSAT. In particular, the function updateAssign is moved into
the uncheckEnqueue function of MiniSAT (2 LoC). The updateCancel function
is moved to the cancelUntil function of MiniSAT that performs the backjumps
(2 LoC). The isNotLexLeader and generateEsbp functions are integrated in the
propagate function of MiniSAT (30 LoC). This is to keep track of the assign-
ments as soon as they occur, then the esbp is produced as soon as an assignment
is identified as not being lex-leader. Initialization issues are located in the main
function of MiniSAT(15 LoC).

The integration of cosy increases MiniSAT code by 3%.

4.2 Evaluation

This section presents the evaluation of our approach. All experiments have been
performed with our modified MiniSAT called MiniSym. The symmetries of the
SAT problem instances have been computed by two different state-of-the-art
tools saucy3 [13] and bliss [12]. For a given group of symmetries, the first tool
generates less permutations to represent the group than the second one, but it
is slower than the other one.

We selected from the last six editions of the SAT contests [11], the CNF
instances for which bliss finds at least 2% of the variables are involved in some
symmetries that could be computed in at most 1000s of CPU time. We obtained
a total of 1350 symmetric instances (discarding repetitions) out of 3700 instances
in total.

All experiments have been conducted using the following conditions: each
solver has been run once on each instance, with a time-out of 5000 seconds
(including the execution time of the symmetries generation except for MiniSAT)
and limited to 8GB of memory. Experiments were executed on a computer with
an Intel Xeon X7460 2.66 GHz featuring 24 cores and 128GB of memory, running
a Linux 4.4.13, along with g++ compiler version 6.3.

We compare MiniSym using the occurrence order, value symmetries, and with-
out lex-leader forcing, against:

– MiniSAT, as the reference solver without symmetry handling [10];

– Shatter, a symmetry breaking preprocessor described in [2], coupled with
the MiniSAT SAT engine;

– breakID, another symmetry breaking preprocessor, described in [8], also
coupled with the MiniSAT SAT engine.

Each sat solution was successfully checked against the initial CNF. For un-
sat situations, there is no way to provide an unsat certificate in presence of
symmetries. Nevertheless, we checked our results were also computed by the
other measured tools. Unfortunately, out of the 1350 benchmarked formulas, we
have no proof or evidence for the 15 unsat formulas computed by MiniSym only.

Results are presented Tables in 1, 2, and 3. We report the number of in-
stances solved within the time and memory limits for each solver and category.
We separate the UNSAT instances (Table 1) from the SAT ones (Table 2). Be-
sides the reference with no symmetry (column MiniSAT), we have compared the
performance of the three tools when using symmetries computed by saucy3 (see
Table 1a and Table 2a), and bliss (see Table 1b and Table 2b). Rows correspond
to groups of instances: from each edition of the SAT contest, and when possible,
we separated applicative instances (app〈x〉 where 〈x〉 indicates the year) from
hard combinatorial ones (hard〈x〉). This separation was not possible for the edi-
tions 2015 and 2017 (all2015 and all2017). The total number of instances for each
bench is indicated between parentheses. For each row, the cells corresponding to
the tools solving the most instances (within time and memory limits) are typeset
in bold and greyed out. Table 3 shows the cumulative and average PAR-2 times
of the evaluated tools.

We observe that MiniSym with saucy3 solves the most instances in only half
of the unsat categories. However, with bliss, MiniSym solves the most instances
in all but four of the unsat categories ; it then also solves the highest number
of instances among its competitors. This shows the interest of our approach for
unsat instances. Since symmetries are used to reduce the search space, we were
expecting that it will bring the most performance gain for unsat instances.

Benchmark MiniSAT Shatter BreakID MiniSym

app2016 (134) 18 19 20 17
app2014 (161) 23 23 22 24
app2013 (145) 6 8 8 10
app2012 (367) 115 115 120 120

hard2016 (128) 8 17 50 42
hard2014 (107) 9 24 30 29
hard2013 (121) 12 24 48 29
hard2012 (289) 86 84 88 93

all2017 (124) 8 14 15 14
all2015 (65) 9 8 8 10

TOTAL (no dup) 261 302 371 345

(a) With saucy3

Benchmark MiniSAT Shatter BreakID MiniSym

app2016 (134) 18 21 18 19
app2014 (161) 23 21 20 24
app2013 (145) 6 7 10 11
app2012 (367) 115 106 114 123

hard2016 (128) 8 11 79 77
hard2014 (107) 9 45 40 53
hard2013 (121) 12 51 56 54
hard2012 (289) 86 69 90 93

all2017 (124) 8 14 15 15
all2015 (65) 9 7 8 8

TOTAL (no dup) 261 324 415 439

(b) With bliss

Table 1: comparison of different approaches on the unsat instances of the bench-
marks of the six last editions of the SAT competition.

Benchmark MiniSAT Shatter BreakID MiniSym

app2016 (134) 20 22 21 20
app2014 (161) 24 24 24 22
app2013 (145) 34 35 35 43
app2012 (367) 121 112 119 126

hard2016 (128) 0 0 0 0
hard2014 (107) 14 17 17 14
hard2013 (121) 23 23 24 22
hard2012 (289) 135 141 143 138

all2017 (124) 23 20 26 27
all2015 (65) 7 5 7 6

TOTAL (no dup) 325 323 337 335

(a) With saucy3

Benchmark MiniSAT Shatter BreakID MiniSym

app2016 (134) 20 20 22 20
app2014 (161) 24 24 23 22
app2013 (145) 34 32 30 33
app2012 (367) 121 112 120 118

hard2016 (128) 0 0 0 0
hard2014 (107) 14 14 17 18
hard2013 (121) 23 24 26 25
hard2012 (289) 135 134 141 142

all2017 (124) 23 25 26 29
all2015 (65) 7 5 6 6

TOTAL (no dup) 325 316 334 336

(b) With bliss

Table 2: comparison of different approaches on the sat instances of the bench-
marks of the six last editions of the SAT competition.

Solver PAR-2 sum PAR-2 avg

MiniSAT 8 074 348 5 981
Shatter 7 770 434 5 756
BreakID 6 909 999 5 119
MiniSym 7 229 700 5 355

(a) With saucy3

Solver PAR-2 sum PAR-2 avg

MiniSAT 8 074 348 5 981
Shatter 7 517 556 5 569
BreakID 6 444 954 4 774
MiniSym 6 245 448 4 626

(b) With bliss

Table 3: comparison of PAR-2 times (in seconds) of the benchmarks on the six
last editions of the SAT competition.

The situation for sat instances is more mitigated (Table 2), especially when
using saucy3. Again, this is not very surprising: our method may cut the ex-
ploration of a satisfying assignment because it is not a lex-leader. This delays

0 100 200 300 400 500 600 700 800 900
#solved instances

0

1000

2000

3000

4000

5000

tim
e

(s
)

MiniSym
BreakID
Shatter
Minisat

(a) with saucy3

0 100 200 300 400 500 600 700 800 900
#solved instances

0

1000

2000

3000

4000

5000

tim
e

(s
)

MiniSym
BreakID
Shatter
Minisat

(b) with bliss

Fig. 1: cactus plot total number of instances

the discovery of a satisfying assignment. The other tools suffer less from such
a delay, because they rely on symmetry breaking predicates generated in a pre-
processing step. Also, when seeing the global results of MiniSAT, we can globally
state that the use of symmetries in the case of satisfiable instances only offers a
marginal improvement.

We observe that performances our tool are better with bliss than with
saucy3 (see fig 1). We explain it as follows: saucy3 is known to compute fewer
generators for the group of symmetries than bliss. Since, the larger the sym-
metries set is, the earlier the detection of an evidence that an assignment is not
a lex-leader will be, we generate less symmetry-breaking predicates (only the ef-
fective ones). This is shown in Table 4; MiniSym generates an order of magnitude
fewer predicates than breakID.

We also conducted experiments on highly symmetrical instances (all variables
are involved in symmetries), whose results are presented in Table 5. The perfor-
mance of breakID on this benchmark is explained by a specific optimization for
the total symmetry groups that are found in these examples, that is neither im-
plemented in Shatter nor in MiniSym. However, the difference between breakID

and MiniSym is rather thin when using bliss. Our tool still outperforms Shatter
on this benchmark.

Number of SBPs BreakID MiniSym

unsat (316) 12 088 433 1 579 623
sat (312) 13 839 689 359 352

(a) With saucy3

Number of SBPs BreakID MiniSym

unsat (399) 2 576 349 913 339
sat (320) 12 179 513 457 452

(b) With bliss

Table 4: Comparison of the number of generated SBPs each time breakID and
MiniSym both compute a verdict (number of verdicts between parentheses).

Benchmark MiniSAT Shatter breakID MiniSym

battleship(6) 5 5 5 5
chnl(6) 4 6 6 6
clqcolor(10) 3 4 5 6
fpga(10) 6 10 10 10
hole(24) 10 12 23 11
hole shuffle(12) 1 2 12 3
urq(6) 1 2 6 2
xorchain(2) 1 1 2 2

TOTAL 31 42 69 45

(a) With saucy3

Benchmark MiniSAT Shatter breakID MiniSym

battleship(6) 5 5 5 6
chnl(6) 4 6 6 6
clqcolor(10) 3 5 8 10
fpga(10) 6 10 10 10
hole(24) 10 24 24 23
hole shuffle(12) 1 3 7 4
urq(6) 1 2 6 5
xorchain(2) 1 1 2 2

TOTAL 31 56 68 66

(b) With bliss

Table 5: comparison of the tools on 99 highly symmetric unsat problems.

5 Conclusion

This paper presented an approach dealing with the symmetries when they appear
in SAT problems. It borrows from the state-of-the-art static-based approaches
their basic principle, i.e., the adding of symmetry breaking predicates to the
original problem, but performed in an incremental and dynamic way. This is
possible thanks to the dynamic tracking of symmetries status and on-the-fly
generation of effective symmetry breaking predicates.

Our approach outperforms other state-of-the-art static methods, as shown
by an extensive evaluation on the symmetric problems gathered from the last
six SAT competitions.

This approach is implemented in the C++ library called cosy. It is an off-the-
shelf component that can be interfaced with virtually any CDCL SAT solver. cosy
is released under GPL licence and is available at https://github.com/lip6/cosy.

We now plan to focus on combining our approach with symmetry propa-
gation [9]. It seems that such a combination could be implemented thanks to
minor changes on our algorithm. This would allow to integrate the acceleration
mechanisms provided by the symmetry propagation, therefore obtaining a better
pruning of the search three.

Another track for future work, is to evaluate the possibility of changing the
order of variables dynamically: for example, following the order used by the
solver when it chooses its decision variables.

References

1. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult instances of
boolean satisfiability in the presence of symmetry. IEEE Trans. on CAD of In-
tegrated Circuits and Systems 22(9), 1117–1137 (2003)

2. Aloul, F., Sakallah, K., Markov, I.: Efficient symmetry breaking for boolean satis-
fiability. IEEE Trans. Computers 55(5), 549–558 (2006)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bdds.
Tools and Algorithms for the Construction and Analysis of Systems pp. 193–207
(1999)

4. Biere, A., Heule, M., van Maaren, H.: Handbook of satisfiability, vol. 185. IOS
press (2009)

5. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. pp. 148–159. Morgan Kaufmann (1996)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (Jul 1962)

7. Devriendt, J., Bogaerts, B., Bruynooghe, M.: Symmetric Explanation Learning:
Effective Dynamic Symmetry Handling for SAT, pp. 83–100. Springer International
Publishing, Cham (2017)

8. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static sym-
metry breaking for SAT. In: Theory and Applications of Satisfiability Testing -
SAT 2016-19th International Conference, Bordeaux, France, July 5-8, 2016, Pro-
ceedings. pp. 104–122 (2016)

9. Devriendt, J., Bogaerts, B., de Cat, B., Denecker, M., Mears, C.: Symmetry prop-
agation: Improved dynamic symmetry breaking in SAT. In: IEEE 24th Interna-
tional Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece,
November 7-9, 2012. pp. 49–56 (2012)

10. Eén, N., Sörensson, N.: An extensible sat-solver. In: International conference on
theory and applications of satisfiability testing. pp. 502–518. Springer (2003)

11. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international sat solver
competitions. AI Magazine 33(1), 89–92 (2012)

12. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and
sparse graphs. In: Applegate, D., Brodal, G.S., Panario, D., Sedgewick, R. (eds.)
Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments
and the Fourth Workshop on Analytic Algorithms and Combinatorics. pp. 135–149.
SIAM (2007)

13. Katebi, H., Sakallah, K., Markov, I.: Symmetry and satisfiability: An update. The-
ory and Applications of Satisfiability Testing–SAT 2010 pp. 113–127 (2010)

14. Kautz, H.A., Selman, B., et al.: Planning as satisfiability. In: ECAI. vol. 92, pp.
359–363 (1992)

15. Luks, E., Roy, A.: The complexity of symmetry-breaking formulas. Annals of Math-
ematics and Artificial Intelligence 41(1), 19–45 (2004)

16. Luks, E.M., Roy, A.: The complexity of symmetry-breaking
formulas. Ann. Math. Artif. Intell. 41(1), 19–45 (2004),
https://doi.org/10.1023/B:AMAI.0000018578.92398.10

17. Lynce, I., Marques-Silva, J.: Sat in bioinformatics: Making the case with haplotype
inference. In: International Conference on Theory and Applications of Satisfiability
Testing. pp. 136–141. Springer (2006)

18. Marques-Silva, J.P., Sakallah, K., et al.: Grasp: A search algorithm for proposi-
tional satisfiability. IEEE Trans. on Computers 48(5), 506–521 (1999)

19. Massacci, F., Marraro, L.: Logical cryptanalysis as a sat problem. Journal of Au-
tomated Reasoning 24(1), 165–203 (2000)

20. Sabharwal, A.: Symchaff: Exploiting symmetry in a structure-aware satisfiability
solver. Constraints 14(4), 478–505 (Dec 2009)

21. Schaafsma, B., Heule, M.J., Maaren, H.: Dynamic symmetry breaking by simu-
lating zykov contraction. In: Proceedings of the 12th International Conference on
Theory and Applications of Satisfiability Testing. pp. 223–236. SAT ’09, Springer-
Verlag, Berlin, Heidelberg (2009)

