
The MIDAS Cloud Platform for Testing SOA
Applications

Steffen Herbold∗, Alberto De Francesco†, Jens Grabowski∗, Patrick Harms∗, Lom M. Hillah§,
Fabrice Kordon¶, Ariele-Paolo Maesano¶, Libero Maesano‖, Claudia Di Napoli‡, Fabio De Rosa‖,

Martin A. Schneider∗∗, Nicola Tonellotto†, Marc-Florian Wendland∗∗, Pierre-Henri Wuillemin†

∗Institute of Computer Science, University of Göttingen, Germany
Email: {herbold,harms,grabowski}@cs.uni-goettingen.de

†Istituto di Scienza e Tecnologie dell’Informazione - CNR, Pisa, Italy
Email: {alberto.defrancesco,nicola.tonellotto}@isti.cnr.it

‡Istituto di Calcolo e Reti ad Alte Prestazioni - CNR, Naples, Italy
Email: claudia.dinapoli@cnr.it

§CNRS UMR 7606 (LIP6), Université Paris Ouest Nanterre La Défense, F-92001 Nanterre, France
Email: lom-messan.hillah@lip6.fr

¶CNRS UMR 7606 (LIP6), Sorbonne Universités, Université Pierre et Marie Curie, F-75252 Paris, France
Email: {fabrice.kordon,ariele.maesano,pierre-henri.wuillemin}@lip6.fr

‖Simple Engineering, F-75011 Paris, France
Email: {fabio.de-rosa,libero.maesano}@simple-eng.com
∗∗Fraunhofer Institute FOKUS, Berlin, Germany

Email: {martin.schneider,marc-florian.wendland}@fokus.fraunhofer.de

Abstract—While Service Oriented Architectures (SOAs) are
for many parts deployed online, and today often in a cloud,
the testing of the systems still happens mostly locally. In this
paper, we want to present the MIDAS Testing as a Service
(TaaS), a cloud platform for the testing of SOAs. We focus on
the testing of whole SOA orchestrations, a complex task due to
the number of potential service interactions and the increasing
complexity with each service that joins an orchestration. Since
traditional testing does not scale well with such a complex setup,
we employ a Model-based Testing (MBT) approach based on
the Unified Modeling Language (UML) and the UML Testing
Profile (UTP) within MIDAS. Through this, we provide methods
for functional testing, security testing, and usage-based testing
of service orchestrations. Through harnessing the computational
power of the cloud, MIDAS is able to generate and execute
complex test scenarios which would be infeasible to run in a
local environment.

I. INTRODUCTION

Due to the growing size and complexity of software
systems in the last decades, quality assurance of software
becomes at the same time more important and more difficult.
One direction researches and practioneers have turned towards,
which has been gaining traction in recent years [1] is Model-
based Testing (MBT). By now, there are multiple tools on the
market that support MBT and that are applied in practice. How-
ever, the tools themselves are proprietary and often come with
high licencing costs. Moreover, the computational resources
required for test generation and execution often do not scale
well with MBT. This is due to the possibility to derive huge
amounts of test cases but the resources for their execution are
not available.

There is a growing trend to deploy testing tools on cloud

infrastructures, either public or private, in order to provide
testing services through the coordinated use of cloud resources
according to a pay–per–use business policy [2]. This is due
to several reasons. Business applications are becoming more
and more dynamic, complex and distributed, so requiring
increasingly sophisticated testing techniques and methods to
deal with this complexity. In addition, for a growing number
of companies it is prohibitive to maintain in–house testing
facilities that can mimic real operating environments due to
the high cost and technical difficulties, so the demand for new
solutions, where the testing process is outsourced and possibly
automated, is rapidly increasing. Nevertheless, the mitration of
legacy test software to the cloud is a complex task and if it
is not done correctly, the underlying cloud infrastructure will
not be used efficiently.

Within the “Model and Inference Driven - Automated
testing of Services architectures” (MIDAS) project, we built
a power testing platform directly on the cloud. Therefore,
MIDAS comes without upfront licencing costs and scales in
terms of computational power. The idea is to provide a Testing
as a Service (TaaS) platform on the cloud, where users of
MIDAS can come and rent testing resources as they require
them. First of all, this shifts the costs from upfront licencing
costs to pay-per-use. This is an advantage, especially for
smaller companies who may want to try MBT but cannot risk a
failed investment. Moreover, MIDAS is elastic due to its cloud
nature, which means that the computational resources scale
dynamically as required. Because MIDAS is naturally built as
a cloud application, it can harness the computational power of
the cloud efficiently and execute complex test scenarios which
otherwise may be infeasible.

The test methods developed as part of the MIDAS project
are for testing Service Oriented Architecture (SOA) orches-
trations. SOA orchestrations are a good example of the com-
plexity explosion one faces with modern applications. While
testing an SOA based service on its own is feasible, once
orchestrations of multiple services are considered, the com-
plexity explodes rapidly. Within MIDAS, we counteract this
through the elasticity of the cloud and the MBT approach.
The MBT approach is based on the MIDAS Domain Specific
Language (DSL), a selection of concepts from Unified Mod-
eling Language (UML) and the UML Testing Profile (UTP).
However, the MIDAS TaaS is built to be an open and extensible
platform for new test methods. With the DSL as foundation,
the platform supports test generation and scheduling with
methods from functional testing, security testing, and usage-
based testing. Moreover, to fully support test automation, the
platform contains services for the generation of Testing and
Test Control Notation version 3 (TTCN-3) code from test
cases described with the MIDAS DSL, as well as TTCN-3
compilation and execution services based on TTworkbench [3].

The remainder of the paper is structured as follows. In
Section II, we dicuss the structure of the MIDAS TaaS
cloud platform and its general features. This includes how
test methods are integrated in the TaaS and made available
to MIDAS users. Afterwards, in Section III we present the
MIDAS DSL and the methods for functional testing, security
testing, and usage-based testing available on the platform.
Finally, we conclude this paper and give an outlook on future
works in Section IV.

II. THE CLOUD–BASED MIDAS PLATFORM

The MIDAS platform is designed and architected according
to the SOA computing paradigm, and deployed on a public
cloud infrastructure as a software system providing advanced
and off–the–shelf testing methods and capabilities, to be paid–
per–use in the digital economy era. In fact, from an end–user
perspective, the MIDAS platform will be made accessible over
the Internet as a multi–tenancy Testing Software as a Service,
we refer to as the MIDAS Testing as a Service (MIDAS TaaS).

The cloud service model adopted for the MIDAS cloud
deployment is the Infrastructure as a Service (IaaS), mainly
because of the possibility it offers to developers to fully control
the entire software environment in which their applications are
developed [4]. This is a crucial requirement for the MIDAS
platform development since it relies on components that are
developed and implemented by the MIDAS technical partners
in an independent way, and that have to be integrated in a
complete application. Furthermore, MIDAS includes legacy
commercial software, such as the TTworkbench execution
engine [3], that may require specific software support to be
included in the MIDAS platform. Finally, since an IaaS cloud
relies on virtualization technologies, the portability of the
MIDAS platform to different cloud providers is guaranteed.
The drawbacks of IaaS cloud solutions may be an additional
complexity and effort required to set up and deploy the
application.

In accordance to the project requirement of using a public
cloud infrastructure, and to the analysis of available cloud
providers [5], the Amazon Elastic Computing (EC2) platform

Fig. 1: The MIDAS SOA design

[6] has been adopted. It represents a good candidate solution
since it currently offers the best compromise among cost,
MIDAS development needs, and elasticity mechanisms. In fact,
it provides advanced solutions concerning the possibility to
achieve computing elasticity, to tackle data storage reliability,
persistency, and fault tolerance.

A. The SOA design of the MIDAS Platform

All functionalities of MIDAS are exposed as services, due
to the applied SOA paradigm. The MIDAS services, also
referred to as MIDAS components, are asynchronous and
stateless Web services accessed through well–defined APIs
and communicating with each other. All services are being
developed according to their specifications to guarantee their
interoperability. In addition, the MIDAS SOA design allows to
address the interoperability problem, very crucial in software
testing automation, that is achieved through the use of a testing
software catalogue (the MIDAS portfolio) of preconfigured and
stable testing methods that use shared interfaces.

End users and test method developers are grouped in logical
entities called respectively tenancies that are separated user
computing spaces managed by the corresponding adminis-
trators. Conceptually, tenancies represent units of: a) users
identification and authentication; b) cloud resources allocation,
accounting and billing; c) data and services ownership and
access.

The MIDAS services are classified according to their usage,
therefore, we allow the management of both the different
access policies for their usage, and the different computational
resources they need. As reported in Figure 1, the MIDAS
services are grouped as follows:

1) Tenancy Admin services that include: a) the Iden-
tification & Authentication service allowing tenancy
administrators to manage tenancy end users, and to
verify that each member of a tenancy is authenti-
cated before invoking the facilities of that tenancy;

Fig. 2: The MIDAS Prototype on the Cloud

and b) the Accounting & Billing service allowing
tenancy administrators to monitor the MIDAS cloud
resources and services usage of a tenancy, and to get
the corresponding updated and consolidated billing
information.

2) End users services that include: a) the Test Gen &
Run service allowing end users to asynchronously
start the execution of a test task (either a test gen-
eration or a test execution task), and to actively poll
it to inspect the status and the resulting output of any
started test task; b) the Test Method Query service,
allowing end users to list the test methods currently
part of the MIDAS portfolio, and to retrieve the prop-
erties of any method in the portfolio; and c) the File
Management service, allowing end users to access the
file system private to the tenancy they belong to, and
to perform the usual operations supported by a file
system.

3) Core services that include: a) the Test Generation
service, responsible for automatically generating test
cases, test scripts and model transformations for test-
ing; and b) the Test Run service, that coordinates the
run of a specific test cycle, consisting in an optional
scheduling phase, a mandatory execution phase, and
an optional arbitration phase.

B. The MIDAS Architecture for the Cloud

The deployment of the MIDAS TaaS platform on the
cloud takes into account mainly the sandbox and scalability
requirements of basic components, as specified in [7]. Each
tenancy instance has its own private cloud resources pool that
can scale by exploiting the elasticity services of the underlying
Amazon cloud infrastructure.

Each tenancy instance is a logical composition of two basic

deployment units, (see Figure 2), i.e., two Virtual Machine
Images (VMIs), one hosting the Tenancy Administration and
End user services (VM1), and the other one hosting the Core
services (VM2). The rationale of this choice is due to the
different scalability and elasticity requirements of the two
groups of services. In fact, most of the workload is expected
from the use of the Core Services that host the executor engine,
the compiler of TTCN–3 scripts, and the testing components
developed by the MIDAS partners. In principle, there is no
functional requirement that obliges to have Core services in
the same deployment unit. The rationale of grouping these
services in a single deployment unit is to allow the entire
pool of services working instances and associated resources to
be scaled as a whole through Amazon elasticity mechanisms,
and to resize the VMs computing resources together with the
CPUs, RAM, and network I/O according to the requirements
of the MIDAS components.

For what concerns MIDAS storage requirements, MIDAS
services need temporary disk space for service execution, since
each single running service may temporally read/write data
whose persistence lasts from the service invocation time to
the reply time. A short–term persistent disk space is needed
to implement custom data sharing among services during
single test method generation and run activities. In fact, end
user services, like Test Gen & Run, are composite services
orchestrating more atomic services, so although all MIDAS
services are stateless, component services in an orchestration
may communicate exchanging data files through a shared
memory disk space. The persistence of these data must last
from the invocation time to the reply time of the composite
service. Finally, MIDAS must supply a persistent disk space
for user data including models, test data, test logs, journals
and documentation.

The store volumes associated to an Amazon EC2 instance,
i.e. the EBS Volumes or Ephemeral Disks, provide a satis-
factory solution for the temporary and short–term persistent
disk spaces, since they are available until the instance is
destroyed. Instead, for the user data persistent space shared
among the different users of a tenancy, a suitable solution is
Amazon S3. Its data model could also be used to logically
partition data among different tenancies in a sandboxed way,
if required. The Amazon RDS database solution is adopted for
the implementation of the End user, Core and Tenancy admin
services requiring to store structured information with frequent
accesses. The first prototype of the MIDAS TaaS on the cloud
and the mapping of its components to Amazon AWS services
are shown in Figure 2.

C. The MIDAS integration strategy

Test method developers are the MIDAS technical part-
ners in charge of developing test methods, and they directly
contribute to the development of the platform itself. In fact,
the developed test methods are integrated into the MIDAS
platform, so becoming part of the complete platform deployed
on the cloud, and updated, at each version increment, with the
latest release of its components.

To allow the developers to implement and integrate their
components and test methods in the MIDAS TPaaS, a virtual-
ization approach was adopted already in the development phase

of the MIDAS platform. The separation between resource
provision and operating systems introduced by virtualization
technologies is the key enabler for cloud computing, more
specifically for IaaS clouds.

The MIDAS test developers have been provided with a
seamless, loosely coupled development and integration plat-
form, referred to as the MIDAS Development Environment
supporting them in their implementation, debugging and test-
ing activities. The MIDAS Development Environment relies
on open–source and stable virtualization technologies, and it
is used to develop all the MIDAS components in a consolidated
and shared VMI, and to configure and manage all the software
packages required for the development of the MIDAS platform
components, including third party software dependencies. The
shared VMI includes standard hardware architecture, operating
system, developer tools, application containers, web servers,
and libraries shared among all partners. It is deployed on
a local machine by each developer partner, so allowing to
locally provide an emulation of the basic MIDAS platform
on the cloud. In fact, the MIDAS Development Environment
includes all the main building blocks of the MIDAS platform
deployed on the cloud. The virtualized MIDAS development
environment is deployed on the Amazon cloud infrastructure,
and updated every time a new release of its components is
available.

The adoption of a shared VMI to develop the components
of the MIDAS platform prevents from using cloud resources
in the MIDAS development phase, so allowing for a cost–
effective strategy to develop and deploy the MIDAS platform
on the cloud. In addition, it guarantees the interoperability
of the independently developed components since they are
released only once they are stable and run in the same shared
environment aligned among all partners.

D. The MIDAS Monitoring and Billing services

The MIDAS platform is equipped with an Accounting
and Billing service responsible for monitoring the usage of
both MIDAS services and computing resources on the cloud.
The gathered monitoring data is then processed to provide
accounting and billing information for the MIDAS tenancies.
The service is built on top of the Amazon Account Billing
service, and it will be customized according to the adopted
MIDAS business model. This is done by associating an Ama-
zon Identity and Access Management (IAM) account to each
Tenancy admin created by the MIDAS TaaS administrator
to monitor the usage of Amazon EC2 resources (computing
resources, elastic load balancer, autoscaling), Amazon RDS
resources, Amazon S3 Storage resources, I/O requests, and so
on for each tenancy.

In addition, also events at the platform level are monitored
within MIDAS, based on interception of all SOAP messages
exchanged among MIDAS web services. The basic element of
the implementation of the MIDAS monitoring is an application
server interceptor, a small software automatically deployed
with the MIDAS platform on the cloud in any web application
container, which is responsible to automatically process all
incoming and outcoming SOAP messages, to extract relevant
timestamped information such as user identifier, test method
identifier, and target service that can be used by the Accounting
and Billing service to perform more elaborated operations.

Fig. 3: The MIDAS DSL - Conceptual model and realization

By enabling the Consolidating Billing of Amazon AWS,
a monthly report of cloud resources consumption for each
tenancy will be stored on Amazon S3 and processed to report
all information about cloud resources consumption. Also, the
resources consumption of each tenancy user is tracked by
keeping the history of user activities and the amount of cpu
time spent in each testing task. This information will be used to
charge, according to the MIDAS business model, the tenancy
users for both cloud resources and MIDAS services usage.

III. SOA TESTING WITH MIDAS

A. The MIDAS DSL

One of the main principles of the MIDAS platform design
was to use a single language for input models for each
test method based on UML, the so-called MIDAS DSL.
The specification and implementation of the MIDAS DSL
followed the recommendation of Bran Selic [8] for devel-
oping UML profiles. At first, a pure conceptual model was
designed. Afterwards, this conceptual model was realized by
appropriate modeling languages. The MIDAS DSL is designed
as a conglomerate of complementary UML profiles, both
standardized and proprietary ones. The standardized parts of
the MIDAS DSL are UML [9] and UTP [10]. In such cases
where concepts required for a test method developer were not
sufficiently addressed by these standards, additional concepts
were implemented as a proprietary MIDAS UML profile (see
Figure 3).

The MIDAS DSL consists of the conceptual parts test plan-
ning, test design, test data, and test scheduling. Test planning.
This part deals with the definition of a test context, or sub-test
process (as it is called in ISO 29119). Main concepts of this
part are test plan, test requirement, test context, test level and
test type.

Test design. This part offers concepts to describe both
test design models (artifacts that are used as input for a test
generator) and test cases (artifacts that represent manually
or automatically derived test cases). UML Interactions1 are
utilized to express test cases. Another important concept of this
part are test design directives and test design strategies. They
offer the possibility to deposit the chosen test design tech-
niques (such as all transitions, pairwise testing, equivalence
class testing etc.) directly within the test model in an abstract
manner [11]. With respect to language design, this ability is
one of the most important innovations developed within the
MIDAS project.

1UML Interactions are commonly known as Sequence diagrams.

Test data. Testing is mainly about data exchange between
the System Under Test (SUT) and its/their environment. In a
test case, data is either used to describe a stimulus to the SUT
or an expected response from the SUT. For fundamental data
definitions, UML already offers various ValueSpecifications. In
order to specify efficient and concise test cases, these concepts
are not sufficient, in particular for the definition of expected
responses. Hence, the MIDAS DSL complements UML and
UTP with additional ValueSpecifications realized as Stereo-
types. These ValueSpecifications cover regular expressions,
collections and variants thereof (such as sets, subsets, supersets
etc.), and enumerated values.

Test scheduling. Test scheduling enables the tester to
order the respective test cases for execution according to a
certain test strategy. A risk-aware scheduling could be such a
test strategy. Test schedules are expressed as UML Activities
within a test context.

The MIDAS platform also offers a dedicated MIDAS test
model to executable TTCN-3 transformation. The generation
of executable TTCN-3 test scripts from UTP-based models
has been previously discussed ([12], [13]). We contributed
to this work by extending the transformation with the newly
developed concepts of the MIDAS profile. This guaranteed the
applicability and feasibility of the concepts.

The experiences made with the MIDAS DSL, its benefits,
as well as its drawbacks provided valuable feedback for the
currently undergoing efforts towards a major revision of the
UTP, i.e., UTP 2. Many parts of the MIDAS conceptual model
and the realizing UML profile implementations have been
contributed to the development of UTP 2. The most important
findings from developing and applying the MIDAS DSL were
the test design directives and test design strategies, as well as
the additional ValueSpecifications.

B. Functional Testing

The MIDAS platform aims at the full automation of testing
methods. Service functional conformance test automation is by
definition model-based: what can be automated is the test of
the compliance of the service architecture under test (SAUT)
with its formal model. The idea behind extreme automation is
that the only manual task for the developer is the production
of the SAUT models that, once built reduces the marginal
cost of human effort to zero. The service functional testing
activity is decomposable in the tasks listed below organised
in two main test cycles: (i) test generation cycle (test case
production, test oracle production) and (ii) test run cycle (test
execution/arbitration, test reporting, test scheduling).

1) Test generation cycle: having the strongest impact on
the effectiveness and efficiency of software testing, test case
generation has been implemented by a wide range of inten-
sive techniques that aim at automating the approach. Notable
techniques are model-based, model-checking-based, random,
and search-based testing [14]. For SOA, formal techniques
have the strongest impact on functional testing. We specifically
combine symbolic execution and verification techniques based
on Petri nets for oracle and test case generation. To generate
test oracles, we mainly use inputs describing the external
expected behaviour of each participant in the SAUT, the system
architecture service composition (SCA) [15], and the services

FUNCTIONAL TEST
GENERATION

Service
Component
Architecture

Participant
Service

Description

Participant
Service

Description

Participant
Service

Description

Participant
State

Machine

Participant
State

Machine

Participant
State

Machine

Stimulus
Payload

Test
Definition

Test Sample

Fig. 4: Inputs/outputs of functional tests generation

interfaces (in WSDL). State Charts XML (SCXML) are used
to specify the behavioural models [16].

Figure 4 shows the inputs and outputs of the functional
test generation method, from a user perspective. All inputs and
outputs are XML documents, which allows to cross reference
elements from one document to another, and enables consis-
tency checking. A user of this method will have to provide,
apart from the service description (WSDL), the service compo-
nent architecture (SCA) and each participant’s protocol state
machine (SCXML). At least a payload (i.e. SOAP message
as input data) is requested for each stimulus, to help the test
generation method in inferring further input payloads for that
stimulus. A test definition specifies the execution path that a
test case yields, while a test sample is the associated data flow
(exchanged SOAP messages along the execution path), given
the stimulus payload.

Different strategies are combined to generate relevant data
to build the oracles for the test cases. Explored strategies
are random, boundary values, and domain partitioning by
analysing transfer functions (business rules in the SCXML)
manipulating values across the exchanged SOAP messages. In
addition, hints may be provided for test case generation, such
as specific ranges of values and specific types of message.

2) Test Scheduling: Test scheduling gives a specific order
of running to the test cases of a test suite. There is a
distinction between (i) static and (ii) dynamic scheduling.
Static scheduling is batch scheduling, which is also known
as prioritisation. Dynamic scheduling is the choice at run time
of the next test case to run. Dynamic scheduling requires the
action of an artificial agent that is able to decide at each Test
run cycle the test case to run on the basis of a decision that
takes into account the context in which the cycle is situated
and the history of the past cycles. In principle, the scheduler
should decide the next test case to run on the basis of its
fitness to different criteria (for instance the fault-exposing
potential [17]). With dynamic scheduling the fitness of each
not-yet-performed test case can change at each cycle on the
basis of the evolving test session context and the past test
verdicts. Automated test scheduling requires the automation
of methods for strategic reasoning and troubleshooting. If the
automated test execution/arbitration is available, the complete
automation of the dynamically scheduled test run cycle is
possible.

a) Probabilistic Modelling: The probability theory has
proven to be one of the most promising frameworks for
representing uncertainty within a decision framework thanks
to its ability of modelling a complex reality with maximum
accuracy and minimum number of parameters. Our claim is

that probabilistic inference can drive dynamic test scheduling
that improves failure seeking and troubleshooting. The Sched-
uler decision module follows a (model-based) probabilistic test
scheduling approach. In order to initialise and configure its
embedded inference engine, the Scheduler builds a probabilis-
tic model (Bayesian Network, BN) of the SAUT by using the
functional hierarchical model of the SAUT, the model of the
test scenarios and the Test Suite data set.

b) Functionnal SOA Testing Inference: The scheduler
compiles the probabilistic model of the SAUT into an Arith-
metic Circuit (AC, [18]) by using an original compilation
algorithm [19]. The inference engine on the AC is an internal
module of the Scheduler. To each execute/arbitrate cycle
(with test samples as inputs and test verdicts as outputs)
corresponds a schedule inference cycle (with test verdicts as
inputs and test samples as outputs). The Scheduler manages
its internal inference engine by setting: (i) prior probabilities
on its top variables at the initialisation and (ii) assump-
tions/beliefs/observations (evidence realisations) on the other
variables potentially at any inference cycle. The inference
permits to calculate P (X|e) where X is an unobserved
variable and e is the evidence of the actual state of the
scheduler and then the fitness of each non-executed test case.
Different policies are proposed to exploit those probabilities
and influence the decision of the next test case ([20], [21]).

3) Evidence-driven Test Case Generation: Evidence-driven
test case generation shall be intended in the context of this
research as the arrangement and timetabling of the tasks
described above. In particular, evidence-driven test case gener-
ation organises the test generation cycle, the test run cycle and
the relationship between them. In principle, the test generation
cycle and the test run cycle can be separated and managed
independently. The test generation cycles produce collections
of test samples (test suites) that are stored for future use. These
test suites are inputs of the test run cycle that is performed
asynchronously. Advanced test scheduling can supply inputs
to test planning, by indicating, on the basis of the verdicts of
past test runs, some specifications about the production of new
test cases. The Scheduler should supply directives and data to
the test case production task, for example by focusing the test
generation activity on the coverage of specific regions of the
service component architecture or on specific type of messages
or, on the contrary, by conducting a breadth-first search for
failures.

C. Security Testing

Security Testing means to find security relevant weaknesses
in the implementation of a system or a web service. Such
weaknesses may be exploited by an attacker, e.g. in order
to crash it, get access to prohibited data or functionality,
or manipulate it, i.e. to perform actions that may affect its
confidentiality, integrity, or availability (CIA). With respect
to the daily attacks on systems by foreign governments and
intelligence agencies as well as hacker groups, it is inevitable
to find as many weaknesses as possible before releasing a
system or web service. As web services are naturally exposed
to networks and thus, they are easier to attack than other
systems. As an integral part, the MIDAS platform also provides
services to perform security testing of web services. For this
purpose, two different approaches of fuzzing techniques are

employed, i.e. data fuzzing and behavioral fuzzing. Addition-
ally, a first approach of the combination of both techniques is
implemented.

1) Data Fuzzing: Data fuzzing is an established technique
where invalid or unexpected input data is injected to the
interface of a system. A secure way of a system to handle such
data may be rejecting it and responding with an error message
or sanitizing it by replacing or escaping malicious parts of it.
However, to do so, the system has to detect that the received
data is invalid. This task is performed by input validation
mechanisms. However, if these mechanisms are faulty or even
missing, invalid input data is able to pass the interface and
gets processed by the business logic. Achieving this allows
the modification of the behavior of a system in a malicious
way as described above. Data fuzzing aims at generating such
invalid input data that is able to reveal faulty input validation
mechanisms.

As the possible input space for invalid input data generated
by data fuzzing techniques is huge, we avoid that the model
contains all the fuzz test data. To achieve this, we employ a
mechanism called test strategies. Test strategies are a way to
determine how test cases or test data shall be derived from a
given model. We developed a UML profile that contains test
strategies specific for data fuzzing. A test strategy specifies
how fuzz test data shall be generated for a given message
parameter using its type and possible valid data. By this
approach, the model is kept small and contains the minimal
set of test cases that are abstract in that way that they contain
only valid but no invalid, i.e. fuzzed data. Actual fuzz test data
are generated at test execution time.

These test strategies are implemented by the fuzzing heuris-
tics the data fuzzing library Fuzzino2 is providing. Fuzzino is
an Open Source test data generator for fuzzing that supports
test data generation for String and number data types based on
fuzzing heuristics from the popular Open Source fuzzers Peach
and Sulley. We extended Fuzzino in order to support and fuzz
additionally data structures important for web services.

2) Behavioral Fuzzing: Another kind of fuzzing is called
behavioral fuzzing [22]. In contrast to data fuzzing, invalid
message sequences are generated from valid ones. Different
behavioral fuzzing operators are modifying functional test
cases in order to transform them to behavioral fuzzed test
cases that generate invalid message sequences. Doing so, it
is possible to find security-relevant weaknesses for instance in
the authentication and authorization mechanisms. In addition,
we are also investigating the combination of both, data and
behavioral fuzzing. This means to send invalid messages as
well as invalid data such that weaknesses can be found more
efficiently than employing merely one technique and in order
to find weaknesses that a single technique would not find.
Figure 5 depicts the principle of test generation for behavioral
fuzzing. A functional test case (on the left) is modified by
a behavioral fuzzing operator RepeatMessage such that the
HTTP get request contains two host messages instead one.
Since only one host message is allowed, the resulting message
sequence is invalid.

We use functional test cases in form of UML sequence
diagrams as starting point for our fuzz test case generation.

2http://github.com/fraunhoferfokus/Fuzzino

Fig. 5: Example of the generation of a behavioral fuzz test
case.

This is reasonable because the SUT should be functionally
tested before security testing is performed. The reason is that
as long as functional bugs are being fixed, new weaknesses
may be induced as well as existing ones may be removed.
Therefore, security testing should start when functional testing
has been finished. On the other hand, security testing can
benefit from functional testing by reusing the functional test
cases as starting point for the different fuzzing techniques
aforementioned.

As described above, the test case space is that huge that
executing all test cases is usually impossible. This is true for
data fuzzing as well for behavioral fuzzing and even more
for the combination of both techniques. In order to cope with
this challenge, we developed a metric for the complexity of
the negative input space. It is based on works from Cataldo
et al. [23] as well as Bandi et al. [24] who investigated a
correlation between interface complexity and error proneness
of its implementation. We make use of this correlation by
adapting it for data fuzzing where the complexity of this
space—e.g. number of boundaries of valid value ranges,
(conditional) dependencies between parameters—seems to be
relevant for the error proneness of the corresponding input
validation mechanisms. Therefore, we calculate a score based
on the negative input space complexity to schedule the data
fuzz test cases aiming at executing test cases with a higher
probability to find a weakness.

D. Usage-based Testing

The usage-based testing part of the project aims at bringing
existing techniques for usage-based testing (e.g., [25], [26]) to
a level, where they are ready to be applied in the industry.
Usage-based testing is based on the idea to optimize the user-
experienced quality [27] and, therefore, it generates and/or
selects tests that cover highly used parts of the software. In
general, usage-based testing consists of three steps:

1) obtain a usage journal;
2) create a usage profile; and
3) select/generate tests.

With MIDAS, we provide a complete tool set to automate
all three steps. The tooling is based on the AutoQUEST
platform [28] for observation-based quality assurance. MIDAS
reuses existing AutoQUEST components and adds additional
components to the framework in order to harness the function-
alities for usage-based testing provided by AutoQUEST.

To obtain the usage journal, we record each SOAP message
exchange between services of a SOA. This is done using
Hypertext Transfer Protocol (HTTP) proxies located in front

of any service. A proxy receives any request sent to a spe-
cific service, forwards it to the service, receives the services
response, stores the request and the response in eXtensible
Markup Language (XML) format into a log file, and sends
the service response to the client. Through this, we get a
usage journal of an individual service being made up of XML
encoded message exchanges in a log file. The journals of many
services can be combined to a usage journal of the whole SOA.

The gathered usage data can then be handled by MIDAS
services to create a usage profile. The usage profiles are
Markov models that describe the probability of the next
SOAP message. Figure 6 shows a small example of a usage
profile where a user calls operations from two services called
ixsqm and rlus. MIDAS provides a service for the automated
inference of a usage profile based on the usage journal. The
inferred usage profile is stored on the platform, and it can then
be exploited by usage-based testing techniques.

MIDAS offers multiple ways to exploit the usage profiles.
The most important one is the automated generation of tests
through random walks. This way, MIDAS users are able to
create a test suite, where the test cases mimic the behavior of
the service’s users. The generated tests are in form of UML
interactions and compliant to the MIDAS DSL (see Section
III-A). In combination with the services for TTCN-3 genera-
tion, compilation and execution, an automated testing approach
from usage observation via over usage profile inference, test
suite generation, and test execution is possible.

Moreover, MIDAS provides a usage-based scheduling ser-
vice that is also based on usage profiles. Given a test suite
described in the MIDAS DSL (i.e., as UML interactions),
MIDAS calculates a usage score for each test case, where the
usage score reflects the likelihood that the scenario executed by
the test case would be executed by the user. The scheduling
service then creates a schedule for the test cases where the
test case with the highest likelihood is executed first, then the
second highest likelihood, etc. This ensures that the tests that
affect the user experienced quality are executed first, which is
important if not all tests can be executed, e.g., due to a lack
of time or available resources.

IV. CONCLUSION

In this paper, we presented the MIDAS TaaS platform for
the MBT of SOA orchestrations. The MBT is based on the
MIDAS DSL, one of the key drivers of the standardization of
the UTP version 2.0 at the Object Mangement Group (OMG)
and the International Organization for Standardization (ISO).
The platform is open and features a flexible functionality for
the development of new test methods. Currently, functional
testing, security testing and usage-based testing are supported.
Finally, since the MIDAS platform is provided as a Testing
as a Service on the cloud, it allows end users to use it by
renting testing resources as they require them according to a
pay-per-use business policy. This is advantageous mainly for
small and medium enterprises for which the cost of in-house
testing may become prohibitive from both an economic and
technical point of view. In addition, the design of the MIDAS
platform as a SOA cloud-based platform, allowed to effectively
exploit the features of the underlying cloud infrastructure,
that is usually more difficult when simply migrating already
existing applications to the cloud.

Fig. 6: Example of a usage profile. The first part of each node
is the service that is called, the second part the operation of the
service, e.g., rlus.put is a call of the put operation of the rlus
service. START and END are virtual operations that signify the
start/end of a user session. The edges denote the probability
of operation calls given the last operation, e.g., the operation
rlus.list is called with a probability of 0.043 after the rlus.put
operation.

In the future, the test methods will be further extended, e.g.,
by expanding the functional testing to so-called evidence-based
testing, where the tests are dynamically scheduled and created
based on the test outcomes. Furthermore, the combination
of fuzzing and usage-based testing is a promissing approach
for security testing that will be investigated. Finally, through
cooperations, e.g., with the FITTEST project [29], more test
methods shall be brought to the platform.

ACKNOWLEDGMENT

This work was done in the context of the MIDAS European
project (project number 318786).

REFERENCES

[1] R. V. Binder, A. Kramer, and B. Legeard, “2014 Model-based Test-
ing User Survey: Results,” http://model-based-testing.info/wordpress/
wp-content/uploads/2014 MBT User Survey Results.pdf, 2014.

[2] M. Beisser, M. Pruksch, and S. Limmer, “Test@cloud - mbt and cloud-
testing - a powerful combination,” in 2nd ETSI User Conference on
Advances in Automated Testing (UCAAT), 2014.

[3] Testing Technologies, “TTworkbench - The Reliable Test Automation
Platform,” http://www.testingtech.com/products/ttworkbench.php.

[4] J. Varia, “Architecting for the cloud: Best practices,” AWS Whitepaper,
Tech. Rep., 2010.

[5] The MIDAS consortium, “Specification and design of the basic midas
platform as a service on the cloud. midas deliverable d6.2.” MIDAS
Deliverable D6.2.

[6] Amazon, “Aws - amazon elastic compute cloud (ec2),” http://aws.
amazon.com.

[7] The MIDAS consortium, “Architecture and specifications of the midas
framework and platform,” MIDAS Deliverable D2.2.

[8] B. Selic, “A systematic approach to domain-specific language design
using UML,” in Tenth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2007), 7-9 May
2007, Santorini Island, Greece, 2007, pp. 2–9. [Online]. Available:
http://dx.doi.org/10.1109/ISORC.2007.10

[9] Object Management Group (OMG), “Unified modeling language
(uml),” http://www.omg.org/spec/UML/.

[10] ——, “Uml testing profile, version 1.2,” http://www.omg.org/spec/UTP/
1.2/.

[11] M.-F. Wendland, “Abstractions on test design techniques,” in Computer
Science and Information Systems (FedCSIS), 2014 Federated Confer-
ence on, Sept 2014, pp. 1575–1584.

[12] J. Zander, Z. Dai, I. Schieferdecker, and G. Din, “From u2tp models
to executable tests with ttcn-3 - an approach to model driven
testing -,” in Testing of Communicating Systems, ser. Lecture Notes
in Computer Science, F. Khendek and R. Dssouli, Eds. Springer
Berlin Heidelberg, 2005, vol. 3502, pp. 289–303. [Online]. Available:
http://dx.doi.org/10.1007/11430230 20

[13] M.-F. Wendland, M. Kranz, C. Hein, T. Ritter, and A. Garcı́a Flaquer,
“Model-based testing in legacy software modernization: An experience
report,” in Proceedings of the 2013 International Workshop on Joining
AcadeMiA and Industry Contributions to Testing Automation, ser.
JAMAICA 2013. New York, NY, USA: ACM, 2013, pp. 35–40.
[Online]. Available: http://doi.acm.org/10.1145/2489280.2489291

[14] S. Anand, E. K. Burke, T. Y. Chen, J. A. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn, “An
orchestrated survey of methodologies for automated software test case
generation,” Journal of Systems and Software, vol. 86, no. 8, pp.
1978–2001, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.jss.
2013.02.061

[15] OASIS, Service Component Architecture (SCA), http://www.oasis-
opencsa.org/sca, 2011.

[16] W3C, State Chart XML (SCXML): State Machine Notation for Control
Abstraction, http://www.w3.org/TR/scxml/, May 2014.

[17] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: A family of empirical studies,” IEEE Trans. Softw.
Eng., vol. 28, no. 2, pp. 159–182, Feb. 2002. [Online]. Available:
http://dx.doi.org/10.1109/32.988497

[18] A. Darwiche, “A differential approach to inference in bayesian
networks,” J. ACM, vol. 50, no. 3, pp. 280–305, May 2003. [Online].
Available: http://doi.acm.org/10.1145/765568.765570

[19] The MIDAS consortium, “Probabilistic inference engine for test plan-
ning and scheduling,” MIDAS Deliverable D5.3.

[20] D. Heckerman, J. S. Breese, and K. Rommelse, “Decision-theoretic
troubleshooting,” Communications of the ACM, vol. 38, pp. 49–57,
1995.

[21] W. Rödder, I. R. Gartner, and S. Rudolph, “An entropy-driven
expert system shell applied to portfolio selection,” Expert Syst. Appl.,
vol. 37, no. 12, pp. 7509–7520, Dec. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.eswa.2010.04.095

[22] M. Schneider, J. Gromann, N. Tcholtchev, I. Schieferdecker, and
A. Pietschker, “Behavioral fuzzing operators for uml sequence
diagrams,” vol. 7744, pp. 88–104, 2013. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36757-1 6

[23] M. Cataldo, C. R. B. D. Souza, D. L. Bentolila, T. C. Mir, and S. Nam-
biar, “The impact of interface complexity on failures: an empirical
analysis and implications for tool design,” Carnegie Mellon University,
Techn. report CMU-ISR-10-100, 2010.

[24] R. Bandi, V. Vaishnavi, and D. Turk, “Predicting maintenance per-
formance using object-oriented design complexity metrics,” Software
Engineering, IEEE Transactions on, vol. 29, no. 1, pp. 77–87, Jan 2003.

[25] P. Tonella and F. Ricca, “Statistical testing of web applications,” Journal
of Software Maintenance and Evolution: Research and Practice, vol. 16,
no. 1-2, pp. 103–127, 2004.

[26] S. Herbold, “Usage-based Testing of Event-driven Software,” Ph.D. dis-
sertation, Dissertation, Universität Göttingen (electronically published
on http://webdoc.sub.gwdg.de/diss/2012/herbold/), June 2012.

[27] International Software Testing Qualitifications Board (ISTQB), “Stan-
dard glossary of terms used in Software Testing, Version 2.1,” 4 2010.

[28] S. Herbold and P. Harms, “AutoQUEST – Automated Quality En-
gineering of Event-Driven Software,” in Proceedings of the IEEE
6th International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), March 2013.

[29] “Fittest,” http://crest.cs.ucl.ac.uk/fittest/.

APPENDIX

Since MIDAS is a cloud platform, a tenancy of this
platform will be made ready for demonstration purposes during
the conference. This tenancy will be used both for a live
demonstration, as well as private demonstrations for interested
researchers and practitioners.

Within the live demonstration during the presentation, we
plan to show the following steps to the audience.

• We will start by using the Papyrus UML plug-in to
demonstrate how a very simple SUT is modelled with
the MIDAS DSL.

• Then, we will give an overview of the features of the
cloud platform, including the billing and monitoring
facilities.

• With the remainder of the time, we will demon-
strate how to apply concrete test methods with the
MIDAS platform using a DSL input model. The
demonstrations will feature test case generation, test
case scheduling, and TTCN-3 generation. Depending
on the available time, the generated tests will also be
compiled and executed against a sample SUT.

