
Teaching Formal Methods: Experience at
UPMC and UP13 with CosyVerif

Étienne André, Laure Petrucci
Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS UMR 7030, F-93430, Villetaneuse, France

Email: Etienne.Andre,Laure.Petrucci@lipn.univ-paris13.fr
Fabrice Kordon

Sorbonne Universités, Université Pierre et Marie Curie, LIP6, CNRS UMR 7606, F-75005, Paris, France
Email: Fabrice.Kordon@lip6.fr

Abstract—Nowadays, students are more and more demanding
for practical coursework, which is a challenge when teaching
formal approaches to software engineering. The solution is to
provide environments for such hands-on sessions and homework,
but this raises numerous difficulties. The environment must be: (i)
multi-platform (Mac OS, Linux, Windows) so as to enable student
practice at home, (ii) easy to deploy, (iii) easy to use and to take
charge of, and (iv) flexible enough to enable the integration of
new notations and associated services.

CosyVerif is a software environment dedicated to graphical
notations, that provides the mechanisms and means for an
easy integration of additional existing software for teaching (or
demonstration) purposes. This makes it an interesting platform
to establish new courses.

This paper presents our experience using CosyVerif for teach-
ing Petri nets and parametric timed automata in two universities
of the Paris region, i.e. Université Pierre et Marie Curie, and
Université Paris 13. We also use CosyVerif to build demonstrators
of Ph.D. students’ work.

Keywords—Formal methods, Software platform, Master courses

I. INTRODUCTION

Nowadays, students are more and more demanding for
practical coursework, which is a challenge when teaching
formal approaches to software engineering. The solution is to
provide environments for such hands-on sessions and home-
work, but this raises numerous difficulties. The environment
must be: (i) multi-platform (Mac OS, Linux, Windows) so as
to enable student practice at home, (ii) easy to deploy, (iii) easy
to use and to take charge of, and (iv) flexible enough to enable
the integration of new notations and associated services.

This paper reports our experience of teaching Petri nets
and parametric timed automata in Master courses, in two
universities of the Paris region, using the CosyVerif [1]
platform. CosyVerif is a software environment dedicated to
graphical notations.1 It is a client/server environment providing
numerous ways to configure labs for students (one server
and several clients on students’ machines, or both the client
and the server running on the same machine). A Linux-
based server infrastructure embeds both the core functions and
provided services within a virtual machine (virtualisation is
now available even for low-cost machines). Hence, only the

1http://www.cosyverif.org

user interface has to be tuned for a given OS, which is easily
done thanks to Eclipse. This interface thus provides an easy
solution for students to take charge of and use the environment.

CosyVerif offers flexibility in its usage and deployment.
First, if embedded services are time and memory consuming,
the server can be deployed on a powerful machine, while the
graphical user interface is run on the students client machines.
Furthermore, a bundle can group altogether the graphical user
interface and the elements required to operate the server in
a virtualisation machine. The advantage of these bundles is
to be zeroconf, i.e. they do not require manual configuration.
Moreover, they are easy to parametrise in order to extract only
a subset of dedicated services from a larger catalogue. In our
teaching experiments, UPMC used CosyVerif for Petri nets and
UP13 used it for parametric timed automata [2].

Finally, the CosyVerif architecture provides the mecha-
nisms and means for an easy integration of additional existing
software for teaching (or demonstration) purposes. This makes
it an interesting platform to establish new courses. We also use
CosyVerif to build demonstrators of Ph.D. students’ work.

Outline: We briefly describe the universities and their
respective Master courses in Section II. The CosyVerif plat-
form is presented in Section III. Then, our experience of
teaching formal methods using CosyVerif is described in
Section IV. Finally, we conclude and give some perspectives
in Section V.

II. UPMC AND UP13 MASTER COURSES

A. Master SAR at UPMC

Université Pierre & Marie Curie (UPMC2) is the heir of
the Sorbonne’s historical faculty. It hosts about 33,000 students
dispatched in science and medicine only. It was the first
university in France to open a degree in Computer Science
(1967) and it is ranked 37th worldwide, 6th in Europe and
1st in France in the Academic Ranking of World Universities
(20133).

The Computer Science Teaching Department is highly
ranked and hosts about 800 students in master (400 in 1st year
and 400 in 2nd year). It offers seven tracks among which SAR
(standing for Systèmes et Applications Répartis, i.e. Distributed

2http://www.upmc.fr
3http://www.shanghairanking.com/ARWU2013.html

Etienne.Andre,Laure.Petrucci@lipn.univ-paris13.fr
Fabrice.Kordon@lip6.fr
http://www.cosyverif.org
http://www.upmc.fr
http://www.shanghairanking.com/ARWU2013.html


Systems and Applications4). This track is dedicated to students
willing to learn the design and implementation of complex
systems including distributed, operating-system-based, real-
time and critical features.

Within this master track, we are responsible for courses
dealing with the modelling and analysis of behaviours for
parallel programs. Our courses are based on several formal
notations: various types of automata [3] and Petri nets [4].

To understand and capture the essence of such notations,
several practical sessions, as well as modelling and analysis
projects, have been elaborated. Since 2004, we were using
CPN-AMI [5], a Petri net based modelling and analysis envi-
ronment developed in our research laboratory. CPN-AMI gath-
ered several tools from several universities within a common
graphical user interface and was a useful tool for such courses.
However, the user interface was developed under MacOS,
which hindered its use by students outside our dedicated
computer room.

The switch to CosyVerif was a great progress in that
direction since it is multi-platform. Numerous tools from CPN-
AMI were ported to CosyVerif .

B. Master PLS at UP13

Université Paris 135 (UP13) is a multidisciplinary estab-
lishment comprising four campuses situated in the northern
suburbs of Paris. It offers its 23,000 students a wide spectrum
of subjects. They address five major domains: Humanities and
Social sciences ; Science, Technology and Health ; Culture and
Communication ; Law, Economics and Management ; Arts,
Literature and Languages.

The Institut Galilée is the department of the UP13 fo-
cussing on education and research in sciences: mathematics,
physics, chemistry and informatics. It delivers degrees from
bachelor to doctorate, as well as engineering. Research is
carried in 7 laboratories within the different areas of expertise.

Institut Galilée proposes the Master of Science in In-
formatics6 with two tracks: EID2 (standing for Exploration
Informatique des Données et Décisionnel, i.e. Data Mining,
Analytics and Knowledge Discovery), and PLS (standing for
Programmation et Logiciels Sûrs, i.e. Programming Tools and
Safety).

Within Master PLS, we are responsible for the SITH
module (standing for Systèmes Infinis, Temporisés et Hybrides,
i.e. Infinite, Timed and Hybrid Systems). In 2013–2014, the
total number of students in the Master PLS was 30, and the
number of students attending the module SITH was 20.

The content of the course concerns formal verification, and
more specifically the verification of concurrent timed systems,
and parametric timed systems. In short, the objectives of the
course are to become familiar with timed automata [6], para-
metric timed automata [2], understand the associated (possibly
parametric) model checking algorithms, as well as being able
to model a system using these formalisms and verify it using
available tools. Such tools include UPPAAL [7] (for timed

4http://www-master.ufr-info-p6.jussieu.fr/lmd/specialite/sar/
5http://www.univ-paris13.fr
6http://lipn.univ-paris13.fr/~bennani/Web_Master_Info/coord.html

automata) and IMITATOR [8] (for parametric timed automata).
Whereas UPPAAL is a well-established tool featuring a con-
venient graphical interface, parameter synthesis techniques
are more state-of-the-art, and hence tools such as IMITATOR
are more confidential and less mature, especially in terms
of usability. The recent integration of IMITATOR within the
CosyVerif platform made it possible to use it in a graphical
manner (otherwise, IMITATOR is command-line only), and
hence the students were able to design their model using
a graphical user interface. In contrast, for SITH’s previous
occurrences, the practical sessions had to be done in command-
line mode only, which is by far less intuitive to students.

III. THE CosyVerif PLATFORM

A. Principles

CosyVerif [1] is a distributed and open verification envi-
ronment that currently handles two families of formalisms:
Petri nets and timed automata. So far, 12 declared concrete
formalisms from these two families are available, interrelated
through a modular architecture of definitions, reusing com-
mon concepts, and enabling easy addition of new notations.
They are syntactically supported by a two-layered XML-
based language: the Formalism Markup Language (FML, the
superstructure) and the Graph Markup Language (GrML, the
infrastructure) [9].

Tools developers can declare a new formalism in the
platform using FML, by reusing portions of existing for-
malisms (when they share common concepts). GrML is the
internal representation of specifications in CosyVerif. FML
and GrML ensure syntactic interoperability among tools that
may only manipulate abstract syntax trees. These XML-based
technologies enable rapid development and reuse of parsers
and syntactic validation. Thanks to such facilities, the typical
integration effort for tools developers is half a day.

CosyVerif is an open distributed environment that can be
enriched by any researcher willing to contribute. A registration
mechanism allows for the diffusion of any service over a
federation of CosyVerif nodes, which greatly improves the
time-to-availability for new tools.

Tools are invoked through Web services transparently to
end users, thanks to Coloane, an open source extensible graph-
ical editor based on Eclipse. It offers modelling facilities and a
way to apply tools services to models. Since CosyVerif relies
on Web services, the use of Coloane is not mandatory and
verification services can be accessed directly via the underlying
XML-based protocol.

The CosyVerif project also provides a repository of models,
that may be used for benchmark purposes. These models
mostly come from industrial real-time case studies and the
Model Checking Contest editions of 2011 [10], 2012 [11] and
2013 [12].

B. The CosyVerif Bundles

CosyVerif is a client/server software: the user interface can
run on a relatively light machine, and for research experiments,
tools, hosted by a Unix-based server, may have to be operated
on powerful machines. So, the installation is rather complex
since it requires a server machine and a client.

http://www-master.ufr-info-p6.jussieu.fr/lmd/speciali te/sar/
http://www.univ-paris13.fr
http://lipn.univ-paris13.fr/~bennani/Web_Master_Info/c oord.html


However, less computing strength being needed within
the context of teaching and most common computers (in-
cluding laptops) being good enough to support virtualisation,
we decided to propose easy means to operate a version of
CosyVerif in the form of a bundle including: (i) the Coloane
user interface, (ii) a disk image containing the installation of
the tool server (under Unix), (iii) several scripts to handle
an easy execution within a standard and free virtualisation
solution: VirtualBox7.

These bundles are distributed for the three main archi-
tectures one can expect for students and researchers: Linux,
MacOS and Windows. A single script operates both the tool
server and the user interface transparently (as soon as Virtual-
Box is installed). For Mac, this script is embedded in a MacOS
application, allowing an easy installation of the software using
drag-and-drop.

So far, two bundles are proposed: CosyVerif4PN (used at
UPMC to teach Petri Nets) and CosyVerif4imitator (used at
UP13 to teach parametric timed automata).

C. Demonstration of Ph.D. Students’ Work

Bundles are quite easy to make and may feature a selected
subset of the services available in CosyVerif . Hence, another
interesting use is to make bundles dedicated to a given tool.
This appears to be an interesting promotion way for students
who can then distribute their own work as a standalone product
to the members of their jury. This will be soon experimented
for Ph.D. students in LSV (École Normale Supérieure de
Cachan) and LIPN (UP13).

IV. SUMMARY OF OUR EXPERIENCE

A. First experiments

A first experimentation of CosyVerif was carried out during
the Petri net tutorials of IWAISE’2012 [13]. Despite the use
of a beta version, installation by students (bundles were not
available yet) could be performed and a lab session organised.
Another experimentation was performed during a summer
school on real-time systems in Toulouse (France) in August
2013, which was prefiguring what was to be used at UPMC
and UP13 for the current academic year (2013–2014).

The experimentations within the context of a master pro-
gramme raises a new issue since for the tutorial and the
summer school the public was mainly composed of Ph.D.
students with more background, motivation and practice.

B. Configuration and Problems at UPMC

Security was the main issue for CosyVerif at UPMC. The
computer rooms for the Computer Science teaching department
hosts approximately 350 machines (mostly PCs under dual-
boot Linux/Windows and some Macs) and is open to more than
1,500 students. So, virtualisation is a problem and our software
had to be installed in a way so that no student could operate
VirtualBox with a home-made disk image corresponding to a
machine where they could be root (and thus potentially hack
the other machines).

7http://www.virtualbox.org

Thus, the default installation of VirtualBox, as suggested
for students on their own machines, could not be operated in
that context. The system administrator had to adapt our bundle
and, in particular, its main script, to protect the system from
potential misuse.

The solution was to have a script allowing secure access
to the virtualisation environment with the only authorised
configuration (the authorised VM). The students were then
declared as part of a sudo group reserved for this unique
usage. Some details on the configuration where also fixed to
set-up the virtual machine on a local virtual network that could
not go outside the virtualisation environment.

This solution was operated in October 2013 and was
successfully used by the 25 students attending the course for
both their practical work and a small project they could do at
home or off-hours in our computer lab. The only observed
problem was, during the first session of practical work, a
misuse of permission access that could lead to a crash. This
was in fact a problem with the Eclipse libraries embedded in
the Coloane user interface; a corrective patch was published
and a new version of the bundle made available.

Feedback: The use of CosyVerif appears to have been
satisfactory to our students. We observed a small download
peak when practical sessions started, which is an evidence of
students using CosyVerif on their own machines. No major
problem was reported during both lab sessions and the project.
Finally, all expected projects where submitted on time by the
students.

C. Configuration and Problems at UP13

The practical sessions took place in a dedicated room, with
24 machines using a 64 bits single-boot Linux.

A good point is that VirtualBox was installed by default
on all machines, thus allowing us to install the CosyVerif
bundle very easily. However, a problem arised as the students’
disk limit was rather low: around 800 MiB. Since most of the
students already used at least half of the their disk quota, and
the bundle’s size is 951 MiB, we encountered space problems.
Even downloading the bundle, that is only 476 MiB when
compressed, was impossible (the download process froze as
soon as the limit was reached). Fortunately, the /tmp directory
was in read and write mode, without any specified space limit
(only the disk size). Hence, we could download the bundle
there, extract it and launch it from there.

The complete installation process took about an hour
during the first session, that is it took about an hour until
all students had the CosyVerif environment running. This time
also includes the search for solutions following the discovery
of the space limit problem. (The configuration could not
be tested beforehand, since teachers have different account
configurations than students.)

To avoid the loss of documents (the /tmp directory is
entirely erased after each reboot), the students could set their
CosyVerif root directory (where they save their models) in
their home directory. However, in case of reboot, the bundle
should be again copied and extracted. When starting the second
session, it took less than ten minutes until all students were
able to extract and launch again CosyVerif .

http://www.virtualbox.org


We also tried another solution, that was to launch the
CosyVerif from the students’ USB stick. Although this could
be possible in theory, it unfortunately failed for almost all of
them, due to a formatting issue (their sticks were usually in
FAT 32, a file system format that does not handle permissions,
and a possible explanation is that the CosyVerif bundle requires
to set some permissions to be able to launch).

Surprisingly, the students that encountered most problems
were the students that brought their own laptop. This is mainly
due to the fact that there is no possibility to connect to the
Internet in the computers classrooms of Institut Galilée: no
WiFi is available in classrooms, and only the university’s com-
puters can connect to wired Internet (a possibility could have
been to usurpate the MAC address of a university computer,
but we usually do not provide this kind of solution to our
students). Although these students had downloaded VirtualBox
and CosyVerif beforehand, they sometimes encountered prob-
lems that could not be solved without an Internet connection
(e.g. a deprecated version of VirtualBox, or a missing package,
such as the dot utility required by IMITATOR to output
graphical results).

Feedback: In the Master PLS, a post-course anonymous
evaluation showed that 87 % of the students attending the SITH
module were satisfied or very satisfied by their experience in
practical sessions using CosyVerif and IMITATOR.8

V. CONCLUSION AND PERSPECTIVES

This paper presented experiences conducted with the
CosyVerif environment for teaching formal methods, in two
universities of the Paris area, namely Université Pierre et Marie
Curie (UPMC) and Université Paris 13 (UP13).

The design of the CosyVerif environment made it possible
to have a flexible tool adapted to each specific course. Bundles
thus only embed the necessary components of the platform
(Petri nets tools at UPMC, parametric timed automata at
UP13), for an easier distribution and installation. It also can
be run on several clients architectures, thanks to the use of
virtual machines.

Most of the problems encountered in these experimental
sessions were due to permissions granted to students in the
respective universities. Fallback solutions were quite easily
found, allowing for the complete use of the CosyVerif envi-
ronment.

Short-term perspectives include the use of CosyVerif at
a full-day tutorial associated with the Petri nets international
conference in June 20149.

The environment aims at supporting more tools and for-
malisms. The experience conducted will be disseminated so
that other universities or organisations can make their own
bundles, fitted to their specific needs.

We are also working on a formalisms and models repos-
itory, in order to share examples, case studies, etc. that will
facilitate lecturing and students’ work.

8 The evaluation was performed after the final exam, via an anonymous form
to fill in. 2 students missed the exam, 3 did not fill in the form, hence we
received 15 evaluations. None found the practical sessions “not interesting at
all”, 2 found it “not very interesting”, 10 “interesting” and 3 “very interesting”.

9http://petrinets2014.cnam.fr/

Acknowledgement: We thank the engineers of UPMC for
their precious help in solving the security issues and the
engineers of Paris 13 for their suggestions. We also thank all
the students of the SITH and SAR Master courses for their
motivation.

REFERENCES

[1] É. André, L.-M. Hillah, F. Hulin-Hubard, F. Kordon, Y. Lembachar,
A. Linard, and L. Petrucci, “CosyVerif: An open source extensible
verification environment,” in ICECCS. IEEE Computer Society, 2013,
pp. 33–36. 1, 2

[2] R. Alur, T. A. Henzinger, and M. Y. Vardi, “Parametric real-time
reasoning,” in STOC. ACM, 1993, pp. 592–601. 1, 2

[3] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen, Systems and Software Verification. Model-Checking
Techniques and Tools. Springer, 2001. 2

[4] C. Girault and R. Valk, Petri Nets for Systems Engineering : A Guide
to Modeling, Verification, and Applications. Springer-Verlag, 2003. 2

[5] A. Hamez, L. M. Hillah, F. Kordon, A. Linard, E. Paviot-Adet,
X. Renault, and Y. Thierry-Mieg, “New Features in CPN-AMI 3 :
Focusing on the Analysis of Complex Distributed Systems,” in ACSD.
IEEE Computer Society, 2006, pp. 273–275. 2

[6] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994. 2

[7] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,”
International Journal on Software Tools for Technology Transfer, vol. 1,
no. 1-2, pp. 134–152, 1997. 2

[8] É. André, L. Fribourg, U. Kühne, and R. Soulat, “IMITATOR 2.5: A tool
for analyzing robustness in scheduling problems,” in FM, ser. Lecture
Notes in Computer Science, vol. 7436. Springer, 2012, pp. 33–36. 2

[9] É. André, B. Barbot, C. Démoulins, L. M. Hillah, F. Hulin-Hubard,
F. Kordon, A. Linard, and L. Petrucci, “A modular approach for reusing
formalisms in verification tools of concurrent systems,” in ICFEM, ser.
Lecture Notes in Computer Science, vol. 8144. Springer, 2013, pp.
199–214. 2

[10] F. Kordon, A. Linard, D. Buchs, M. Colange, S. Evangelista,
K. Lampka, N. Lohmann, E. Paviot-Adet, Y. Thierry-Mieg, and
H. Wimmel, “Report on the model checking contest at Petri nets 2011,”
Transactions on Petri Nets and Other Models of Concurrency, vol. VI,
pp. 169–196, 2012. 2

[11] F. Kordon, A. Linard, D. Buchs, M. Colange, S. Evangelista, L. Fronc,
L.-M. Hillah, N. Lohmann, E. Paviot-Adet, F. Pommereau, C. Rohr,
Y. Thierry-Mieg, H. Wimmel, and K. Wolf, “Raw report on the model
checking contest at Petri nets 2012,” Tech. Rep., 2012, coRR. 2

[12] F. Kordon, A. Linard, M. Beccuti, D. Buchs, L. Fronc, F. Hulin-
Hubard, F. Legond-Aubry, N. Lohmann, A. Marechal, E. Paviot-Adet,
F. Pommereau, C. Rodrigues, C. Rohr, Y. Thierry-Mieg, H. Wimmel,
and K. Wolf, “Model Checking Contest @ Petri Nets, Report on the
2013 edition,” CoRR, Tech. Rep., September 2013. 2

[13] S. Baarir and F. Kordon, “Modeling and Verifying Distributed Systems
with Petri Nets,” in 2nd IEEE International Workshop on Advanced
Information Systems for Enterprises (IWAISE). Constantine, Algeria:
IEEE Press, November 2012, p. 92. 3

[14] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[15] K. Jensen and L. M. Kristensen, Coloured Petri Nets – Modelling and
Validation of Concurrent Systems. Springer, 2009.

[16] P. M. Merlin, “A study of the recoverability of computing systems.”
Ph.D. dissertation, University of California, Irvine, CA, USA, 1974.

http://petrinets2014.cnam.fr/

	Introduction
	UPMC and UP13 Master Courses
	Master SAR at UPMC
	Master PLS at UP13

	The CosyVerif Platform
	Principles
	The CosyVerif Bundles
	Demonstration of Ph.D. Students' Work

	Summary of our Experience
	First experiments
	Configuration and Problems at UPMC
	Configuration and Problems at UP13

	Conclusion and Perspectives
	References

