
Extending PNML Scope:
a Framework to Combine Petri Nets Types

L.M. Hillah1, F. Kordon2, C. Lakos3, and L. Petrucci4

1 LIP6, CNRS UMR 7606 and Université Paris Ouest Nanterre La Défense
200, avenue de la République, F-92001 Nanterre Cedex, France

Lom-Messan.Hillah@lip6.fr
2 LIP6 - CNRS UMR 7606, Université P. & M. Curie

4 Place Jussieu, F-75252 Paris cedex 05, France
Fabrice.Kordon@lip6.fr

3 University of Adelaide, Adelaide, SA 5005, Australia
Charles.Lakos@adelaide.edu.au

4 LIPN, CNRS UMR 7030, Université Paris XIII
99, avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France

Laure.Petrucci@lipn.univ-paris13.fr

Abstract. The Petri net standard ISO/IEC 15909 comprises 3 parts. The first
one defines the most used net types, the second an interchange format for these
– both are published. The third part deals with Petri net extensions, in particular
structuring mechanisms and the introduction of additional, more elaborate net
types within the standard.
This paper presents a contribution to elaborate an extension framework for the
third part of the standard. This strategy aims at composing enabling rules and
augmenting constraints in order to build new Petri net types. We show as a proof
of concept how this can be achieved with priorities, times, inhibitor arcs in the
context of an interleaving semantics. We then map this framework onto the cur-
rent standard metamodels.

Keywords: Standardisation, PNML, Prioritised Petri Nets, Time Nets

1 Introduction

Context The International Standard on Petri nets, ISO/IEC 15909, comprises three
parts. The first one (ISO/IEC 15909-1) deals with basic definitions of several Petri net
types: Place/Transition, Symmetric, and High-level nets5. It was published in Decem-
ber 2004 [13]. The second part, ISO/IEC 15909-2, defines the interchange format for
Petri net models: the Petri Net Markup Language [15] (PNML, an XML-based represen-
tation). This part of the standard was published on February 2011 [14]. It can now be
used by tool developers in the Petri Nets community with, for example, the companion
tool to the standard, PNML Framework [10].

The standardisation effort is now focussed on the third part. ISO/IEC 15909-3 aims
at defining extensions on the whole family of Petri nets. Extensions are, for instance,

5 In this paper, the term “high-level net” is used in the sense of the standard and corresponds to
coloured Petri nets as in Jensen’s work [16].

the support of modularity, time, priorities or probabilities. Enrichments consider less
significant semantic changes such as inhibitor arcs, capacity places, etc. This raises
flexibility and compatibility issues in the standard.

While parts 1 and 2 of the ISO/IEC 15909 standard address simple and common
Petri nets types, part 3 is concerned with extensions. The work on these issues started
with a one-year study group drawing conclusions with respect to the scope to be ad-
dressed. Then, according to the study group conclusions, the standardisation project
was launched in May 2011, for delivery within 5 years.

Contribution The choices to be made in part 3 of the standard must of course ensure
compatibility with the previous parts. We propose to achieve this goal by using the
notion of orthogonality. It allows us to build a framework to describe the behavioural
semantics of nets in a compositional way. This is achieved by revisiting the firing rule
of several well known Petri net types based on the enabling rule. The objective is to
compose existing enabling rules with augmenting constraints in order to elaborate these
Petri net types consistently. We apply it to P/T nets, Prioritised nets and Time nets.

Associated with this framework is a MDE-based one that allows us to compose
pieces of metamodels corresponding to enabling functions and augmenting constraints
(see section 3.2). This is an important link between the syntax-based way of handling
semantic in MDE techniques and the formal definition of a behavioural semantics.

Based on this framework, we map the selected Petri nets types onto our MDE-based
framework as a proof of concept, as planned for in future evolutions of the standard.

Content Section 2 recalls some well-known Petri nets types. Then, section 3 presents
the framework to define the behavioural semantics of nets and applies it to the net types
already presented. Section 4 details the MDE-based framework associated with the stan-
dard. Section 5 maps the notions of the behavioral semantics defined in section 3 into
this MDE-based framework to build metamodels of net types suitable for generating
PNML descriptions, followed by a discussion in section 6.

2 Some Petri Nets Definitions

This section introduces the notations for different types of Petri Nets.

2.1 Definition of Place/Transition Nets

This section first introduces Place/Transitions nets.

Definition 1 (Place/Transition Net).
A Place/Transition Net (P/T net) is defined by a tuple N = 〈P,T, Pre, Post,M0〉, where:

– P is a finite set (the set of places of N),
– T is a finite set (the set of transitions of N), disjoint from P,
– Pre, Post ∈ N|P|×|T | are matrices (the backward and forward incidence matrices),
– M0, a vector in N|P| defining the initial number of tokens in places.

We now introduce M(p), •t, and t• that are respectively:

– the current marking of place p,
– the subset of places which constitute the precondition of a transition t ∈ T ,
– the subset of places which constitute the postcondition of a transition t ∈ T .

From these notations, we can define the enabling and firing rules for P/T nets as
follows.

Definition 2 (P/T Net enabling rule).
A transition t ∈ T is enabled in marking M, denoted by M[t〉, iff: ∀p ∈ •t,M(p) >

Pre(p, t).

Definition 3 (P/T Net firing rule).
If a transition t ∈ T is enabled in marking M, it can fire leading to marking M′, denoted
by M[t〉M′, where: ∀p ∈ P,M′(p) = M(p) − Pre(p, t) + Post(p, t).

An inhibitor arc is a special kind of arc that reverses the logic of an input place.
Instead of testing the presence of a minimum number of tokens in the related place, it
tests the lack of tokens.

Definition 4 (Petri Nets with Inhibitor Arcs).
A Petri net with inhibitor arcs is a Petri Net N together with a matrix I ∈ N|P|×|T | of

inhibitor arcs.

Definition 5 (P/T Nets with inhibitor arcs enabling rule).
A transition t ∈ T is enabled in marking M, denoted by M[t〉, iff: ∀p ∈ •t, (M(p) >

Pre(p, t)) ∧ (M(p) 6 I(p, t)).

Then, the firing rule is identical to the one for P/T nets, provided the transition is
enabled.

2.2 Definition of Prioritised Petri Nets

This section introduces the definition of prioritised Petri nets.

Definition 6 (Statically Prioritised Petri net).
A Statically Prioritised Petri net is a tuple SPPN = 〈P,T, Pre, Post,M0, ρ〉, where:

– 〈P,T, Pre, Post,M0〉 is a P/T net.
– ρ is the static priority function mapping a transition into R+.

We can also consider the case where the priority of transitions is dynamic, i.e. it
depends on the current marking [1]. This definition was introduced in [18]. Note that
the only difference with statically prioritised Petri nets concerns the priority function ρ.

Definition 7 (Prioritised Petri net).
A Prioritised Petri net is a tuple PPN = 〈P,T, Pre, Post,M0, ρ〉, where:

– 〈P,T, Pre, Post,M0〉 is a P/T net.

– ρ is the priority function mapping a marking and a transition into R+.

The behaviour of a prioritised Petri net is now detailed, markings being those of
the underlying Petri net. Note that the firing rule is the same as for non-prioritised Petri
nets, the priority scheme influencing only the enabling condition.

Definition 8 (Prioritised enabling rule).
A transition t ∈ T is priority enabled in marking M, denoted by M[t〉ρ, iff:

– it is enabled, i.e. M[t〉, and
– no transition of higher priority is enabled, i.e. ∀t′ : M[t′〉 ⇒ ρ(M, t) ≥ ρ(M, t′).

The definition of the priority function ρ is extended to sets and sequences of transitions
(and even markings M):

– ∀X ⊆ T : ρ(M, X) = max {ρ(M, t) | t ∈ X ∧ M[t〉}
– ∀σ ∈ T ∗ : ρ(M, σ) = min {ρ(M′, t′) | M′[t′〉ρ occurs in M[σ〉ρ}.

For static prioritised nets where ρ(M, t) is a constant function associated with t and
for dynamic prioritised nets, for at least one transition, ρ(M, t) depends on the current
marking. For now, we will consider only dynamically prioritised nets since static ones
are encompassed by these.

If the priority function is constantly zero over all markings and all transitions, then
the behaviour of a Prioritised Petri Net is isomorphic to that of the underlying P/T Net.

Note that we choose to define priority as a positive real-valued function over mark-
ings and transitions — the higher the value, the greater the priority. We could equally
define priority in terms of a rank function which maps markings and transitions to pos-
itive real values, but where the smaller value has the higher priority. This would be
appropriate, for example, if the rank were an indication of earliest firing time.

2.3 Definition of Petri Nets with Time

Time Petri nets (TPN) are Petri nets where timing constraints are associated with the
nodes or arcs. Timing constraints are given as time intervals. This section briefly presents
the definition of TPNs and their semantics [3], then introduces the model we will be fo-
cusing on, which is Time Petri Nets [4], where the timing constraints are associated with
transitions.

Definition 9 (Generic Time Petri net).
A Generic Time Petri net is a tuple 〈P,T, Pre, Post, S 0, I〉 such that:

– 〈P,T, Pre, Post, S 0〉 is a (marked) P/T net (S 0 denotes its initial state, i.e. marking
+ clocks);

– I : X → I(�+) is a mapping from X ∈ {P,T, P × T ∪ T × P} to the set I(�+) of
intervals. These intervals have real bounds or are right-open to infinity.

Semantics The semantics of TPNs is based on the notion of clocks. One or more clocks
can be associated with a time interval and the value of all clocks progress synchronously
as time elapses. The firability of enabled transitions depends on having the value of
the related clocks in their associated intervals. A clock may be reset upon meeting a
condition on the marking of the net, usually after the firing of a transition.

The semantics of TPNs is defined in terms of:

– Reset policy: the value of a clock is reset upon firing some transition. It is the only
way to decrease its value. But it is also meaningful not to reset a clock.

– Strong firing policy: in a strong semantics, when the upper bound of the interval
associated with a clock is reached, transitions must fire instantaneously, until the
clock is reset. The clock can go beyond the upper bound of the interval, if there is
no possible instantaneous sequence of firings, in which case dead tokens are usually
generated. This generally models a bad behaviour, since tokens become too old to
satisfy the timing constraints.

– Weak firing policy: in this case, the clock leaving the interval prevents the associated
firings from taking place. Dead tokens may also be generated, but this time they are
considered part of the normal behaviour of the net.

– Monoserver setting: each interval only has one associated clock, which usually
denotes a single task processing.

– Multiserver setting: each interval has more than one associated clock, which usually
denotes the handling of several similar tasks. In this setting, each clock evolves
independently of the others.

Time Petri nets We consider in this paper the Time Petri Net model [4], where time
intervals are associated with transitions. The semantics is strong and monoserver. Time
Petri Nets are appropriate for modelling real-time systems. More formally:

Definition 10 (Time Petri net). A Time Petri Net is a tuple 〈P,T, Pre, Post, S 0, α, β〉
where:

– 〈P,T, Pre, Post, S 0〉 is a (marked) P/T net.
– α : T 7→ Q+ and β : T 7→ Q+ ∪ {∞} are functions satisfying ∀t ∈ T, α(t) ≤ β(t)

called respectively earliest (α) and latest (β) transition firing times.

Functions α and β are the instantiation of I in Generic Time Petri nets (see defini-
tion 9) for Time Petri nets.

Given a marking M, we write En(M) = {t ∈ T | M[t〉} for the set of transitions
enabled in M. A clock is implicitly associated with each transition and a state of the
system is a pair (M, v), where M is a marking and v ∈ REn(M)

+ is a mapping associating
a clock value with each transition enabled in M.

We now define the enabling rule and firing rule of Time Petri nets.

Definition 11 (Time Petri net enabling rule).
A transition t ∈ T is time enabled in state (M, v), denoted by (M, v)[t〉, if:

– it is enabled, i.e. M[t〉, and

– v(t) ∈ [α(t), β(t)].

Definition 12 (Time Petri net firing rule).
From a state (M, v), two types of transitions are possible:

– if transition t ∈ T is time enabled in state (M, v), firing t leads to state (M′, v′),
denoted by (M, v)[t〉(M′, v′), where:
• ∀p ∈ P,M′(p) = M(p) − Pre(p, t) + Post(p, t), as usual,
• ∀t′ ∈ En(M′), v′(t′) = 0 if t′ is newly enabled (explained below), and v(t′)

otherwise.
– if ∀t ∈ En(M), v(t) + d ≤ β(t), time elapsing by delay d ∈ R+ leads to state (M, v′),

where v′(t) = v(t) + d for all t ∈ En(M).

Various definitions have been proposed for newly enabling of a transition [2, 26]. A
common one, called intermediate semantics, states that transition t′ is newly enabled by
the firing of t if:

– t′ belongs to En(M′) and
– either t′ = t or t′ is not enabled in M − Pre(., t) (where Pre(., t) denotes the vector

(Pre(p, t))p∈P).

3 An Engineering Approach to Extension and Composition

In considering extensions to the common Petri net types in parts 1 and 2 of the ISO/IEC
15909 standard, we wish to capture the extensions so that they are as flexible as possible,
and hence applicable to multiple Petri net types. This is an engineering challenge like
any software design — its success will be measured by a number of non-functional
properties like extensibility, maintainability, usability and reusability.

In aiming for this goal, we wish to define extensions as “pieces of semantics” that
are orthogonal. The term orthogonal has been applied in the literature to language de-
sign in a variety of ways depending on the context. We first review some of the literature
on this notion before indicating how we propose to apply it in the standard.

3.1 The Notion of Orthogonality

Orthogonality for programming languages In the context of programming language
design, Pratt and Zelkowitz put it this way [24]: “The term orthogonality refers to
the attribute of being able to combine various features of a language in all possible
combinations, with every combination being meaningful. [...] When the features of a
language are orthogonal, then the language is easier to learn and programs are easier
to write because there are fewer exceptions and special cases to remember.”

IBM [12] defines orthogonality with respect to extensions on top of a base language
as follows: “An orthogonal extension is a feature that is added on top of a base without
altering the behaviour of the existing language features. A valid program conforming to
a base level will continue to compile and run correctly with such extensions. The pro-
gram will still be valid, and its behaviour will remain unchanged in the presence of the

orthogonal extensions. Such an extension is therefore consistent with the corresponding
base standard level. Invalid programs may behave differently at execution time and in
the diagnostics issued by the compiler.
On the other hand, a non-orthogonal extension is one that can change the semantics
of existing constructs or can introduce syntax conflicting with the base. A valid pro-
gram conforming to the base is not guaranteed to compile and run correctly with the
non-orthogonal extensions.”

Palsberg and Schwartzbach [23] argue that for object-oriented languages, class sub-
stitution is preferred to generic classes because it better complements inheritance as a
mechanism for generating new classes:

– Just like with inheritance, class substitution can be used (repeatedly) to build new
(sub-)classes (p. 147)

– Class substitution is orthogonal to inheritance (p. 147), which is made precise as
follows (p. 152):
• if a class D can be obtained from C by inheritance, then D cannot be obtained

from C by class substitution; and
• if a class D can be obtained from C by class substitution, then D cannot be

obtained from C by inheritance.

The common thread in the above references is that orthogonality of language fea-
tures embodies both independence and consistent composition. As examples we might
note the following:

– “The length of time data is kept in storage in a computer system is known as its
persistence. Orthogonal persistence is the quality of a programming system that
allows a programmer to treat data similarly without regard to the length of time the
data is kept in storage.” [27]

– C has two kinds of built-in data structures, arrays and records (structs). It is not or-
thogonal for records to be able to be returned from functions, but arrays cannot. [8]

– In C, a + b usually means that they are added, unless a is a pointer [in which case]
the value of b may be changed before the addition takes place. [8]

Similar concerns are raised by Szyperski in his study of component software. He
identifies an important paradigm of independent extensibility [29]. The essential prop-
erty is that independently developed extensions can be combined (p. 84). He notes that
traditional class frameworks are specialised at application construction time and there-
after disappear as no longer separable parts of the generated application. He argues for
independently extensible systems to specify clearly what can be extended — each one
of these is then referred to as a dimension of (independent) extensibility. These dimen-
sions may not be orthogonal, e.g. extensions to support object serialisation will overlap
extensions to support persistence.

Orthogonality for concurrent systems The term orthogonality has also been applied
in other contexts, and these uses are especially pertinent to our concerns with a formal-
ism that embodies concurrency.

In the context of the Unix shell, Raymond understands orthogonality to mean side-
effect free [25]. In the context of extensions to the Unix C-shell, Pahl argues that “lan-
guage extension is presented as a refinement process. [...] The property we want to
preserve during the refinement process is behaviour, also called safety refinement else-
where. [...] Behaviour preservation is in particular important since it guarantees or-
thogonality of the new feature with the basic language.” [22]. In the context of state
charts, orthogonality is presented as a form of conceptual concurrency which is cap-
tured as AND-decomposition [9].

3.2 Application to Petri net Extensions

It is our intention to apply the above experience from language design to the formulation
of extensions to the base Petri net formalisms, so that we arrive at a set of orthogonal
extensions. As implied by the above discussion, this is an engineering or aesthetic goal
rather than a theoretical one, and its success will be measured by a number of non-
functional properties, including the number of extensions that can be accommodated
before the metamodel architecture needs to be refactored.

Firstly, we recall that where orthogonality is defined with respect to extensions on
top of a base language it was stated that: “An orthogonal extension is a feature that
is added on top of a base without altering the behaviour of the existing language fea-
tures.” In this regard, if we were considering a step semantics, we would follow the
example of Christensen and Hansen who observed that for inhibitor or threshold arcs,
any upper bound on a place marking ought to take into account the tokens added by the
step [5]. This would be required for a step semantics if the diamond rule is to hold for
concurrently enabled transitions.

Secondly, we note that orthogonality embodies both independence and consistent
composition of the language elements. In our subsequent discussion, this applies to the
addition of inhibitor arcs and prioritised transitions. These extensions involve disjoint
attributes and therefore do not interfere with each other and can be applied in any order.

Thirdly, we note that in the context of concurrent systems and specifically the Unix
shell, orthogonality has been understood as requiring extensions to be side-effect free.
For this reason, we do not currently contemplate extensions like that of Reference nets
as implemented in Renew (the Reference Nets Workshop [17]), where transitions can
be annotated with arbitrary (Java) code segments which then prompts warnings in the
user guide of the pitfalls of side effects.

Fourthly, in line with Pahl’s approach to the Unix C-shell, we propose to capture
Petri net extensions in terms of behaviour-preserving refinement. In line with earlier
work [30, 19], the extension of a base net N to an extended version N′ is defined as a
morphism: φ : N′ → N. A morphism respects structure and behaviour and thus the
components of one object are mapped by the morphism to their counterparts in the
other. It is more usual to consider the morphism as mapping the extended form to the
base form. Thus, for example, the (possibly) extended or embellished set of transitions
is mapped to the simpler set, rather than vice versa. Where the extension introduces
new attributes and constructs then φ will essentially be a restriction mapping which
ignores the additional components. Where the extension modifies existing attributes
and constructs then φ will essentially be a projection mapping. Note that we do not

here consider the forms of refinement appropriate to node refinement, where a node is
refined by a subnet.

For example, we might take P/T nets as our base Petri nets. If we extended these
with inhibitor arcs, then, in mapping from the extended to the base form φ would ignore
those arcs. On the other hand, if we extended the base Petri nets so that all tokens
included a time attribute, then φ would project out that additional attribute.

In characterising Petri net extensions, we focus on the firing rule introduced above
and specifically the boolean enabling function: E : N × T → B, where N is the set
of Petri nets. In fact, it is more convenient to work with an extended version in terms
of steps, Y , (i.e. sets of transitions), giving E : N × P(T) → B.6 We will also need
to refer to the firing rule, which we characterise as a mapping from states to states:
[〉 : S → S . Note that we use the more general term state in preference to marking
because we envisage that some extensions may introduce additional state components,
such as a global clock.

Our primary requirement for orthogonal extensions is that extensions maintain be-
havioural consistency with the base formalism:

1. φ(E′(N′,Y ′))⇒ φ(E′)(φ(N′), φ(Y ′))
In words: if the enabling condition holds in the extended net, then the corresponding
(abstracted) enabling condition holds in the base net.

2. S ′1[Y ′〉S ′2 ⇒ φ(S ′1)[φ(Y ′)〉φ(S ′2)
In words: if the step Y ′ causes a change of state from S ′1 to S ′2 in the extended
system, then the corresponding step φ(Y ′) effects the corresponding change of state
from φ(S ′1) to φ(S ′2) in the base system. Note that if φ(Y ′) is null (because the step
is part of the additional components and thus ignored by φ), then this should have
no effect on the base system state, i.e. φ(S ′1) = φ(S ′2).

For simplicity, we prefer to work with a more constrained version of the first condi-
tion: E′(N′,Y ′) = φ(E′)(φ(N′), φ(Y ′)) ∧ E′′(N′,Y ′), where E′′ supplies an augmenting
constraint in addition to the enabling rule in the base system7. Of course, there is no
guarantee that this approach will always be applicable, but where it is, the commuta-
tivity and associativity of the conjunction operation will facilitate the orthogonality of
extensions which are disjoint (as noted above for inhibitor arcs and prioritised nets).

The essential element of the extension mechanism contemplated above is that it con-
stitutes a form of refinement that maintains behavioural consistency, in line with Pahl8.
He argues that “Behaviour preservation is in particular important since it guarantees
orthogonality of the new feature with the basic language”.

We extend this to independence of multiple extensions by requiring that they can
be applied in any order and the result is the same. This corresponds to requiring that

6 While restricting our attention to an interleaving semantics, the use of steps is desirable, es-
pecially when the extension introduces additional kinds of transitions or actions (such as the
elapse of time). Then the morphism will be a restriction which ignores those additional tran-
sitions and the behaviour corresponding to these transitions in the base system will be null.
Thus, our steps will typically be singleton or empty sets.

7 This has been motivated by the use of conjunction for refining class invariants and pre- and
post-conditions in Eiffel [20].

8 Quoted in section 3.1

for two morphisms, φ and ψ, the square of Fig. 1 commutes. As an example of this,
we might consider the combination of both priorities and time to simple P/T nets. The
interesting question is how the elapse of time would work in such a system — should
time be allowed to elapse when no priority-enabled transition becomes disabled, or
when no enabled transition becomes disabled. The former choice would contradict the
requirement that we should be able to add the refinements in either order.

N’’’

N

N’

N’’

f

y

f

y

Fig. 1. State space for simplified Petri net for device message generation.

Against the general background of orthogonality considered in section 3.1, this ap-
proach also has the following properties:

– In line with Raymond, our extensions are side-effect free, in the sense that the only
way for the extended system to affect the state of the base system is for the action
of the extended system to map to an appropriate action in the base system. Thus, if
a different kind of action is introduced, e.g. a procedure call, then it cannot affect
the underlying marking.

– In line with IBM’s definition of orthogonality, an orthogonal extension is a feature
added on top of a base without altering the behaviour of the existing language fea-
tures. This is especially clear if we require extensions to have an identity element,
e.g. a prioritised net where all priorities are the same, or a timed net where the
timing conditions never constrain the firing of the transition.

– The requirement by Pratt and Zelkowitz that an orthogonal language feature can
be added to all other (relevant) existing constructs is not addressed by our proposal
above — it is a matter for the language designer (or in this case, the designer of
the Petri net extension). As in the case of the Unix shell, an orthogonal extension is
side-effect free.

Petri nets Firing Rule Revisited In the context of Petri net extensions, it is our in-
tention to ensure that extensions are side-effect free and that they will be formalised as
behaviour-preserving refinements. To do so, let us revisit the definition of a firing rule
in the context of the interleaving semantics [6]:

1. Computation of T ′ = ∪{ti}, the set of enabled transitions. In other words T ′ is
the subset of T for which E(N ∈ N , ti ∈ TN) = true. E is the enabling function

E : N × T → B, which has two parameters — a net within a net type N ∈ N =

〈P,T, Pre, Post, S 〉 and the transition t ∈ TN to which it applies. E is defined as
follows:

E(N ∈ N , t ∈ TN) :
{

True when t is firable
False otherwise

Note that S of N ∈ N denotes the current state of net N. For a P/T net or a Priori-
tised Net, it is simply the current marking M, while for Time Petri Nets, it corre-
sponds to (M, v) as defined in section 2.3.
Thus firability of a given transition t ∈ TN can be checked. This is also the case in
later definitions of enabling rules.

2. Selection of one t ∈ T ′ to be fired, or some action like the elapse of time as in the
case of Time Petri Nets;

3. Update of the state of N.

Note that Time Petri Nets allow models to evolve by firing a transition or by having
time elapse. Step 2 of our firing rule caters for such alternative actions by insisting that
one action be chosen at each step. Definition 12 ensures that the advance of time does
not disable any already enabled transitions. In this way, we eliminate the possibility of
side effects when there are two concurrent ways for the model to evolve. Thus, at this
stage, the absence of side effects between enabling conditions appears to be a sufficient
requirement to fit within our framework.

In the following section, we revisit in a compositional way some firing rules of well
known types of Petri nets and associated features (inhibitor arcs, time and priorities
management). Then, we compose them to build more elaborate Petri net types.

3.3 Revisiting Basic Enabling Functions and Augmenting Constraints

We now present the enabling functions for P/T nets and their augmenting constraints
for inhibitor arcs, time (in the sense of [4]) and priorities (in the sense of [18]) in the
framework we have developed above.

Enabling rule for P/T nets Let us define Ept(N, t) that returns true when the marking
of input places is sufficient:

Ept(N ∈ N , t ∈ TN) :
{

True iff ∀p ∈ •t,M(p) > Pre(p, t)
False otherwise

(1)

Enabling rule for priorities Let us define the augmenting constraint Ep(N, t) that
returns true when prio(t) has of the lowest value over the net:

Ep(N ∈ N , t ∈ TN) :
{

True iff ∀t′, ρ(M, t) 6 ρ(M, t′)
False otherwise

(2)

The enabling condition for P/T nets with priorities is thus:

Enp(N, t) = Ept(N, t) ∧ Ep(N, t) (3)

Enabling rule for time conditions Let us define the augmenting constraint Ett(N, t)
that returns true when the local v(t) associated with t is in the range [α, β] (constants
associated with t).

Ett(N ∈ N , t ∈ TN) :
{

True iff v(t) > α(t) ∧ v(t) 6 β(t)
False otherwise

(4)

The enabling condition for P/T nets with timing constraints is thus:

Ent(N, t) = Ept(N, t) ∧ Ett(N, t) (5)

Note that equation 5 is consistent with definition 11 (enabling function) assuming
that the generic firing rule still allows the action corresponding to the elapse of time.

Augmenting constraint for inhibitor arcs Let us define the augmenting constraint
Ei(N ∈ N , t ∈ TN) that returns true when there are less tokens than the value specified
on the inhibitor arc (Prei(p, t) , 0).

Ei(N ∈ N , t ∈ TN) :
{

True iff ∀p ∈ •t s.t. Prei(p, t) > 0 : Prei(p, t) > M(p)
False otherwise

(6)

Composing inhibitor arcs with defined net types We can now combine the definition
of the inhibitor arc augmenting constraint with the net types we already defined, to build
P/T nets with inhibitor arcs (equation 7), Prioritised nets with inhibitor arcs (equation 8),
Time nets with inhibitor arcs (equation 9), Time nets with inhibitor arcs and priorities
(equation 10). More combinations can be elaborated.

Epti(N, t) = Ept(N, t) ∧ Ei(N, t) (7)

Enpi(N, t) = Enp(N, t) ∧ Ei(N, t) = Ept(N, t) ∧ Ep(N, t) ∧ Ei(N, t) (8)

Enti(N, t) = Ent(N, t) ∧ Ei(N, t) = Ept(N, t) ∧ Ett(N, t) ∧ Ei(N, t) (9)

Entpi(N, t) = Ent(N, t) ∧ Ei(N, t) ∧ Ep(N, t) = Ept(N, t) ∧ Ett(N, t) ∧ Ei(N, t) ∧ Ep(N, t) (10)

Discussion Now we have established a framework that encompasses the formal defi-
nitions of several types of Petri nets. Only interleaving semantics is considered so far.
Moreover, if P/T nets constitute our base Petri nets, the framework could work with
Symmetric Nets or High-Level Nets as well since the enabling functions defined in
this section refer to the notion of state for which only the structure of the marking is
impacted by colours. We do not detail this more due to space limitation.

In the next section, we present the MDE-based framework to compose Petri net
types in a similar way to the formal framework presented here. Then section 5 shows
how prioritised and time nets can be elaborated in PNML thanks to the MDE-based
framework.

Place/Transition nets

PNML Core Model

Symmetric nets

High-level Petri nets

«merge» «merge»

«merge»

Fig. 2. Metamodels architecture currently defined in ISO/IEC-15909 Part 2.

4 A MDE Framework to Extend and Compose Petri Net Types

As highlighted in the previous section, orthogonality of augmenting constraints as well
as the semantic compatibility of firing rules are crucial for the formal definitions to work
properly. At the syntactic level, upward compatibility is important as well. We consider
upward compatibility as the ability to extract a base net type from its extended version.

We show in this section how the formal concepts developed earlier could be pro-
jected onto the metamodel architecture of the standard, thus yielding a model-based
framework to extend and compose Petri Net types.

4.1 Current Metamodels Architecture

Figure 2 shows an overview of the metamodels architecture currently defined in Part 2
of the standard [11]. This architecture features three main Petri net types: P/T, Sym-
metric and High-level Petri nets. They rely on the common foundation offered by the
PNML Core Model. It provides the structural definition of all Petri nets, which consists
of nodes and arcs and an abstract definition of their labels. There is no restriction on
labels since the PNML Core Model is not a concrete Petri net type.

Such a modular architecture favours reuse between net types. Reuse takes two forms
in the architectural pattern of the standard: import and merge package relationships,
as defined in the UML 2 standard [21].

Import is meant to use an element from another namespace (package) without the
need to fully qualify it. For example, when package A includes: import B.b, then in A
we can directly refer to b without saying B.b. But b still belongs to the namespace B.
In the ISO/IEC 15909-2 standard, Symmetric nets import sorts packages such as Finite
Enumerations, Cyclic Enumerations, Booleans, etc.

Merge is meant to combine similar elements from the merged namespace to the
merging one. For example, let us assume that A.a, B.a and B.b are defined. If B is
merged into A (B being the target of the relationship), it will result in a new package A’:

– all elements of B now explicitly belong to A’ (e.g., A’.b);
– A.a and B.a are merged into a single A’.a which combines the characteristics of

both;
– actually, since A is the merging package (or the receiving package), A becomes A’

(in the model, it is still named A).

High-level Petri nets

Symmetric nets

Lists

Strings

Integers

ArbitraryDeclarationsTerms

«merge»«import»

«import»

«import»

«import»

«import»

«import»

«import»

«merge»

Fig. 3. Modular construction of High-level Petri Nets based on Symmetric Nets

Merge is useful for incremental definitions (extensions) of the same concept for
different purposes.

In the standard, this form of reuse is implemented for instance by defining P/T nets
upon the Core Model and High-level nets upon Symmetric nets, as depicted in Figure 2.
Therefore, Symmetric net elements and annotations are also valid in High-Level Petri
nets (but not considered as Symmetric nets namespace elements anymore).

This extensible architecture is compatible with further new net type definitions, as
well as with orthogonal extensions shared by different net types. These two extension
schemes are put into practice for defining Symmetric nets and High-level nets as dis-
cussed in the next section. Prioritised Petri nets, presented in sections 2.2 and 5.1 are
also defined using the same extension schemes.

4.2 Standard Nets Types Modular Definition

With the two forms of reuse, namely import and merge, Symmetric Nets are defined in
the standard upon the PNML Core Model and High-level Petri Nets are defined upon the
Symmetric Nets.

Figure 3 shows how High-level Petri Nets are defined. The merge relationship en-
ables the reuse of the common foundation provided by Symmetric Nets. The provided
concepts are now fully part of the High-level Petri Nets namespace. Then, with the
import relationship, sorts specific to High-level Petri Nets (Lists, Strings, Integers and
Arbitrary Declarations) are integrated to build this new type.

The definition of Symmetric Nets follows the same modular approach (see Fig-
ure 4), where the package of Symmetric Nets merges the PNML Core Model and im-
ports the allowed sorts, the carrier sets of which are finite. The Terms package provides
the abstract syntax to build algebraic expressions denoting the net declarations, place
markings, arc annotations and transition guards.

4.3 Extended Metamodels Architecture Framework

From the common layout of the standards metamodels, we can extract an architectural
pattern which could be used to extend them in order to build new net types.

Figure 5(a) describes such a pattern. The new net type XX Extension YY Petri
Net is built upon an existing Petri net type, which is represented by YY Petri net and
an extension (e.g. priority, time), which is represented by XX Extension. The new net

Symmetric nets

PNML Core Model

Partitions

CyclicEnumeration

FiniteEnumerations

FiniteIntRanges

Booleans

Multisets

DotsTerms

«merge»

«import»

«import»

«import»

«import»

«import»

«import»

«import»«import»

«import»

«import»

«import»

«import»
«import»

«import»

Fig. 4. Modular construction of Symmetric Nets based on PNML Core Model

type package imports the extension package, while it merges the existing net one. This
is consistent with the semantics of reuse in the standard architectural pattern, through
the import and merge relationships.

Note that combining independent extensions boils down to performing a conjunct
of several firing rules, which is in essence commutative. Thus, in that case, applying
XX and YY extensions can be done in either order. On another hand, if one extension is
further extended, then these two extensions are no longer independent, and cannot be
applied in a different order.

Figure 5(b) describes the case where the new type is built upon existing net types
only, which have already embedded their own extensions. The observed pattern is then
composed only of the merged ones. This means all building blocks needed to build
the new net type package come from the ones being merged. Therefore, no additional
constructs are necessary. If any specific extension to the new net type is required, then
the pattern of Figure 5(a) is applied.

5 The MDE-Framework applied to Nets with Priorities and Time

We now use the model-based framework previously defined to build new net types
through extension and composition of metamodels. First, PT-Nets with static and dy-

XX Extension YY Petri Net

XX Extension YY Petri Net

«import» «merge»

(a) Based upon existing type and an ex-
tension

YY ZZ Petri Net

YY Petri Net ZZ Petri Net

«merge» «merge»

(b) Based only upon existing types

Fig. 5. Modular construction of a new net type.

XX Priority YY Petri Net

XX Priorities

«import»

YY Petri Net

«merge»

Fig. 6. Modular construction of prioritised Petri Nets metamodels.

namic priorities are built, then PT-Nets with time. Afterwards, we present more elab-
orate compositions which are the projections of some of the later equations from sec-
tion 3.3.

5.1 Metamodels for PT-Nets with Priorities

A prioritised Petri net basically associates a priority description with an existing stan-
dardised Petri net, thus building a new Petri net type. The metamodel in Figure 6 illus-
trates this modular definition approach, in line with the pattern of Figure 5(a). It shows
a blueprint for instantiating a concrete prioritised Petri net type, by merging a concrete
Petri net type and importing a concrete priority package. The XX Priorities package
is the virtual representation of a concrete priority package and the YY Petri Net is
the virtual representation of a concrete Petri net type.

For example, Figure 7 shows a prioritised PT-Net using static priorities only. It is
built upon a standardised PT-Net which it merges, and a Priority Core package,
which it imports. The Priority Core package provides the building blocks to define
Static Priorities, as depicted by Figure 8.

The purpose of the Priority Core package is to provide:

– the root metaclass for priorities, represented by the Priority metaclass;
– a priority level, which is an evaluated value represented as a property of the Priority

metaclass;
– the ordering policy among the priority values of the prioritised Petri net. This or-

dering policy is represented by the PrioOrderingPolicy metaclass.

The purpose of priority levels is to provide an ordered scalar enumeration of val-
ues such that either the higher the value, the higher the priority, or the lower the value,

PetriNet Priority Core::PrioOrderingPolicy

Transition Priority Core::Priority

ordering

priority

Static Priority PT-Net

PT-NetPriority Core

«import» «merge»

Fig. 7. Prioritised PT-Net metamodel showing how the priority description is attached.

Priority Core

- policy: PrioOrdering
PrioOrderingPolicy

ASCENDING
DESCENDING

«Enumeration»
PrioOrdering- value: Real

Priority

Fig. 8. Core package of priorities.

the higher the priority. With the Priority Core package, and thanks to the Priority
metaclass, static priorities can thus be attached to transitions, as in the Static Priority
PT-Net shown in Figure 7.

Using the same approach, Figure 9(a) shows a prioritised PT-Net which uses dy-
namic priorities. Dynamic priorities are built upon Priority Core.

This modular construction follows the extension schemes adopted so far in the
PNML standard, explained earlier in this section. For instance, High-Level Petri nets
build upon Symmetric nets that they merge, and new specific sorts (such as List, String
and arbitrary user-defined sorts) that they import. The use of the merge and import
relationships is therefore consistent.

This approach is consistent with the idea that a new Petri net type subsumes the
underlying one it builds upon, but the algebraic expressions it reuses are generally or-
thogonal to net types. Next, we introduce the metamodel for priorities.

Priority Metamodel Prioritised Petri nets augment other net models (e.g. P/T or Sym-
metric nets) by associating a priority description with the transitions. Such priority
schemes are of two kinds:

– static priorities, where the priorities are given by constant values which are solely
determined by the associated transition9;

– dynamic priorities, where the priorities are functions depending both on the transi-
tion and the current net marking.

Figure 9(b) shows the modular architecture of priorities metamodels. The Priority
Core package (detailed in Figure 8) provides the building blocks to define both Static

9 For high-level nets such as Coloured nets, the priorities are given by constant values which are
solely determined by the associated binding element.

Dynamic Priority PT-Net

Dynamic Priorities PT-Net

«import» «merge»

(a) Prioritised PT-Net

Priority Core

Dynamic Priorities Priority Operators

«import»

«import»

(b) Dynamic priorities

Fig. 9. Prioritised PT-Net metamodel using dynamic priorities

Dynamic PrioritiesPriority Operators

Priority Core

Priority

PrioExpr

PrioTerm

1 prioExpr
subterm

*{ordered}

+value: Real
PrioConstant

MultiplicationAdditionSubtraction

Division

DynamicPriority

PrioOperator

op
er

at
or

1

Guarded
Expression
LessThan

LessThanOr
Equal

GreaterThan
OrEqual

GreaterThan

Equality
Inequality

MarkingRef

«import»

«import»

Or
And

Fig. 10. Dynamic priorities and priorities operators packages.

Priorities and Dynamic Priorities. However, dynamic priorities are further de-
fined using Priority Operators. Dynamic priorities can encompass static ones by
using a constant function (for the sake of consistency in the use of priority operators).

Figure 10 shows how the Dynamic Priorities metamodel is built. A Dynamic-
Priority is a Priority Core::Priority. It contains a priority expression (Prio-
Expr). A concrete priority expression is either a PrioTerm which represents a term, a
PrioConstant which holds a constant value or MarkingRef which will hold a refer-
ence to the marking of a place.

Note that the actual reference to the metaclass representing markings is missing. It
must be added as an attribute (named ref) to MarkingRef once the concrete prioritised
Petri net type is created. Its type will then be a reference to the actual underlying Petri
net type Place metaclass, which refers to the marking.

A PrioTerm is composed of an operator (PrioOperator) and ordered subterms.
This definition enables priority expressions to be encoded in abstract syntax trees (AST).
For example, the conditional priority expression: if M(P2) > 3 then 3 × M(P2) else
2 × M(P1), is encoded by the AST of Figure 11, assuming that:

– P1 and P2 are places;
– M(P1) and M(P2) are respectively markings of P1 and P2.

Guarded
Expression

GreaterThan

MarkingRef
"P2"

Multiplication Multiplication

PrioConstant
"3"

PrioConstant
"3"

PrioConstant
"2"

MarkingRef
"P2"

MarkingRef
"P1"

Fig. 11. AST of the conditional expression: if M(P2) > 3 then 3 ∗ M(P2) else 2 ∗ M(P1).

The priority operators are gathered within the Priority Operators package to
allow for more flexibility in extending this priority framework. New operators can thus
be added easily to this package.

Note that all these operators can also be found in ISO/IEC 15909-2, but are scat-
tered among different sorts packages, being directly tied to the most relevant sort. For
the next revision of the standard, we suggest that they be gathered in separate and ded-
icated packages (e.g. arithmetic operators, relational operators, etc.). This refactoring
will allow for more reusability across different Petri net type algebra definitions.

5.2 Metamodels for PT-Nets with Time

Building a metamodel for TPNs starts with defining the metamodel for time features.
We apply the same modular definition approach introduced in earlier sections. Regard-
ing the particularly rich extension domain of TPNs, we explored several design choices.
To ease the extensibility of this family of Petri nets, we sought to maximise the mod-
ularity of the definitions of the different concepts. The metamodel for time features
presented in Figure 12 shows two packages, each containing a set of related features.

Package Time4PetriNets provides the building blocks to include time intervals
and associated clocks, repectively represented by TimeInterval and Clock meta-
classes. Package Semantics4TPN provides the different representation of the semantics
for TPNs, as presented in section 2.3.

Since TPNs have a rich extension domain, Semantics4TPN is intended to be a flexi-
ble and easily extendable package for the different semantics. We thus have metaclasses
for representing firing policies, reset policies and the server settings in TPNs. They are
defined in another package which is imported by Semantics4TPN. That package is not
shown here since it is too detailed for the granularity level of this example.

Using the metamodel for time features, we now define the metamodel for Time Petri
nets, where time intervals are attached to transitions. Figure 13 shows such a meta-
model, where the semantics policies are attached to the net itself, represented by the
Petrinet metaclass. The new Petri net type package merges that for P/T nets, so as
to be able to build upon existing constructs from P/T nets, within a new namespace.
Note that, since a Petri net evolves using a single semantics only, it is attached to the
whole model. The corresponding metaclasses are therefore attached to the net node in
figure 13.

In a TPN the semantics is monoserver, strong and clocks are reset upon firing of
newly enabled transitions. This can be specified by OCL constraints which will be glob-

- currentValue: Real
Clock - lowerBound: Real

- upperBound: Real

TimeIntervalintervalclocks
11..n

Time4PetriNets

Semantics4TPN

ClocksServerClocksResetFiring

Fig. 12. Time features for TPNs.

ally attached to the Semantics4TPN package. These constraints are not presented so as
to avoid cluttering the example.

These extensions of P/T nets by time features to build Time Petri nets can be re-
moved, thus easily falling back to P/T nets, in line with the direction stated in sec-
tion 3.2. With such a modular definition approach, it is easy to define the metamodel
for P-time Petri nets10 (P-TPN) and A-time Petri nets11 (A-TPN). For instance, in the
new metamodel of P-TPN, the Place metaclass is associated with TimeInterval and
OCL constraints are updated so that the multiserver semantics is taken into account.

Next, orthogonality of combined features is fully implemented, through the defini-
tion of Time Prioritised Petri nets.

5.3 Metamodels for PT-Nets with Time and Priorities

We now consider building Dynamic Priority Time Petri nets (DPTPN), where two or-
thogonal extensions to P/T nets are combined. The features provided by these exten-
sions are dynamic priorities and time. To do so, two main building blocks, already
defined in earlier sections are needed:

– Dynamic Priority Petri nets, whose metamodel is shown in Figure 9(a), and
– Time Petri nets, whose metamodel is shown in Figure 13.

Figure 14 depicts the metamodel of DPTPNs, where the new Petri net type pack-
age merges the Dynamic Priority PT-Net and the TPN ones. No additional construct
is needed in the new package. Every concept comes from the building blocks, i.e. the
merged packages.

Indeed, in the new package, the Transition metaclasses from the building blocks
are merged, yielding a resulting metaclass which holds a composition relationship with
Dynamic Priorities::DynamicPriority (see Figure 10) and another composition

10 Based on [3], time intervals are associated with places, semantics is multiserver and strong.
11 Based on [3], time intervals are associated with arcs, semantics is multiserver and weak.

- currentValue: Real
Clock- lowerBound: Real

- upperBound: Real

TimeInterval interval clocks
1 1..n

Time4PetriNets

Transition

PetriNet
clocksemantics serversemantics1

TPN

firingsemantics 1

«merge»

Semantics4TPN

ClocksServerClocksResetFiring

«import»

«import»

1

Place/Transition Net

Fig. 13. Time Petri nets

Prioritised TPN

Prioritised PT-Net TPN

«merge» «merge»

Fig. 14. Prioritised TPN builds upon existing
orthogonal net types

Prioritised Inhibitor TPN

Prioritised TPN Inhibitor PT-Net

«merge» «merge»

Fig. 15. Prioritised Inhibitor TPN builds upon
existing orthogonal net types

relationship with TPN::TimeInterval (see Figure 13). The same applies to the re-
sulting PetriNet metaclass formed by merging those from TPN and Dynamic Priority
PT-Net.

Orthogonality is fully implemented in extending P/T nets through the composition
of these two extensions. Whenever TPN is removed, the whole metamodel will fall back
to Dynamic Priority PT-Net. Whenever Dynamic Priority PT-Net is removed, it will fall
back to TPN. Whenever both extensions are removed, the metamodel will fall back to
the one of P/T nets.

Next, we go one step further, by composing this new net type with special arcs.

5.4 Metamodel for PT-Nets with Time, Priorities and Special Arcs

Finally, we want to build DPTPNs with special arcs, such as inhibitor arcs, as defined
in equation 10. But first, let us define a metamodel for inhibitor PT-Nets.

Figure 16 shows the modular construction of inhibitor PT-Net, which reflects equa-
tion 7. The Inhibitor PT-Net package is actually sufficiently generic to be reused,
by just renaming it, to build another net type with another kind of arc (e.g. reset). It will
just require importing the new extension package, as a substitute for or in addition to
the InhibitorArcExtension one.

Every building block required to construct a metamodel for DPTPNs with inhibitor
arcs is now established. Figure 15 shows the straightforward modular construction of
this new net type.

6 Technological Issues and Discussion

This section discusses technological issues related to the implementation of this model
within the Eclipse Modeling Framework [28] (EMF).

InhibitorArc
Extension

 - name = "inhibitor"
Inhibitor

Inhibitor PT-Net

Label
Attribute

Place/Transition Net

«merge»

«import»

ArcArcType
arctype
1

Fig. 16. Modular construction of inhibitor PT-Net.

Current implementation The approach advocated here was implemented in PNML
Framework [10], which stands as one of the standard’s companion tools. PNML Frame-
work allows for handling Petri net types in a “Petri net way”, in order to avoid any XML
explicit manipulation. PNML Framework design and development follow model-driven
engineering (MDE) principles and rely on the Eclipse Modeling Framework.

The implementation was successful, its main steps being:

1. designing the new metamodels,
2. annotating them with PNML specific information (tags),
3. assembling them and,
4. pushing a button to generate an API able to manipulate the new Petri net types.

The specific code generated by our templates to export and import models into/from
a PNML file is created using the annotations decorating the metamodels in step 2. The
PNML Framework plugin for Prioritised Petri nets, generated as a proof of concept for
the presented extension approach, is available at http://pnml.lip6.fr/extensions.html. At this
stage, it is provided as an Eclipse project with the PNML-ready source code the reader
can browse and use. In the future, further updates with new net types will be provided
on that web page. With the provision of our tool, it will be possible for other tool
developers to define their own Petri net types, on top of existing ones.

Technological limitations We encountered some technological limitations during step
3 of the process because EMF does not yet offer a very convincing merge operation
between models. The EMF Compare plug-in [7] seems to be a promising project towards
this goal, but it is not yet mature enough for our use of merge. The merge had to be
performed class by class, which is tedious for large metamodels.

OMG acknowledges that the UML package merge is too complex for tools to im-
plement. Even though the Eclipse UML2 plugin currently implements this operation, it
generates some inconsistencies.

Thus, to overcome this problem, we came to use the more robust import operation
between EMF models. The procedure is the following:

1. When the composition pattern is based on merging a single base type into the new
one:

– start from the base Petri net type,
– rename it as the new type,
– imports the extensions.

2. When more than one base Petri net type is involved:
– start from the one that was previously extended the most,
– loop to step 1.

Assessment within the standardisation process The model driven development ap-
proach for the standard metamodels caters for extensibility maintainability, usability
and reusability. However, at this stage, quantitative evaluation requires experimenta-
tions by the community. This is planned within the standardisation process, especially
in part 3.

Moreover, the standardisation team aims at evaluating the opportunity to provide a
more detailed description of the semantical aspects of Petri nets via the definition of the
enabling functions and firing rules.

7 Conclusion

In this paper, we have explored extensions suitable for part 3 of the Petri Net Stan-
dard. We have proposed a framework which justifies describing these extensions as
orthogonal. We have demonstrated how such extensions can be implemented in PNML
Framework, an MDE-based framework which is a companion tool to the standard. This
can be the stepping stone for a more general extension mechanism to integrate new Petri
net types within the standard.

The experiments presented in this paper rely on Place/Transition nets as a basis for
extension. We could equally well have as well chosen Symmetric Nets, or High-level
Petri nets. However, the presentation would have been longer and more clumsy with no
additional technical value.

Beside the immediate outcome for the Petri net community, we consider this as
an interesting contribution for handling formal notations by means of Model Driven
Engineering techniques. So far, metamodel management is achieved through syntactical
aspects only. Our framework better captures the behavioural semantics of Petri nets by
connecting the enabling rule to the attributes of the Petri net objects.

Future work aims at building a composition framework encompassing a library of
existing net types and extensions, along with rules that express their semantic compati-
bility. This would provide safe guidelines for the construction of new net types, taking
advantage of reuse, and fostering sound contributions to the standard.

Acknowledgments We thank Béatrice Bérard for her fruitful help with regards to the
time Petri nets aspects. We would also like to thank the anonymous reviewers for their
comments that enriched the paper.

References

1. Bause, F.: Analysis of Petri nets with a dynamic priority method. In: Azéma, P., Balbo,
G. (eds.) Proc. 18th International Conference on Application and Theory of Petri Nets,
Toulouse, France, June 1997. LNCS, vol. 1248, pp. 215–234. Springer-Verlag, Berlin, Ger-
many (Jun 1997)

2. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.: Comparison of different semantics for
time Petri nets. In: Automated Technology for Verification and Analysis (ATVA’05). LNCS,
vol. 3707, pp. 293–307. Springer, Taipei, Taiwan (Oct 2005), http://move.lip6.fr/~Beatrice.
Berard/PDF/bchlr-atva05.pdf

3. Bérard, B., Lime, D., Roux, O.: A Note on Petri Nets with Time. Integrated in report on
WG19 plenary meeting in Paris, ISO/IEC/JTC1/SC7/WG19 (2011)

4. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time
Petri nets. IEEE trans. on Soft. Eng. 17(3), 259–273 (1991)

5. Christensen, S., Hansen, N.: Coloured Petri Nets Extended with Place Capacities, Test Arcs
and Inhibitor Arcs. In: 14th International Conference on the Application and Theory of Petri
Nets. LNCS, vol. 691. Springer-Verlag (1993)

6. Czaja, I., Glabbeek, R.J.V., Goltz, U.: Interleaving semantics and action refinement with
atomic choice. In: “Advances in Petri Nets”. pp. 89–109. Springer-Verlag (1991)

7. Eclipse Foundation, http://www.eclipse.org/emf/compare/: The Eclipse Compare project
home page (2011), http://www.eclipse.org/emf/compare/

8. Green, R.: Java Glossary: Orthogonal. http://mindprod.com/jgloss/orthogonal.html (1996-
2011)

9. Harel, D.: Lecture on Executable Visual Languages for System Development (2011), http:
//www.wisdom.weizmann.ac.il/~michalk/VisLang2011/

10. Hillah, L., Kordon, F., Petrucci, L., Trèves, N.: PNML Framework: an extendable reference
implementation of the Petri Net Markup Language. In: Proc. 31st Int. Conf. Application and
Theory of Petri Nets and Other Models of Concurrency (PetriNets’2010), Braga, Portugal,
June 2010. Lecture Notes in Computer Science, vol. 6128, pp. 318–327. Springer (Jun 2010)

11. Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Trèves, N.: A primer on the Petri Net Markup
Language and ISO/IEC 15909-2. Petri Net Newsletter 76, 9–28 (2009), originally presented
at CPN’09

12. IBM: The IBM Language Extensions (1991), http://publib.boulder.ibm.com/infocenter/
lnxpcomp/v7v91/index.jsp?topic=\%2Fcom.ibm.vacpp7l.doc\%2Flanguage\%2Fref\
%2Fclrc00ibm_lang_extensions.htm

13. ISO/IEC: Software and Systems Engineering - High-level Petri Nets, Part 1: Concepts, Def-
initions and Graphical Notation, International Standard ISO/IEC 15909 (December 2004)

14. ISO/IEC: Software and Systems Engineering - High-level Petri Nets, Part 2: Transfer Format,
International Standard ISO/IEC 15909 (February 2011)

15. ISO/IEC/JTC1/SC7/WG19: The Petri Net Markup Language home page. http://www.pnml.
org (2011), http://www.pnml.org

16. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent
Systems. Springer Verlag (June 2009)

17. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L.: Renew - User Guide. Tech. Rep.
Release 2.2, University of Hamburg (2009), http://www.renew.de/

18. Lakos, C., Petrucci, L.: Modular state spaces for prioritised Petri nets. In: Proc. Monterey
Workshop, Redmond, WA, USA. LNCS, vol. 6662, pp. 136–156. Springer (Apr 2010)

19. Lakos, C.: Composing Abstractions of Coloured Petri Nets. In: Nielsen, M., Simpson, D.
(eds.) International Conference on the Application and Theory of Petri Nets. LNCS, vol.
1825, pp. 323–342. Springer, Aarhus, Denmark (2000)

20. Meyer, B.: Eiffel: The Language. Prentice Hall, New York (1992)
21. OMG: Unified Modeling Language: Superstructure - Version 2.4 - ptc/2010-11-14 (Jan

2011), http://www.uml.org/
22. Pahl, C.: Modular, Behaviour Preserving Extensions of the Unix C-shell Interpreter Lan-

guage. Tech. Rep. IT-TR:1997-014, Department of Information Technology, Technical Uni-
versity of Denmark (1997), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.
8183

23. Palsberg, J., Schwartzbach, M.: Object-Oriented Type Systems. Wiley Professional Comput-
ing, Wiley, Chichester (1994)

24. Pratt, T., Zelkowitz, M.: Programming Languages Design and Implementation. Prentice-
Hall, 3rd edn. (1999)

25. Raymond, E.S.: The Art of Unix Programming (2003), http://www.catb.org/~esr/writings/
taoup/html/ch04s02.html#orthogonality

26. Reynier, P.A., Sangnier, A.: Weak Time Petri Nets strike back! In: Proceedings of the 20th In-
ternational Conference on Concurrency Theory (CONCUR’09). LNCS, vol. 5710, pp. 557–
571. Springer (2009)

27. SearchStorage: Definition: Orthogonal (June 2000), http://searchstorage.techtarget.com/
definition/orthogonal

28. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework.
Eclipse Series, Addison-Wesley Professional, 2nd edn. (Dec 2008)

29. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-
Wesley (1998)

30. Winskel, G.: Petri Nets, Algebras, Morphisms, and Compositionality. Information and Com-
putation 72, 197–238 (1987)

