
Extreme Symmetries in Complex Distributed Systems:
the Bag-Oriented Approach?

M. Colange1, L.M. Hillah2, F. Kordon1, and P. Parutto1

1 LIP6, CNRS UMR 7606, Université P. & M. Curie – Paris 6
4, place Jussieu, F-75252 Paris Cedex 05, France

Maximilien.Colange@lip6.fr, Fabrice.Kordon@lip6.fr
2 LIP6, CNRS UMR 7606 and Université Paris Ouest Nanterre La Défense

200, avenue de la République, F-92001 Nanterre Cedex, France
Lom-Messan.Hillah@lip6.fr

Abstract. Model checking is widely used as an automatic exhaustive verifica-
tion technique to check properties of complex systems. However, it is difficult
to operate in the context of today’s emerging systems that combine distribution
(and asynchronous communications) together with a large size (and a hierarchical
composition of components – and thus, of specifications).
This paper combines existing techniques tackling the known combinatorial ex-
plosion of model checking. To achieve this, we exploit the structure of such dis-
tributed systems (symmetries and hierarchical composition), thus allowing a bet-
ter compression factor and calculus factorization in favorable cases. We present
these techniques and assess their impact on some benchmark examples.

Keywords: Symmetric Nets with Bags, formal method, model checking, state
space generation, Symmetries-based techniques, Hierarchical Set Decision Dia-
grams.

1 Introduction

Context Model checking is now widely used as an automatic and exhaustive verifica-
tion technique to check properties of complex systems. However, this approach suffers
from an intrinsic combinatorial explosion issue that must be tackled. One trend is to
take full advantage of the characteristics of the class of system being analyzed. A first
example of this was, in the 1990’s, the exploitation of the characteristics of hardware
systems [7].

Today’s emerging complex systems have two main characteristics. Firstly, they are
more and more distributed: numerous entities, often sharing the same code (only the
context differs), communicate asynchronously. Secondly, these entities are often hier-
archically organized: systems are composed of systems (SoS for Systems of Systems).

Moreover, these emerging systems handle more and more critical functions and
need to be trusted. Their complexity prevents traditional test or simulation based ap-
proaches to reach a satisfactory level of confidence, formal methods, such as those
based on state space analysis, must be operated. However, the asynchronous nature of

? This work was partially supported by a grant from the Direction Générale pour l’Armement.

such systems, as well as their size, increase the combinatorial explosion of these analy-
sis techniques, thus preventing their use in satisfactory conditions.

Problem One issue in tackling the combinatorial explosion related to state space anal-
ysis is to combine existing reduction techniques. Among them, several are commonly
involved in the analysis of distributed systems:

1. Partial Orders: this technique aims at fighting the interleaving introduced when
several execution flows are running in parallel. When several paths lead from state
A to state B in the state space, only one is stored. This technique may reduce the
explored state space by orders of magnitude in favorable cases [16, 3].

2. Symmetries: this technique aims at identifying the possible permutations of actors
in a system (i.e. all clients are identical up to a permutation of identity). Instead of
building the explicit state space, symmetries allow to compute a quotient state space
that can be exponentially smaller in favorable cases. This technique was introduced
for Petri nets in the early 1990’s [6] and then adapted in a more general case [23]. A
variant, called “counter abstraction” [2], also allow to consider as a whole groups
of processes.

3. Locality: this technique aims at exploiting the locality of the system’s evolution.
Typically, when one process evolves, the set of variables to be changed is very
small compared to the state of the full system. This locality property allows to
share the representation of common parts in the state space. The use of appropri-
ate data structures to represent the state space such as decision diagrams leads to
exponential gains in favorable cases [5].

Preliminary experiments [28, 10] have demonstrated that the two last techniques can
be combined, despite the fact that they appear to be independent. The idea is to achieve
this in a more efficient way and reduce the need for the partial order reduction by using
a dedicated modeling technique, since it seems difficult to combine the three techniques
together.

Contribution This paper proposes a method for structuring symmetries in a system
model by means of bags. The idea is to make a link between potentially useful modeling
constructs and efficient model checking mechanisms in order to improve the combina-
tion of reduction techniques. The objective is twofold:

– Reducing again the potential interleaving, thus decreasing the need for partial order
techniques,

– Exploiting the hierarchical structure of symmetries for a better encoding of the
quotient state space into decision diagrams, and thus, increasing the combined effi-
ciency.

Altogether, these combined techniques should help us provide efficient state space
generation and state space analysis for distributed systems.

To achieve this, we rely on the use of bags to structure data carried out in a sys-
tem. Thus, we use Symmetric nets with Bags (SNB) [18] that are a compact and read-
able dialect of colored Petri nets, allowing structured specification of complex systems.
However, we claim it can be generalized to other notations dedicated to concurrent sys-
tems as soon as a structural analysis, allowing to detect permutations and a hierarchical
structuring, can be performed.

2

We call this approach “extreme symmetries” because we make an intensive use of
these in different ways, as it is explained in the discussion part of section 2.1.
Contents Section 2 presents basic definitions of the formal concepts the presented
method relies on. Then, section 3 details the main principles of our contribution. Fi-
nally, section 4 presents an early performance evaluation of the method by means of
selected examples.

2 Definitions

This section provides the definitions needed in this paper: Symmetric Nets with Bags
(SNB) and Decision Diagrams (DD). The goal of this section is to provide an overview
for the understanding of the paper only. However, there are references to formal and
precise definitions.

Symmetric Nets with Bags are used to model systems with the possibility to struc-
ture data in a new way where hierarchical information can be exploited to tackle com-
plexity. Decision Diagrams is a commonly accepted technique to represent state spaces
in a very compact way. In this paper, we focus on a specific class of decision diagrams:
Set Decision Diagrams (SDD), that can be composed hierarchically.

2.1 Symmetric Nets with Bags

Petri Nets [15] They are a well-known formalism for the modeling of asynchronous
systems. Basically, a Petri Net (or P/T net) consists in a set of places and a set of
transitions. Places contain tokens, and transitions move tokens from place to place.
More precisely, when it fires, a transition consumes tokens from its input places, and
produces tokens to its output places, thus reaching a new marking (vector of tokens in
places). By applying a fixed point on the firing relation, one can theoretically generate
the full state space for finite systems.

Colored Petri nets [21, 22] extend P/T nets by adding typed data in tokens. Colored
Petri nets may have a better expressive power (sometimes leading to undecidability) but
the specification is smaller, thus increasing readability.

Among several variants of colored Petri nets, Symmetric Nets (SN) [6] define a
simple typing mechanism (discrete types, cartesian product) allowing the exploitation
of symmetries in a system. The expressive power of SNs is the same as P/T nets.
Symmetric Nets with Bags (SNB) This is a recent extension of SN [18]. SNBs propose
a new mechanism allowing to avoid some interleaving, by enabling multisets (or bags,
see definition 3 in section 3.3) of colors in tokens. SNBs allow to express the same
symmetries as SNs do, thus enabling similar exploitation of symmetries.

The SNB presented in Fig. 1 models a simple deadlock-free resource manager based
on the global allocation of all required resources before entering a critical section [26].
There are two discrete types of color respectively describing the processes ids (Proc)
and the critical resources (Res). Then, the type representing the set of bags of resources
is defined (BagR), as well as its cartesian product with processes ids (P_BagR).

Initially, marking Mr in R contains the available resources of the system (there can
be several copies of some resources, i.e. several tokens of the same value) and Mp

3

Mp

Mo

[card(R)>0]

<p>

<p,R>

<p,R><R>

<R2>

<p, R diff R2>
<p,R>

<p>

<R>

Class
 Proc is 1..3;
 Res is 1..6;
Domain
 BagR is Bag(Res);
 P_BagR is <Proc,BagR>;
Var
 p in Proc;
 R, R2 in BagR;

Proc
OutCS

Res
R

enter

P_BagRInCS

[card(R) > 0]
exit

[card(R) > 0 and
R2 strictincluded R]

release

Fig. 1: An example of SNB: the Resource Manager. Mp = 〈Proc.all〉 and Mr = n×
〈Res.all〉, with n being a positive value. Class.all is the function that generates gener-
ates one token per possible value in Class.

in outCS represents all the processes (they are represented by their identity) that are
initially out of the critical section. Transition enter assigns to a process p a bag of
resources R. As indicated by the guard of the transition, a process is assigned at least
one resource. Place InCS holds the processes using at least one resource (in the critical
section). Transition release allows to release resources. However, its guard prevents
from releasing all the resources, which is done when firing transition exit.

SNB do not extend the expressive power of SN but lead to a more compact model
as illustrated below.
SNB versus SN This system could be modeled using SN too. However, the resulting
model is then more complex. Two strategies to unfold a SNB into an equivalent SN are
considered.

The first one relies on the unfolding of places and transitions in which bags occur. It
is illustrated in Fig. 2. Let us detail the process for transition enter when 1 < card(R)≤
N. First, the cartesian product P_BagR is replaced by N cartesian products (one per
possible cardinality of R in enter bindings). Transition enter and place InCS must also
be duplicated N times since tokens and bindings are typed by the new cartesian products
types. The main problem of this modeling technique is that an upper bound of the bag
cardinality must be known a priori (here, N = 3 was chosen). Also, changing the model

Class
 Proc is 1..3;
 Res is 1..6;
Domain
 PR is <Proc, Res>;
 PRR is <Proc, Res, Res>;
 PRRR is <Proc, Res, Res Res>;
Var
 p in Proc;
 r1, r2, r3 in Res;

<r1><r1>

<r1>

<p,r2,r3>
<p, r1,r2,r3>

<p, r1,r2,r3>
<p, r1,r2>

<r1>

<p,r2>

<p, r1,r2>

<r1>

<p,r1>

<p>
exit3

<p>

exit2

release2<r1>+<r2>+
<r3>

<p>
<p,r1,r2,r3>

enter3 PRRRInCS3

<r1>+
<r2>

<p>

<p,r1,r2>
PRRInCS2

enter2

<p>

<r1>

<p,r1>

<p>

release1

exit1

PRInCS1

enter1

Res
R

Proc
OutCS

Fig. 2: Unfolding the model of Fig. 1 for 1 < card(R)≤ N,with N = 3.

4

parameters (i.e. type definition) or guards has an impact on the model’s structure, thus
leading to uneasy maintenance.

The second strategy is to “pump” resources (generally one by one). For instance the
exit transition would be replaced by a sub-model having several places and the transi-
tions ensuring that all resources used by a process are released. The main drawback of
this approach is that it changes the semantics of the model by introducing more states
and interleaving in the state space. Furthermore, it requires either the use of inhibitor
arcs, or to preserve and manage the number of allocated resources to p. It is also hard
to scale up, as for the previous strategy.

The SNB model is therefore much more compact and scalable than its SN equiva-
lent. Indeed, modification on the model parameters does not require structural changes.

Benefits of SNBs Bags in SNBs allow to abstract complex constructs such as the
aforementioned pumping scheme. The encapsulation of bags in tokens also allows a
better structuring of the model. This is illustrated in our example where they encode
quite clearly the allocation of resources to a process. Bags in SNB thus offer to the
modeler two tools: an abstraction mechanism, along with a structuring mechanism, that
may be combined.

Moreover, by avoiding situations that generate interleaving, bags reduce the need
for partial order techniques that are difficult to stack on top of decision diagrams and
symmetries without paying the price of not using this technique.

This is what we call “extreme symmetries”: a way to structure symmetries in the
system specification to enable the activation of efficient encoding of the state space
generation and analysis (in the decision diagram meaning of it). This structuring infor-
mation is transparently provided by the modeler instead of being guessed by the model
checker.

2.2 Decision Diagrams

Principle Shared Decision Diagrams (DD) [4] are a data structure to compactly rep-
resent sets. There are many variants of decision diagrams used for model-checking, but
they all rely on the same underlying principles: i) nodes of the decision tree are unique
in memory thanks to a canonical representation; ii) the number of paths through the
diagram (states) can be exponential in the representation size (nodes in the DD); iii)
using caches, most operations manipulating a DD are polynomial in the representa-
tion size; iv) the effectiveness of the encoding strongly depends on the chosen variable
ordering [9].

Set Decision Diagrams (SDD) In this paper we rely on Hierarchical Set Decision Dia-
grams (SDD, defined in [14]), which extend classical BDD in two respects: 1) variables
are considered to have a set domain instead of a Boolean one; 2) operations over SDD
are encoded using homomorphisms instead of the usual fashion where another decision
diagram with two variables per variable of the state signature is used. Definitions are
taken almost verbatim from [29].

A SDD is a data structure for representing a set of sequences of assignments of the
form ω1 ∈ s1;ω2 ∈ s2; · · · ;ωn ∈ sn, also noted ω1

s1−→ ω2
s2−→ ·· ·ωn

sn−→ 1, where ωi are

5

variables and si are sets. These sets can themselves be represented by SDD: in that case,
we think of SDD as hierarchical decision diagrams. We assume no implicit variable
ordering and the same variable can occur several times in an assignment sequence. We
define the terminal 1 to represent the empty assignment sequence, terminating any valid
sequence. The terminal 0 represents the empty set of assignment sequences. Let Var be
a set of variables, and for any ω in Var, let Dom(ω) be the domain of ω, that may be
infinite.

Definition 1 (SDD). The set S of SDD is defined inductively by δ ∈ S if either:

– δ ∈ {0,1} or
– δ = 〈ω,π,α〉 with:
• ω ∈ Var,
• π = {s0; . . . ;sn} a finite partition of Dom(ω)
• α an injective mapping from π to S

By convention, paths terminated by the SDD 0 are not represented.

Let us note that SDD or other variants of DD can be used as the domain of variables,
thus introducing hierarchy in the data structures.

Example of State Encoding let us illustrate the use of SDD with a simple example:
the encoding of two states in the model of Fig. 1:

S0 = InCS(/0)+OutCS(〈1p〉+ 〈2p〉+ 〈3p〉)+R(〈1r〉+ 〈2r〉+ 〈3r〉+ 〈4r〉+ 〈5r〉+ 〈6r〉)
S1 = InCS(〈1p,{1r,2r,3r,4r,5r,6r}〉)+OutCS(〈2p〉+ 〈3p〉)+R(/0)

S0 is the initial state where all resources are available and all processes out of the
critical section. S1 is a state where process 1 is in the critical section and uses all re-
sources. Figure 3 shows a possible encoding of these two states. Let us first provide
some notation convention in this figure:

– 1p,2p,3p (respectively 1r,2r,3r,4r,5r,6r) correspond to the values in Proc (respec-
tively Res),

– double lines correspond to the encoding of the marking structure, single lines to a
piece of marking and dotted lines to a hierarchical relation,

1

InCS

OutCS

R

x

1

OutCS

R

1

1

1p

2p

3p

1p

1

1r

2r

3r

4r

5r

6r

1

Fig. 3: Example of hierarchical encoding of some markings from the net of Fig. 1

6

The main part of this SDD has two paths: the left one encodes S1, the right one
encodes S0. The encoding of S1 must be read as follows: place InCS holds a composed
token represented by another SDD on the left. This SDD refers itself to a second one
that represents the bag containing one occurrence of each element in Res. Then, contin-
uing the path, place outCS holds two tokens: 2p and 3p. Finally, place R is empty (the
underlying SDD is reduced to its terminal). A similar interpretation can be performed
for S0.

Figure 3 illustrates several types of sharing with SDD. First, as for traditional deci-
sion diagrams, common nodes are represented only once (let us note that the terminal
node is represented several times to make the figure clearer but there is only one oc-
currence in memory). Second, sub-SDD introduce a new type of sharing. Typically, the
marking of R in S0 and the bag contained in the token of InCS in S1 are represented once
in a sub-SDD. Similarly the rightmost SDD encodes two markings: {〈1p〉,〈2p〉,〈3p〉}
and {〈2p〉,〈3p〉} that share a common part.

SDD operations SDD support standard set operations: ∪, ∩, \. The semantics of these
operations are based on the sets of assignment sequences that the SDD represent.

SDD also offer a concatenation δ1 · δ2 which replaces terminal 1 of δ1 by δ2. This
corresponds to a cartesian product. Basic and inductive homomorphisms are also in-
troduced to define application-specific operations. A more detailed description of SDD
homomorphisms can be found in [13].

A basic homomorphism is a mapping Φ : S 7→ S satisfying Φ(0) = 0 and ∀δ,δ′ ∈
S,Φ(δ∪δ′) = Φ(δ)∪Φ(δ′). Many basic homomorphisms are hard-coded. The sum +
operation between two homomorphisms (∀δ ∈ S,(Φ1 +Φ2)(δ) = Φ1(δ)∪Φ2(δ)) and
the composition of two homomorphisms ◦ (Φ1 ◦Φ2(δ) = Φ1(Φ2(δ))) are themselves
homomorphisms.

A homomorphism c is a selector iff. ∀δ ∈ S,c(δ) ⊆ δ. This allows to represent
boolean conditions, as c selects states satisfying a given condition; thus the negation of
c is c̄(δ) = δ\ c(δ). As a shorthand for "if-then-else", we use IfThenElse(c,h1,h2) =
h1 ◦ c+h2 ◦ c̄, where h1 and h2 are homomorphisms.

This mechanism is generalized with a variant called "multi-linear" homomorphisms.
Such a homomorphism splits a SDD into several parts, for which it applies a specific
operation.

Multi-linear homomorphisms are particularly useful when one wants to change the
value of a variable x depending on the value of a variable y that has not been read yet
(e.g. in tokens containing bags). Since SDD represent a set, several values for y may
exist. Multi-linear homomorphisms split the SDD into several subsets s1 . . .sn, one for
each value of y. Thus, for each i, all the elements of si have the same value for y and
can therefore be applied the same update of variable x. Thus, the main part (x) remains
unchanged and this reduces the number of temporary SDD nodes to be merged later;
this reduced the known “peak-effect” of decision diagrams.

The fixpoint h? of a homomorphism, defined as h?(δ)= hk(d) where k is the smallest
integer such that hk(δ) = hk+1(δ), is also a homomorphism provided k exists.

Besides providing a high level way of specifying a system’s transition relation,
homomorphisms can be used to express many model checking algorithms directly.
For instance, given a SDD s0 representing initial states and a homomorphism succ

7

representing the transition relation, we can obtain reachable states by the equation
Reach = (succ+ Id)?(s0).

Specifying model checking problems as homomorphisms allows the software li-
brary to enable automatic rewritings that yield much better performances, such as the
saturation algorithm [19].
Discussion on SDD When hierarchical structuring is possible, SDD allow a better
sharing than traditional “flat” decision diagrams. The main reason is that hierarchy in-
troduced flexibility in the encoding, thus reducing the known effect of variable ordering
on the performances of this technique. They also enable partial reuse of local encoding
patterns (as shown in Fig. 3)

Finally, the homomorphism notion and the associated rewriting techniques allow
an intensive use of caches and the activation of efficient resolution algorithms such as
automatic saturation [19]. Therefore, SDD are a good candidate to be stacked with the
symmetry-based optimizations brought by SNB.

In this specific framework, multi-linear homomorphisms are of particular interest
to canonize marking. This is because the structure of the marking may not respect the
locality of the operations where decision diagrams are usually very efficient. Such ho-
momorphisms could help to reduce the drawback of this lack of locality.

3 Formal Analysis of Extreme Symmetric Systems

Formal analysis consists in verifying expected properties of a system modeled in an ap-
propriate formalism. We focus here on state-based analysis. Thus, expected properties
usually are specified as reachability formulas, deadlock detection, LTL or CTL formu-
las, etc. over the model state space. The drawback of these approaches is the so-called
combinatorial explosion of the number of states that hinders analysis.

3.1 Existing Approaches for the Analysis of Symmetric Systems

Several approaches have been proposed to tackle this combinatorial explosion. We fo-
cus on two of them, namely symmetry reduction, and decision diagrams. We then asso-
ciate these two techniques with bag-based modeling.
Symmetries Concurrent systems often exhibit symmetries: the typical example con-
sists in n identical processes that behave asynchronously. A state in such systems is then
characterized by the states of these n processes, up to a renaming of the processes: the
processes are all behaviorally equivalent.

Formally, two components are said to be symmetrical if they can be permuted with-
out changing the behavior of the system. In most systems, there are several groups of
components with similar behavior: each component can be permutable with any com-
ponent in the same groups. In SNB, such behavioral groups are defined as equivalence
classes on C.

Definition 2 (Color Equivalence Classes). Let us consider a discrete data type (i.e. a
color in a SNB) C. Two colors in C are symmetrical if the behavior of the system is not
affected when they are swapped.

8

The “is symmetrical to” is an equivalence relation over C. Its equivalence classes
C1, . . . ,Cn partition C in the following way:

C =
⋃̇

i=1..N

Ci

The symmetries on the colors naturally extend to symmetries of system states. The
relation “is symmetrical to” is also an equivalence relation over the set of system states,
whose equivalence classes are also called symbolic states. The quotient state space is
defined as the quotient of the reachability graph by this equivalence relation [6]. In
favorable cases, the quotient state space is exponentially smaller than the state space.

Decision Diagrams We mentioned decision diagrams in section 2.2 as a compact struc-
ture. They were first used in model checking [5] to successfully handle large state
spaces. Several variants have been used since then for the efficient representation of
large state spaces.

Symmetry reduction and decision diagrams can be used together. Although previ-
ous works have shown their efficiency, decision diagrams still require specific algo-
rithms because their optimal use is not straightforward. [8] has shown that the tradi-
tional approach for the representation of complex operations on decision diagrams fails
at providing an efficient solution to the computation of a quotient state space. How-
ever, the notion of homomorphism presented in section 2.2 appears to be a promising
way to overcome this obstacle, as several investigations show [13, 28, 10]. Neverthe-
less, the design of algorithms for symmetry reduction using decision diagrams is still a
challenging problem.

3.2 Using Bags Information to Optimize State Space Generation

Bags provide an abstraction mechanism, especially for subsystems that generate inter-
leaving. They thus decrease the need for partial order techniques that are incompatible
with decision diagrams. This can be observed on transition enter in Fig. 1 and its un-
folding presented in Fig 2. In the SNB, there is only one possible transition to be fired
while, in the second model, several exist. So, if the number of symbolic states in the
quotient state space remains the same, the number of firings is dramatically reduced
in the case of SNB [10]. Then, we avoid several type of situations where partial order
techniques could be operated.

At this stage, several techniques can be activated, based on the information carried out
by bags, as provided in SNB. We list these techniques before showing how they are
applied to implement the transition relation.

Technique 1: dedicated representation of guards together with the definition of Sym-
metric nets, a dedicated representation for guards was introduced [6]. The objective was
to preserve the information about equivalence classes in color types and thus, to enable
the implementation of the so-called symbolic firing of transitions.

For instance, an expression like v < V (where v represents a variable and V a con-
stant in the color class C) implicitly defines two color equivalence classes. The first one
C1 contains all the values of C that are smaller than V , and C2 contains the other values

9

of C. Once the color equivalence classes have been computed, such an expression can
be rewritten v ∈C1.

This rewriting can be generalized to any relation between a variable and a constant
provided that equivalence classes are computed. Guards are then expressed using a dis-
junction of membership test to selected equivalence classes. For instance, inequalities
between two variables leads to a partition of C into N = |C| singleton subclasses (i.e.
such an expression breaks all the symmetries) while = and 6= preserve the equivalence
relation.

Such a representation is painful to explicit by the modeler but it can be automati-
cally computed on Symmetric Nets [27]. Extensions of this algorithm can be provided,
considering extra operators to manage bags cardinalities.

Technique 2: deducing a hierarchical representation from the bag structure This
idea has been introduced in a first reachability analysis tool for SNB [10] and its prin-
ciple is roughly presented in the example for marking encoding in Fig. 3. It can also be
extended to the manipulation of bags.

Technique 3: recursive unfolding this technique is efficient when a system (or parts
of a system) can be defined recursively [19]. Let us sketch its principle on the din-
ing philosophers problem. Instead of considering symmetries “horizontally” (e.g. all
philosophers share the same behavior), the idea is to consider them “vertically”. Then,
Tn the table of n can be decomposed in a recursive way:

Tn = 2× Tn
2

+ interactions = 2× 1
2 tables

= 2×
︷ ︸︸ ︷
2×Tn

4
+ interactions + interactions = 4× 1

4 tables

= 2× 2×
︷ ︸︸ ︷
2×Tn

8
+ interactions + interactions + interactions = 8× 1

8 tables

... ...

until T2 (the “elementary” table with 2 philosophers) is reached. This technique,
when it applies for regular systems, proved to be extremely efficient thanks to a recur-
sive hierarchical encoding (which is possible with SDD). We show, later in this paper,
that bags can be encoded recursively in a similar way to the example provided here.

Technique 4: anonymization this technique was introduced to deal with the compu-
tation of a hierarchical order to encode a state space with SDD [20]. The principle is
to reuse similar patterns with a new interpretation. For instance, if we consider two se-
quences of affectations (x = 4−→ y = 2−→ 1) and (t = 4−→ u = 2−→ 1), one can observe
that x,y for the first one and t,u for the second one can be considered as “contextual
information”, thus reducing those two patterns to a single one.

This technique, associated with a hierarchical representation, can dramatically re-
duce the number of different SDD patterns, and thus, lead to a more compact storage of
the state space.

These four techniques are exploited to elaborate an efficient representation in memory
of the state space, as well as performant computation of the quotient state space.

10

Class
Res is Res1 = [1..3] ∪

Res2 = [4..6];

Var
r1 in Res1;
r2 in Res2;

<r1>+ 2*<r2><r1>+ 2*<r2>
Resfree Resbusyassign

M

Fig. 4: illustration of the symbolic firing, M = 〈Res1.all〉+4×〈Res2.all〉

3.3 Computing the Transition Relation in SNB

We detail here how efficient algorithms dedicated to SNB can be deduced from the
techniques identified in the previous section.
The Transition Relation Models usually are specified in terms of a transition system,
with initial states and a generic transition relation. The verification of a property then
consists in an exploration of the state space. Algorithm 1 is typical of the state space
generation for a model given as a set of initial states and the transition relation. Once
the state space has been generated, several properties (reachability, deadlock detection,
LTL, CTL formulae . . .) can be checked against it.

Depending on the type of property to be verified, this algorithm can be tweaked
for improved performance. For instance, reachability and LTL formulae can be checked
on-the-fly (the algorithm returns as soon as the property is verified or a counter-example
is found). We do not focus on such optimizations but on the “core generation” of the
state space instead.
The Transition Relation in SN The transition relation is quite straightforward in this
case. [6] introduces a framework for an efficient use of symmetries in SN. Formally,
colors are separated into color equivalence classes that express the possible symmetries,
as explained earlier.

Let us illustrate this framework with the SN of Fig. 4 that illustrates the affectation
of resources in a system. There are two types of resources: Res1 (one is hold at a time)
and Res2 (two copies are hold simultaneously).

Since all resources in Res1 (resp. Res2) are symmetrical, there are several symmet-
rical bindings for the variables r1 and r2 that lead to symmetrical markings.

The color equivalence classes are partitioned into dynamic subclasses, depending on
the marking. For instance, Res1 could be split into Z1, the free resources (tokens in place
free), and Z2 the busy ones (tokens in place busy). A symbolic marking is thus expressed
in terms of such dynamic subclasses. Similarly, binding the variables of a transition to
dynamic subclasses rather than explicit values allows to capture several symmetrical
bindings at once. For instance, considering that Res1 = Z1∪Z2 and Res2 = Z3∪Z4, r1

Require: a model M given as a set of initial states S0 and the transition relation Next
S← S0
repeat

S← S∪Next(S)
until a fixpoint is reached
return S

Ensure: S is the state space of M
Algorithm 1: The state space generation algorithm

11

and r2 have two possible bindings each, leading to four symbolic bindings. This number
is to be compared to the nine possible explicit bindings (9 in the example).

Variables can only be bound to dynamic subclasses Z such that card(Z) = 1. This
may lead to a preprocessing of the symbolic marking, called splitting in order to obtain
such dynamic subclasses. Similarly, once the symbolic firing occurred, a postprocessing
operation called grouping recomputes the dynamic subclasses.

Let us note that, in this case, both the description of markings and the description
of bindings are represented using equivalence classes as basic representation of values.
The larger the color equivalence classes, the fewer values are evaluated during the firing
of transitions, and the fewer states in the quotient state space.
The Transition Relation in SNB [18] extends the notion of symbolic markings and
symbolic firing to SNB. The sole difference between the SN and SNB transition rela-
tions is the binding of bag variables, and the efficient computation of all the possible
bindings. In SNB, classical variables are instantiated as in SN, and bag variables are
instantiated with bags over dynamic subclasses. The same processes of splitting and
grouping the dynamic subclasses, adapted for bags, occur.

Finding all the bindings of a transition with bag variables is always reducible to
the enumeration of bags over a finite domain (the dynamic subclasses) with bounded
cardinality. A naive enumeration would however suffer from the interleaving that was
supposed to be avoided. We propose an appoach for the efficient computations of such
bindings.

A bag (or multiset) is a set where there can be several instances of some elements.

Definition 3. Bag Let C = {c1 . . .cn} be a finite set. A bag b over C is a formal sum
b = Σn

i=1aici where ai ∈N is the multiplicity of the element ci.
The cardinal of b is |b| = Σn

i=1ai, and the support of b is the set of elements with non-
zero multiplicity: Supp(b) = {ci|ai > 0}.
The multiplicity of ci may also be denoted by b(ci).

Bag(C) denotes the set of multisets over C. Bagn(C) denotes the set of multisets over C
having a cardinality of n. The union, intersection and difference on sets extend naturally
to multisets:

– b1∪b2 = Σn
i=1(b1(ci)+b2(ci))ci

– b1∩b2 = Σn
i=1 min(b1(ci),b2(ci))ci

– b1−b2 = Σn
i=1 max(b1(ci)−b2(ci),0)ci

– b1 ⊂ b2 if and only if b1(c)≤ b2(c) for all c ∈C
Note that when all the multiplicity are 0 or 1, then the bag is a set, and that all defini-

tions above fall back to classical set definitions. Further optimizations can be obtained
when the encountered bags are actually restricted to be sets, but are not detailed here as
they mainly rely on classical computations over sets.

Application of technique 1 is then trivial (canonization of guards). However, it re-
quired some extensions for bags. In order to compute the set of bags having cardinal n
over a set C, one may use recursive definitions concerning either the cardinality of, or
the support of the bags, thus applying technique 2.

Property 1 Recursion over the cardinal
Bagm+n(C) = Bagm(C)]Bagn(C) = {b1∪b2|b1 ∈ Bagm(C),b2 ∈ Bagn(C)}

12

Property 2 Recursion over the support

Bagn(C1∪ . . .∪Ck) = (
k⋃

i=1
Bagn(Ci))∪Bag∗n(C1, . . . ,Ck) where Bag∗n represents the bag

of cardinality n over mixed supports (i.e. involving several Ci).

Properties 1 and 2 allow to represent a set of bags of a given cardinality in terms of
sets of bags of smaller cardinality or smaller support.

When colors classes are split into equivalence classes, the use of property 2 re-
duces the problem in terms of generating sets of bags over color classes. Then, we use
the recursion over bags cardinality. All together, these properties allow for an efficient
divide-and-conquer generation strategy.

For instance, by carefully choosing the parameters n and m in property 1, one can
represent Bagn(C) in O(log(n)) SDD nodes. This leads to the type of recursive encod-
ing over the structure of the bags as done by technique 3 (its principle is sketched in
Fig. 5). Thus, as soon as we detect an upper bound for the cardinality of a bag over C,
its representation is easily elaborated based on this scheme.

Finally, technique 4 (Anonymization) can be applied to increase the sharing of com-
mon patterns. This can be applied to the markings structure (see the example presented
in Fig. 3) or to the net structure (as illustrated in [20]).

It is also applicable to the recursive bag representation as illustrated in Fig. 6. The
idea is to have a representation of the bag cardinalities for a generic class C that can
be mapped to any C or Ci ⊂C. Then, values in C are only referenced by their position
and the maximum cardinality of C is the one of the largest type (or equivalence class).
When a reference is made to C, the associated context is expressed using a reference
to the effective class C is mapped to. This relation is done at runtime when effective
markings or transition bindings in the SNB are computed. By applying this principle to
the recursion over bag cardinalities in Fig. 5 we get the reduced representation of Fig. 6.
This technique also applies to the recursion over bag support.

All together, these techniques allow to contain the combinatorial explosion of the state
space in terms of memory, as well as CPU consumption, since less calculus are needed.

Overview of the state space representation The representation of a SNB state space
is divided in three parts (see Fig. 7):

1. the structure of the system states,
2. a sets of bags “heap”,

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

Bagn/2(C1 ∪ C2)

Bagn(C1)

Bagn/2(C1)

1

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

Bagn/2(C1 ∪ C2)

Bagn(C1)

Bagn/2(C1)

1

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

Bagn/2(C1 ∪ C2)

Bagn(C1)

Bagn/2(C1)

1

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

Bagn/2(C1 ∪ C2)

Bagn(C1)

Bagn/2(C1)

1

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

Bagn/2(C1 ∪ C2)

Bagn(C1)

Bagn/2(C1)

1

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

Bagn/2(C1 ∪ C2)

Bagn(C1)

Bagn/2(C1)

1

Bagn(C2)

Bagn/2(C2)

2

Bagn(C2)

Bagn/2(C2)

2

•••

••••••

•••

recursion over the cardinal
recursion over the support

Fig. 5: Recursion over the definition of bags

13

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

Bagn/2(C1 ∪ C2)

Bagn(C1)

Bagn/2(C1)

1

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

Bagn/2(C1 ∪ C2)

Bagn(C1)

Bagn/2(C1)

1

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

Bagn/2(C1 ∪ C2)

Bagn(C1)

Bagn/2(C1)

1

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

Bagn/2(C1 ∪ C2)

Bagn(C1)

Bagn/2(C1)

1

•••

•••

•••

recursion over the cardinal
recursion over the support

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (
k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

C = C1 C = C2

Bagn(C)

Bagn/2(C)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

1

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (
k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

C = C1 C = C2

Bagn(C)

Bagn/2(C)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

1

Brief Article

The Author

April 30, 2012

==

slide 11 (”rep
resen

tatio
n of values”)

Bagm,n(C
) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C
) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag
∗
n
(C1, . .

. , Ck)

==

slide 12 (”set
of bags heap”)

C = C1
C = C2

Bagn(C
)

Bagn/2
(C)

Bagn(C1 ∪ C2)

Bag
∗
n
(C1, C2)

Bag
∗
n/2

(C1, C2)

1

Brief Article

The Author

April 30, 2012

==

slide 11 (”rep
resen

tatio
n of values”)

Bagm,n(C
) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C
) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag
∗
n
(C1, . .

. , Ck)

==

slide 12 (”set
of bags heap”)

C = C1
C = C2

Bagn(C
)

Bagn/2
(C)

Bagn(C1 ∪ C2)

Bag
∗
n
(C1, C2)

Bag
∗
n/2

(C1, C2)

1

Brief ArticleThe Author
April 30, 2012

==

slide 11 (”representation of values”)
Bag

m,n (C) = {B ∈ Bag(C) | m ≤
card(B) ≤

n}

Bag
n (C) �Bag

m (C) =
Bag

n+m (C)

Bag
n (C

1 ∪ . . . ∪ C
k) =

(
k�

i=1
Bag

n (C
i)) ∪Bag ∗

n (C
1 , . . . , C

k)

==

slide 12 (”set of bags heap”)

C =
C

1

C =
C

2Bag
n (C)

Bag
n/2 (C)Bag

n (C
1 ∪ C

2)Bag ∗
n (C

1 , C
2)Bag ∗

n/2 (C
1 , C

2)1

Brief ArticleThe Author
April 30, 2012

==

slide 11 (”representation of values”)
Bag

m,n (C) = {B ∈ Bag(C) | m ≤
card(B) ≤

n}

Bag
n (C) �Bag

m (C) =
Bag

n+m (C)

Bag
n (C

1 ∪ . . . ∪ C
k) =

(
k�

i=1
Bag

n (C
i)) ∪Bag ∗

n (C
1 , . . . , C

k)

==

slide 12 (”set of bags heap”)

C =
C

1

C =
C

2Bag
n (C)

Bag
n/2 (C)Bag

n (C
1 ∪ C

2)Bag ∗
n (C

1 , C
2)Bag ∗

n/2 (C
1 , C

2)1

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

C = C1 C = C2

Bagn(C)

Bagn/2(C)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

1

Brief Article

The Author

April 30, 2012

==
slide 11 (”representation of values”)

Bagm,n(C) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag∗n(C1, . . . , Ck)

==
slide 12 (”set of bags heap”)

C = C1 C = C2

Bagn(C)

Bagn/2(C)

Bagn(C1 ∪ C2)

Bag∗n(C1, C2)

Bag∗n/2(C1, C2)

1

Brief Article

The Author

April 30, 2012

==

slide 11 (”rep
resen

tatio
n of values”)

Bagm,n(C
) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C
) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag
∗
n
(C1, . .

. , Ck)

==

slide 12 (”set
of bags heap”)

C = C1
C = C2

Bagn(C
)

Bagn/2
(C)

Bagn(C1 ∪ C2)

Bag
∗
n
(C1, C2)

Bag
∗
n/2

(C1, C2)

1

Brief Article

The Author

April 30, 2012

==

slide 11 (”rep
resen

tatio
n of values”)

Bagm,n(C
) = {B ∈ Bag(C) | m ≤ card(B) ≤ n}

Bagn(C
) �Bagm(C) = Bagn+m(C)

Bagn(C1 ∪ . . . ∪ Ck) = (

k�

i=1

Bagn(Ci)) ∪Bag
∗
n
(C1, . .

. , Ck)

==

slide 12 (”set
of bags heap”)

C = C1
C = C2

Bagn(C
)

Bagn/2
(C)

Bagn(C1 ∪ C2)

Bag
∗
n
(C1, C2)

Bag
∗
n/2

(C1, C2)

1

Fig. 6: Optimized representation of bags (anonymization over bag cardinalities)

3. representation of bag values.

Structure of the system states encodes the structure of states as they are expressed in
the SNB. A naive way to encode this is to list the net places in a given order. However,
the hierarchy supported by SDD allows a better reuse of patterns describing parts of the
SNB structure.

The representation of tokens in places refers to a “heap” storing sets of bags as a
unique and shared data structure.

Sets of bags “heap” encodes the bags of color that can be referenced to represent tokens
in places. Once again, the representation can be hierarchical, especially when bags are
hold in colored tokens.

The representation of bags in tokens refers to common representation of bag.

Representation of bag values recursively encodes the bags referenced in the state space.

The four techniques mentioned in section 3.2 can be activated there. In particular,
anonymization allows a better reuse of representation patterns in any part of the state
space.

Implementation of the transition relation As explained earlier, one of the main char-
acteristics of SDDs is the ability for developers to use dedicated operations (homo-
morphisms). To take full advantage from SDDs, the transition relation is encoded with
homomorphisms. There are four steps in the transition relation [18]:

1. splitting dynamic subclasses,
2. binding the variables of each transition to splitted dynamic subclasses,
3. firing the transition,
4. canonizing the symbolic markings to group and rename dynamic subclasses.

Structure of
the system states

Set of bags
«heap»

Representation
of bag values

Fig. 7: Structure of the state space representation

14

<p,{BG}>

<BP> <BP>
<p> <BG>

Class
 People is 1..P;
 Gift is 1..G;
Domain
 BagPeople is bag (People);
 BagGift is bag(Gift);
 PeopleBagGift is <People, BagGift>;

Var
 p in People;
 BP in BagPeople;
 BG in BagGift; People

waiting People
ready

PeopleBagGift
out

airlock

[card(BP) < 3 and
card(BP) > 1]

shopping
[card(BG) < 3]

Gift
warehouse
MgMp

Fig. 8: The SaleStore example modeled with a SNB. Mp = 〈People.all〉 and Mg =
〈Gifts.all〉, P = G = n is the scaling parameter of this example.

Each step is encoded as a homomorphism, and the transition relation is the compo-
sition of these four homomorphisms. Each step is theoretically independent, but it is of
interest to propagate some information from one step to the next one for optimization
purposes. In our implementation for instance, the two first steps are almost merged, in
order to compute as few bindings as possible.

Building these operations on top of SDDs allows to profit from the shared structure.
For instance, splitting the dynamic subclasses in the marking of a place is done only
once for all the markings that share it. This significantly optimizes each step, especially
the costly canonization.

The presented data structures are generated on the fly by the homomorphisms when
needed. Thus, the SDD representation of the system acts like a cache itself.

4 Assessment

In this section, we take several examples for which the use of SNB is of interest for
modeling purpose. We then provide some performances compared to the reference tool
on Symmetric Nets: GreatSPN [17].

4.1 The Examples

We selected three examples that illustrate the interest of bag-based modeling as well
as the interest of bags in the optimization of state space based analysis: the deadlock-
free resource manager, the salestore, and the distributor. The two first models are “toy
examples” emphasizing the use of bags in tokens. The last model also benefits from the
use of bags but it was designed from a case study found in the litterature.

The resource manager model This is the model presented in Fig. 1 (see section 2.1).
However, for the need of performances analysis, we constrained it to let processes have
a maximum of three resources in their critical section. To do so, we changed the guard
of transition enter into [card(R) > 0 and card(R) < 4]. The scaling parameter of
this example is n in the initial marking Mr.

This model shows how bags can help to preserve symmetries. In order to discrim-
inate between the transition exit (where a process and all its allocated resources are
released) and the transition release (where some resources are released, but the process
remains in he critical section), the SN unfolding breaks a few symmetries. This explains

15

the difference of the number of symbolic states found by Crocodile and by GreatSPN in
Table 1 (section 4.2). This is also an example of the interest of the bags in such models.

The salestore model This model was introduced in [10] and is shown in Fig. 8. People
enter the sale store through an airlock (transition airlock) with a capacity of two (of
course, a single person may enter too). Then, people may buy items (at most two but
possibly zero if none fits their need) and leave with the acquired items. Let us note
that this example has two scalable parameters: P, the number of involved people in the
system and G, the number of possible gifts in the warehouse. In our example, the model
has been explicitly constrained: the airlock has a maximum capacity of 2 people and
each customer cannot leave with more than 2 gifts.

The distributor model This model of a coffee dispenser machine and optional features
(e.g. milk, sugar, etc.) was introduced in [25] as a Feature Petri Net. We present in Fig.9
a SNB version of this model. The machine dispenses products (place theProducts) like
coffee or tea. When brewing (transition elaborate) one of these products, it may add
options (place theOptions) like milk or sugar, on demand.

The machine is refilled with products and options according to the conditions on
transitions addProduct and addOption respectively. Options may be enabled (transition
enable) or disabled individually (transition disable) and dynamically.

The original work in [25] presenting Feature Petri nets is intended to model the
behavior of Software Product Lines (SPL). That approach was proposed as a means to
“ensure that all products3 meet their specifications without having to check each prod-
uct individually”. A modular modeling framework is then proposed to incrementally
build larger feature nets from smaller ones. The Feature nets are based on P/T nets.
New features are thus added as new net fragments.

Our model is an adaptation of this example, showing SNB suitability to model a
SPL: the specification is much more compact since, instead of adding pieces of Nets,

3 i.e. an assembly of selected features to build a specific model (e.g. {Coffee, Tea, Milk}).

[card(BO2) > 3 and

card(BO2) < = 6]

addOption

Class

 Products is 1..3;

 Options is 1..3;

Domain

 BagOptions is bag(Options);

 BagProducts is bag(Products);

Var

 p in Products;

 o in Options;

 BO in BagOptions;

 BO2 in BagOptions;

 BP in BagProducts; Mp

Mo

M ′
o

<o>

<o>

<o>

<o>

<p>

<BP><BP>

<BO> <BO>

<BO2><BO2>

<p>

enabledisable

Options
on

Optionsoff

Products
theProducts

Products

productSlots

Options

theOptions

Options

optionSlots

[card(BO) <= 3 and

BO included BO2]

elaborate

[card(BP) > 3 and

card(BP) < = 6]

addProduct

<BO2>

Fig. 9: The distributor example modeled with a SNB. Mp = x×〈Products.all〉, Mo =
x×〈Options.all〉 and M′o = 〈Options.all〉, x is the scaling parameter of this example.

16

<g1>+<g2>
<g1>

<p1>

<p1>

<p1>+<p2><p1>+<p2>

<p1>

<p1><p1>

<p1>

<p1, g1>

<p1, g1, g2>

Gift
warehouse

shopping2gift

shopping1gift

airlock2

shopping0gift

airlock1

People
outwithout

People
ready

People
waiting

PeopleGift
outwith1

PeopleGiftGift
outwith2

Class
 People is 1..P;
 Gift is 1..G;
Domain
 PeopleGift is <People, Gift>;
 PeopleGiftGift is <People, Gift, Gift>;
Var
 p1,p2 in People;
 g1,g2 in Gift;

Mg

Mp

Fig. 10: The unfolded equivalent SN from the model of Fig. 8

only the definition of color types is changed. Moreover, thanks to the use of bags, scal-
ability over the sets of features and their multiplicity in the machine configurations is
guaranteed.

4.2 Performances

A first version of Crocodile was implemented and compared to GreatSPN [17] in [10].
GreatSPN is a well-known model checker for various classes of Petri Nets. Among its
various capabilities, we only use its quotient state space generation features. It works
with SN only, and does not use decision diagrams 4.

This first study revealed that the combination of symmetries and decision diagrams
is of interest: our tool was more performant than GreatSPN. However, at this stage, the
management of bags was not optimized at all. This impeded performances when bags
were used in tokens, while sets in tokens were appropriately handled.
For the resource manager and the salestore, we compare Crocodile2 to GreatSPN once
again. We compute the quotient state space of the SNB and the unfolded SN with
Crocodile2, and the quotient state space of the unfolded SN with GreatSPN. The un-
folded SN of the resource manager is presented in Fig. 2 and the one of the salestore is
presented in Fig. 10.

Since the distributor is too complex to unfold, we only compute the quotient graph
with Crocodile2 from the SNB version. The idea is to show its capability to scale-up
well. All experiments were run on a Xeon 64 bits at 2.6 GHz processor.

Table 1 reports these experiments. It displays the following information: value of the
scaling parameter, number of explicit states in the system, number of symbolic states
found by Crocodile2 and GreatSPN (they should be the same), time and memory to
compute the quotient state space in the various versions we processed. Gray cells show
that no experiment has been done for this configuration. EDNF means “execution did
not finished” (more than 4 hours of processing).

4 A prototype version of GreatSPN uses several variants of decision diagrams [1]: multi-way DD
(MDD), multi-terminal MDD (MTMDD), and edge-valued MDD (EV+ MDD). None of these
are hierarchical and they encode Stochastic P/T nets so far. Their results also show significant
gain from the original version. However, we could not use this version of GreatSPN against
our prototype.

17

scaling # Explicit # Symbolic States Time (s) Memory (KB)
parameter States Crocodile2 GreatSPN Crocodile2 GreatSPN Crocodile2 GreatSPN

on SNB on SN SNB SN SN SNB SN SN
Resource manager

02 1.8×1001 4 8 ε 0.02 ε 80 80 80
04 2.2×1003 12 38 0.04 0.48 0.05 80 3 112 80
06 7.2×1005 27 116 0.24 4 0.67 4 008 4 716 1 156
08 4.5×1008 53 289 1 23 44 8 188 8 816 9 076
10 4.8×1011 94 621 6 120 5892 19 120 16 820 851 596
15 8.2×1019 295 EDNF 165 3185 EDNF 245 212 101 860 EDNF
20 7.7×1028 717 2941 EDNF 3 059 216 EDNF
22 4.3×1032 973 6131 4 192 604
23 3.5×1034 EDNF EDNF EDNF

Salestore
02 2.9×1001 13 13 0.01 0.01 ε 80 80 80
04 4.2×1003 60 60 0.13 0.14 0.04 2 864 3 128 80
06 1.5×1006 180 180 0.94 0.97 0.63 5 720 6 028 1132
08 9.4×1008 425 425 5 4 40 12 292 14 108 9 056
10 9.7×1011 861 861 23 18 4798 32 056 34 352 851 452
15 1.6×1020 3 336 EDNF 500 242 EDNF 222 764 221 192 EDNF
20 1.3×1029 9 196 5010 2157 1 076 816 910 444
22 7.0×1032 12 948 10003 4596 1 811 008 1 398 944
23 5.6×1034 EDNF EDNF 6339 EDNF 1 730 348
24 4.5×1036 9357 2 419 028
25 3.8×1038 EDNF EDNF

Distributor
01 2.2×1004 64 0.11 2 740
02 1.4×1006 560 0.84 3 936
03 1.6×1007 2 400 4 7 064
04 8.9×1007 7 700 14 13 760
05 3.4×1008 20 384 43 26 768
06 1.0×1009 47 040 108 46 224
07 2.5×1009 97 920 236 71 436
08 5.7×1009 188 100 472 111 144
09 1.1×1010 338 800 918 171 040
10 2.2×1010 578 864 1596 239 684
11 3.8×1010 946 400 2894 420 620
12 6.5×1010 1 490 580 4553 699 408
13 1.0×1011 2 273 600 7763 1 070 832
14 1.6×1011 EDNF EDNF EDNF

Table 1: Performances of state space generation using Crocodile2 and GreatSPN.

Figure 11 provides charts showing the evolution of the required CPU and memory
for processing the quotient state space.

A first observation is that both tools compute the same number of symbolic states
for the Salestore model, a proof that our algorithm reaches the minimum quotient state
space with SNB. However, this is not the case for the resource manager and this is due
to the unfolding that breaks some hierarchical symmetries as we already mentioned in
section 4.1.

We also observe that, for small values of the scaling parameter, greatSPN outper-
forms Crocodile2 both in time and memory consumption. This is typical of the involved
techniques (both decision diagram-based and symmetries-based) that have an “initial
cost” due to the management of data structures, that is not compensated in the case of
small state spaces. Then, curves cross when the gain in memory and CPU compensates
this overhead.

18

1E−03

1E−02

1E−01

1E+00

1E+01

1E+02

1E+03

1E+04

 2 4 6 8 10
 15

 20
 22

ti
m

e
 (

s
)

scaling parameter

Experiment
Crocodile/SNB

Crocodile/SN
GreatSPN/SN

(a) Resource manager, time measures

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

 2 4 6 8 10
 15

 20
 22

m
e
m

o
ry

 (
K

B
)

scaling parameter

Experiment
Crocodile/SNB

Crocodile/SN
GreatSPN/SN

(b) Resource manager, memory measures

1E−03

1E−02

1E−01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

 2 4 6 8 10
 15

 20
 22

 24

ti
m

e
 (

s
)

scaling parameter

Experiment
Crocodile/SNB

Crocodile/SN
GreatSPN/SN

(c) Salestore, time measures

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

 2 4 6 8 10
 15

 20
 22

 24

m
e
m

o
ry

 (
K

B
)

scaling parameter

Experiment
Crocodile/SNB

Crocodile/SN
GreatSPN/SN

(d) Salestore, memory measures

1E−01

1E+00

1E+01

1E+02

1E+03

1E+04

 1 3 5 7 9 11
 13

ti
m

e
 (

s
)

scaling parameter

(e) Distributor, time measures

1E+03

1E+04

1E+05

1E+06

1E+07

 1 3 5 7 9 11
 13

m
e
m

o
ry

 (
K

B
)

scaling parameter

(f) Distributor, memory measures

Fig. 11: Time and Memory required to generate the quotient state space for the examples

For the two models we also compare with GreatSPN, we reach a stage where great-
SPN exceeds the maximum computation time. As observed in [10], the combinato-
rial explosion of firings is greater for GreatSPN since it canonizes more states than
Crocodile2. When both are working on SN, Crocodile2 benefits from the fact that de-
cision diagrams allow to fire and canonize a set of states at the same time. SNB bring
a strong reduction of the interleaving that should increase efficiency. In fact the smaller
number of symbolic states for the SNB version of the resource manager leads to an
increased efficiency of the state space generation in time (see Fig. 11a).

For those two models, we observe no increase of performances between the SNB
version and the unfolded SN one (for Crocodile2). This seems mostly due to the fact that

19

multi-linear homomorphisms have been recently implemented in libDDD and probably
require some optimization when associated with hierarchical representations. We guess
(this must be investigated) that there are some side effects on the cache management
that impede CPU gains and memory consumption.

The distributor model is difficult to model easily with SN while its structure would
depend on the numbers of products and options which is the scaling parameter (this
SNB structure remains constant). However, our tool is able to scale up quite well with
respect to the number of generated states.

4.3 Discussion

Evaluation of Reachability Properties So far, our prototype only provides analysis
of reachability properties. Such properties are constraints that can be checked during
state space generation. This does not bring extra complexity (just a constant due to the
property evaluation). Evaluation of a reachability property is done using the following
schema:

– translation of the property into constraint c on the symbolic markings (expressed as
a SDD),

– for each new symbolic state s, compare the canonical representation of s with c
(since both are SDDs, this is a fast operation).

So far, once a state verifying the property is found, the tool must reexecute the state
space generation algorithm to store the list of symbolic firings leading to the identified
state. Thus, verification of a reachability property may lead to building twice the state
space in the worst case. This complexity is compensated by the gain in the state space
generation.
Towards evaluation of CTL formulas CTL formulas can be evaluated on symmetric
systems provided that, either it respects the system symmetries, or the equivalence re-
lation is computed including constraints of both the model and the property (this may
degrade the model symmetries).

Crocodile2 is implemented on top of libITS [24], that provides access to SDD
via high-level structuring mechanisms (synchronizations and hierarchy). This library
supports the evaluation of CTL formulas when atomic propositions they refer to are
expressed in a symbolic way.

CTL evaluation heavily relies on the transition relation of the system. This is why
we focus on the efficiency of its implementation since it is a key issue to provide effi-
cient CTL analysis.
Usability of Bags in Tokens One could have some skepticism about the usability of
SNB. In fact, they are good to capture some dynamic aspects that are commonly found
in distributed systems when a variable number of resources is handled by an actor of the
system. This is typically the case for resources in the resource manager model (Fig. 1).
As shown in section 2.1, modeling of such parts with SN requires to manually bound
the number of handled resources. On top of the fact that symmetries are more difficult
to capture, this makes the model more complex, and each state to be handled more
difficult to encode in memory.

20

A domain that is very suitable for SNB-based modeling is games where players
carry out a variable number of objects or features. The resulting model is much simpler
and its analysis benefits from the use of Bags.

Moreover, the handling of SN being included in the handling of SNB, Crocodile2
remains a good tool to perform analysis on such models.

5 Conclusion

This paper presents a method that links a modeling concept recently introduced in Petri
nets, the use of bags in tokens, to some efficient state space generation techniques.
This modeling concept helps the modeler increase the structuring of symmetries in a
specification in a relatively “natural” manner. This bag concept (as introduced in SNB)
is of particular interest when associating a variable number of items to an entity (e.g. the
critical resources in the resource manager model – see Fig. 1). Such a modeling issue
often occurs when modeling distributed systems. This structuring information is reused
in the back-end of a model checker tool to tackle the combinatorial explosion.

One main interest of the proposed modeling concept is to reduce the need for par-
tial order techniques. Another originality is to increase the efficiency of the combined
use of symmetries-based techniques, together with hierarchical decision diagrams. This
association of techniques is of interest when performing state space-based analysis of
complex and distributed systems.

We have implemented the presented strategies in a tool, Crocodile2, which outper-
forms the previous version thanks to the intensive use of efficient data representation
techniques and operations. This tool is to be integrated in the CosyVerif verification
environment [12].

Early assessment of this method by means of SNB models shows increased perfor-
mance of reachability analysis versus a reference tool like GreatSPN. These promising
results strengthen the idea that, in order to tackle complex distributed systems analysis,
combined techniques must be activated together with enabling model-level optimized
constructs. However, this requires some structural analysis capabilities such as the ones
provided by Petri nets.

So far, we have experimented this association on Symmetric Nets with Bags (SNB).
A further objective is to generalize this concept in order to apply it to other types of
notations dedicated to classes of systems exhibiting symmetries such as peer-to-peer
applications or Software Product Lines. A first study in that direction [11] showed in-
teresting results.

Another objective is the optimization of the multi-linear homomorphisms that aim
at tackling the cost of non-locality when using decision diagrams. Such an improvement
would benefit to all application based on decision diagrams.

References

1. Babar, J., Beccuti, M., Donatelli, S., Miner, A.S.: Greatspn enhanced with decision diagram
data structures. In: 31st International Conference on Petri Nets and Other Models of Concur-
rency (ICATPN 2010). LNCS, vol. 6128, pp. 308–317. Springer (2010)

21

2. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction for con-
current software. In: 21th International Conference on Computer Aided Verification (CAV).
LNCS, vol. 5643, pp. 64–78. Springer (2009)

3. Bosnacki, D., Holzmann, G.J.: Improving spin’s partial-order reduction for breadth-first
search. In: Model Checking Software, 12th International SPIN Workshop. LNCS, vol. 3639,
pp. 91–105. Springer (2005)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers 35(8), 677–691 (Aug 1986)

5. Burch, J.R., Clarke, E.M., Mcmillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 States and beyond. Information and computation 98(2), 142–170 (1992)

6. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed coloured
nets for symmetric modelling applications. IEEE Transactions on Computers 42(11), 1343–
1360 (Nov 1993)

7. Clarke, E.M.: The birth of model checking. In: 25 Years of Model Checking. LNCS, vol.
5000, pp. 1–26. Springer (2008)

8. Clarke, E., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model
checking. Formal Methods in System Design 9(1), 77–104 (1996)

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge, MA, USA
(1999)

10. Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Crocodile: a Symbolic/Symbolic tool
for the analysis of Symmetric Nets with Bag. In: 32nd International Conference on Petri
Nets and Other Models of Concurrency (ICATPN 2011). LNCS, vol. 6709, pp. 338–347.
Springer, Newcastle, UK (June 2011)

11. Colange, M., Kordon, F., Thierry-Mieg, Y., Baarir, S.: State Space Analysis using Symme-
tries on Decision Diagrams. In: 12th International Conference on Application of Concurrency
to System Design (ACSD’2012). pp. 164–172. IEEE Computer Society, Hamburg, Germany
(June 2012)

12. Cosyverif: a verification environment: http://www.cosyverif.org (2012)
13. Couvreur, J., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.: Data decision

diagrams for Petri net analysis. Application and Theory of Petri Nets 2002 pp. 129–158
(2002)

14. Couvreur, J., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model structure.
Formal Techniques for Networked and Distributed Systems-FORTE 2005 pp. 443–457
(2005)

15. Girault, C., Valk, R.: Petri Nets for Systems Engineering. Springer Verlag - ISBN: 3-540-
41217-4 (2003)

16. Godefroid, P., Wolper, P.: A partial approach to model checking. In: Logic in Computer
Science, 1991. LICS ’91., Proceedings of Sixth Annual IEEE Symposium on. pp. 406 –415
(july 1991)

17. GreatSPN: Petri nets suite: http://www.di.unito.it/~greatspn (2012)
18. Haddad, S., Kordon, F., Petrucci, L., Pradat-Peyre, J., Treves, L.: Efficient state-based analy-

sis by introducing bags in petri nets color domains. In: American Control Conference, 2009.
ACC’09. pp. 5018–5025. IEEE (2009)

19. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Building efficient model checkers using hierar-
chical set decision diagrams and automatic saturation. Fundamenta Informaticae 94(3-4),
413–437 (September 2009)

20. Hong, S., Kordon, F., Paviot-Adet, E., Evangelista, S.: Computing a Hierarchical Static order
for Decision Diagram-Based Representation from P/T Nets. Transactions on Petri Nets and
Other Models of Concurrency (ToPNoC) V, 121–140 (January 2012)

21. Jensen, K.: Coloured Petri nets and the invariant-method. Theor. Comput. Sci. 14, 317–336
(1981)

22

22. Jensen, K., Kristensen, L.: Coloured Petri Nets : Modelling and Validation of Concurrent
Systems. Springer Verlag - ISBN: ISBN 978-3-642-00283-0 (2009)

23. Junttila, T.: On the Symmetry Reduction Method for Petri Nets and similar formalisms. Ph.D.
thesis, Helsinki University of Technology, Espoo, Finland (2003)

24. libits: http://move.lip6.fr/software/DDD (2012)
25. Muschevici, R., Proença, J., Clarke, D.: Modular Modelling of Software Product Lines with

Feature Nets. In: 9th International Conference on Software Engineering and Formal Methods
(SEFM). LNCS, vol. 7041, pp. 318–333. Springer (2011)

26. Tanenbaum, A.: Operating Systems: Design and Implementation. Prentice Hall (1987)
27. Thierry-Mieg, Y., Dutheillet, C., Mounier, I.: Automatic symmetry detection in well-formed

nets. In: Proc. of ICATPN 2003. LNCS, vol. 2679, pp. 82–101. Springer Verlag (June 2003)
28. Thierry-Mieg, Y., Ilié, J., Poitrenaud, D.: A symbolic symbolic state space representation.

Formal Techniques for Networked and Distributed Systems–FORTE 2004 pp. 276–291
(2004)

29. Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical Set Decision Dia-
grams and Regular Models. In: 15th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’09). LNCS, vol. 5505, pp. 1–15.
Springer, York, UK (2009)

23

